
Teaching R and data analysis 
interactively with 

Paige Parry, George Fox University











In this session we will:

• Discuss the value and challenges of teaching R and data analysis to 
undergraduate biology students

• Learn the basic structure of swirl

• Practice swirl using existing, user-contributed lessons

• Develop custom swirl lessons using the swirlify package







“Work across nearly all domains is 

becoming more data driven, affecting 
both the jobs that are available and 

the skills that are required. As more 
data and ways of analyzing them 

become available, more aspects of the 

economy, society, and daily life will 
become dependent on data. In future 

decades, all undergraduates will profit 
from a fundamental awareness of and 

competence in data science.”



Training in data analysis and programming is among the most 
pressing unmet needs in biology



Barone et al. 2017. Unmet needs for analyzing biological big data: A survey of 704 NSF principal 
investigators. PLoS Comput Biol 13(10): e1005755.

Training in data analysis and programming is among the most 
pressing unmet needs in biology



Training in data analysis and programming is among the most 
pressing unmet needs in biology



“Coding is ‘as important to modern scientific research as 
telescopes and test tubes’, but it is critical to dispel the 

misconception that these skills are intuitive, obvious, or in any 
way inherent.”

Wilson, G. et al. 2014. Best practices for scientific computing. PLoS Biology 12: e1001745.
Mills, B. 2015. Introducing Mozilla science study groups. Mozilla.



Challenges associated with teaching programming to 
undergraduate biology students:

• Poor student attitudes toward quantitative exercises; “math fear” and “math 
anxiety”

• Difficult to teach content and programming skills simultaneously (too little time)
• Lack of curricula accessible to undergraduates
• Steep learning curve due to little to no experience with programming
• Precision necessary to execute code
• Others?



Biology students may learn programming and analysis skills 
best when integrated with biology



Biology students may learn programming and analysis skills 
best when integrated with biology

Hester, S. et al. 2014. Integrating quantitative thinking into an introductory biology 
course improves students’ mathematical reasoning in biological contexts. 
CBE Life Sciences Education 13: 54-64.



What makes teaching scientific computing different from 
teaching introductory computer science?

1. Scientists work with entities such as signals, images, systems of equations, data tables, 
etc. Structures such as priority queues and B-trees are of no use or interest to science 
students.

2. For a scientist, computation is a tool rather than the object of interest. Science 
students need to see the scientific utility of programming.

3. Scientists have very limited time to devote to the formal study of computation.

4. Scientists use graphics extensively, even at an introductory level.

Kaplan 2004. Teaching computation to undergraduate scientists. SIGSCE 04:3-7.



Why use R?

• Developed as a user-friendly application primarily for data analysis, statistics, and 
graphics.

• Used extensively in scientific research

• Higher-level programming language with extensive libraries (packages)

• Active user group and substantial online support (mailing lists, user-contributed 
documentation, Stackoverflow)

• Built-in graphics capabilities
• Data can be read in, graphed, modeled, etc. in only a few lines of code



Navigate to: swirlstats.com

http://swirlstats.com/


Step 1: Open RStudio

Step 2: Install swirl
> install.packages(“swirl”)

Step 3: Start swirl
> library(swirl)
> swirl()

Step 4: Install an existing course
https://github.com/swirldev/swirl_courses#swirl-courses

https://github.com/swirldev/swirl_courses




Step 1: Navigate to the swirl course repository and choose a course
https://github.com/swirldev/swirl_courses#swirl-courses

Step 2: Open the swirl library
> library(swirl)

Step 3: Install the course from the console
> install_course(”Course Name”)

Step 4: Start swirl
> swirl()

Installing courses from the swirl repository automatically:

https://github.com/swirldev/swirl_courses


Step 1: Navigate to the swirl course repository and choose a course
https://github.com/swirldev/swirl_courses#swirl-courses

Step 2: Download the swirl course master zip file
https://github.com/swirldev/swirl_courses/archive/master.zip

Step 3: Open the swirl library
> library(swirl)

Step 4: Install the course from the console, specifying the full file path to the zip 
file

> install_course_zip(“/Users/pparry/Desktop/swirl_courses-
master.zip”, multi=TRUE, which_course=”Data Analysis”)

Installing courses from the swirl repository manually:

https://github.com/swirldev/swirl_courses
https://github.com/swirldev/swirl_courses/archive/master.zip




Step 1: Save course as .swc file to any handy directory

Step 2: Initiate course installation from console
> install_course()

Step 3: When prompted, navigate to directory and select course

Step 4: Start swirl and navigate to course
Work through the Simple Linear Regression lesson to see an example of 
integrating programming, data analysis, and biology learning

Installing a custom swirl course:





Creating your own course with swirlify:

swirlstats.com/swirlify

http://swirlstats.com/swirlify


Swirl course structure:



Course covers a broad topic (e.g. 
“Probability”, “Graphing”) and contains 
directories for specific lessons, ordered 
sequentially

Swirl course structure:



Each lesson directory inside of a course 
contains all of the files necessary to 
execute a specific lesson. Lessons cover 
specific topics that fall within the course 
theme.

Swirl course structure:



The .yaml file contains all of the text 
(questions, answers, hints) that students 
will see in the RStudio console when 
they work through a swirl lesson. This is 
the part that you will write using swirlify.

Swirl course structure:





The initLesson file is an R script that runs 
each time the lesson is started and can 
be used to load environmental variables 
or data into the lesson.

Swirl course structure:





The dependson text file contains a list of 
R packages to be loaded into the lesson. 
Swirl will install and load all packages 
listed here.

Swirl course structure:



This script can be used to write custom 
functions to test whether the answer to 
a swirl question is correct or not. Swirl 
already includes answer testing 
functionality, but some questions may 
require that you write custom tests.

Swirl course structure:



Step 1: Install swirlify in RStudio
> install.packages(”swirlify”)

Step 2: Load swirlify
> library(swirlify)

Step 3: Set working directory to the directory in which you want to store your course
> setwd(“your_directory_path_here”)

Step 4: Create lesson and launch swirlify shiny app for new lesson in new course
> swirlify(“My Lesson”, “My Course”)

Creating a new swirl lesson in swirlify:



Question classes:

The meta question



Question classes:

Message questions

*Tip: if you want to include 
apostrophes, quotations, 
or colons in your text, 
enclose the entire text 
string in quotations.



Question classes:

Command questions



Question classes:

Numerical questions



Check out the swirlify documentation for additional 
question types

http://swirlstats.com/swirlify/writing.html#types_of_questions

http://swirlstats.com/swirlify/writing.html


Including data in a lesson:

Step 1: Save data file (I recommend .csv) to same directory as lesson

Step 2: Open initLesson.R file associated with lesson

Step 3: Insert .get_course_path function
> .get_course_path <- function(){

tryCatch(swirl:::swirl_courses_dir(),

error=function(c) {file.path(find.package(“swirl”),”Courses”)}

)

}

Step 4: read in data file with .get_course_path function
> data <- read.csv(file.path(.get_course_path(), “My_Course”, 

“My_Lesson”, ”data.csv”))



Step 1: Save your lesson out in the shiny app and close the app.

Step 2: Test the lesson in the Rstudio console. Running a test will check for syntax errors and print error 
messages to the console.

> test_lesson()

Step 3: Demo lesson to make sure that you are satisfied with what your students will experience.
> demo_lesson()

Step 4: When all lessons in a course are completed, pack course to a .swc file for sharing
> pack_course()

*For all of these functions to work properly, you must point swirlify to the lesson and course you want to test and 
pack by setting the working directory appropriately.

Finishing your lesson:



• Dataset 1: Survival and fitness of Atlantic salmon smolts

• Dataset 2: Comparing urban and forest soil characteristics

• Dataset 3: Oral contraceptive use and prostate cancer

• Dataset 4: Spread of RNA viruses specialized on cancer-derived vs 
non-cancerous cells

Time to create your own lesson!



“Quantitative analysis, modeling, and prediction 
play increasingly significant day-to-day roles in 
today’s biomedical research…life science majors 
[should] become sufficiently familiar with the 
elements of programming to carry out simulations 
of physiological, ecological, and evolutionary 
processes. They should be adept at using computers 
to acquire and process data, carry out statistical 
characterization of the data and perform statistical 
tests, and graphically display data in a variety of 
representations…it is essential that biology 
undergraduates become quantitatively literate.”



“Quantitative analysis, physics, and chemistry 
are necessary to understand complex issues, 
along with biology…each institution of higher 
education [should] reexamine its current 
curricula and ensure that biology students gain a 
strong foundation in mathematics, physical and 
chemical sciences, and engineering as biology 
research becomes increasingly interdisciplinary.”



“The application of quantitative approaches (statistics, 
quantitative analysis of dynamic systems, and 
mathematical modeling) is an increasingly important 
basic skill utilized in describing biological systems. 
Developing the ability to apply basic quantitative skills to 
biological problems should be required of all 
undergraduates, as they will be called on throughout 
their lives to interpret and act on quantitative data from 
a variety of sources…Today, modeling is a standard tool 
for biologists, so basic skills in implementing 
computational algorithms for models are increasingly 
being incorporated into the undergraduate curriculum.”



“Data science is emerging as a field that is 

revolutionizing science and industries alike. Work 

across nearly all domains is becoming more data 

driven, affecting both the jobs that are available and 

the skills that are required. As more data and ways 

of analyzing them become available, more aspects 

of the economy, society, and daily life will become 

dependent on data. In future decades, all 

undergraduates will profit from a fundamental 

awareness of and competence in data science.”



What are the characteristics of an accessible, useful 
language for teaching scientific computation and analysis?

1. The language must be simple to learn so that most of the instruction can be focused 
on data analysis and visualization.

2. The language must make clear the general programming concepts required to perform 
analyses (e.g. input/output should be straightforward and quick).

3. The language must offer basic operators relevant to scientists (e.g. integration of 
programming language and graphics tools).

4. The language must be general enough that topics of importance in computer science 
can be illustrated (e.g. functions, variables, arguments, values, recursions).

Kaplan 2004. Teaching computation to undergraduate scientists. SIGSCE 04:3-7.


