Support

Support Options

  • Knowledge Base

    Find information on common questions and issues.

  • Support Messages

    Check on the status of your correspondences with members of the QUBES team.

Contact Us

About you
About the problem

Citations

Search Citations
Citations
Hanselman, Jennifer, Scherer, Hannah, Donovan, Sam, Hale, Alison, Hamerlinck, Gabriela, (2016), "InTeGrate QUBES Faculty Mentoring Network", Online, : Online, August, . Cited by:
Mourad, Teresa, (2016), "Bringing data-rich experiences to undergraduate classrooms - ESA Education scholars pave the way", : September, . Cited by:
Donovan, Sam, Hale, Alison, Fleming-Davies, Arietta, Hamerlinck, Gabriela, Wojdak, Jeremy, Jenkins, Kristin, (2016), "Faculty Mentoring Networks: A Model for Promoting Teaching Scholarship in Quantitative Biology Education", National Association of Biology Teachers 2016 Annual Conference, Denver, Colorado: November, . Cited by:

Faculty Mentoring Networks (FMNs) are designed to support the development of teaching scholarship by promoting teacher identity, self-efficacy, and knowledge/experience via four core design principles. We draw these principles from our experience developing and running 13 FMNs with over 200 participants.

Donovan, Sam, Jenkins, Kristin, Hale, Alison, Hamerlinck, Gabriela, (2016), "Design, Implementation, and Evaluation of Faculty Mentoring Networks: A Model for Promoting Faculty Teaching Scholarship", National Association of Biology Teachers 2016 Annual Conference, : Denver, Colorado, November, . Cited by:

NGSS, AP Biology, and Vision & Change all highlight the importance of quantitative skills to understanding biology. The Quantitative Undergraduate Biology Education and Synthesis (QUBES, qubeshub.org) project addresses the many of the challenges associated with improving students’ quantitative skills. Although the project primarily focuses onundergraduate settings, high school faculty may also find the project resources valuable.This symposium will include 3-4 brief presentations by faculty who have adapted and used a diverse collection quantitative reasoning teaching resources as part of their participation in various Faculty Mentoring Networks (FMNs). FMNs are long duration, low intensity, online learning communities that support faculty through the customization and implementation of effective teaching materials. The FMNs represented will include HHMI Biointeractive, ESA/TIEE, DryadLab, and AIMS. These projects are all chosen because they leverage existing high quality quantitative teaching resources that should be of interest to the broad NABT audience. The resources will be presented as a collection of “implementation stories” which feature peer-to-peer descriptions of how a wide range of disciplinary topics, institutional settings, and quantitative skills were accommodated. Portions of these resources will be distributed during the symposium and additional supporting materials will be available online.In addition to sharing specific teaching resources we will highlight ways for symposium attendees to participate in the QUBES project. An introductory presentation will raise attendees awareness of our approach to supporting quantitative reasoning in biology classrooms and share opportunities for their participation in future Faculty Mentoring Networks. The closing presentation will reflect on, and generalize from, the specific “implementation stories” to provide an overview of how Faculty Mentoring Networks are used to support teaching scholarship, and ways that attendees can participate.

LaMar, Drew, (2016), "A Framework for Teaching Modeling to Biologists", SIAM Conference on Applied Mathematics Education, : Philadelphia, PA, September, . Cited by:

What are the modeling skills and metacognitive strategies of importance for the life sciences? In this talk, we describe a teaching and learning framework around modeling that (1) highlights the sometimes hidden role of models and modeling in the sciences, and (2) points to a possible path forward on how to move from using models as illustrative tools to using modeling as a process of discovery.

Diaz Eaton, Carrie, (2016), "A Framework for Modeling to Encourage Interdisciplinary Conversations", SIAM Conference on Applied Mathematics Education, : Philadelphia, PA, September, . Cited by:

Here we present a framework for thinking about what models and modeling are, particularly to other disciplines. We encourage that differing disciplinary approaches are seen as part of a larger picture of this framework, thinking about model representations in the rule of five, and modeling as the act of moving between representations. We provide examples to illustrate and acknowledge language can interfere with helping students make connections between disciplines, even between statistics and mathematical modeling. Although in targeted to teaching modeling skills to biologists, the lessons can be extrapolated to a variety of other interdisciplinary conversations.

Fleming-Davies, Arietta, Hamerlinck, Gabriela, Hale, Alison N, Langen, Tom, Mourad, Teresa, Jenkins, Kristin, Donovan, Sam, (2016), "Confronting the challenges of bringing research data into undergraduate classrooms using online faculty mentoring networks", National Association of Biology Teachers 2016 Annual Conference, : Denver, Colorado, November, . Cited by:

Using ecological research data in undergraduate courses has many potential benefits for student learning. Students gain knowledge of ecological concepts, increased understanding of the scientific process, and meaningful opportunities to develop and practice quantitative skills (Langen et al. 2014). As ecological datasets continue to become larger and more complex, faculty may need additional support both to build their own skills and to teach effectively with research data. 

Fleming-Davies, Arietta, Hamerlinck, Gabriela, Hale, Alison N, Langen, Tom, Mourad, Teresa, Jenkins, Kristin, Donovan, Sam, (2016), "Confronting the challenges of bringing research data into undergraduate classrooms using online faculty mentoring networks", Ecological Society of America Annual Conference 2016, : Fort Lauderdale, Florida, August, . Cited by:

Using ecological research data in undergraduate courses has many potential benefits for student learning. Students gain knowledge of ecological concepts, increased understanding of the scientific process, and meaningful opportunities to develop and practice quantitative skills (Langen et al. 2014). As ecological datasets continue to become larger and more complex, faculty may need additional support both to build their own skills and to teach effectively with research data. 

Orndorf, Hayley, Morgan, William, Grandgenett, Neal, Pauley, Mark, Ryder, Liz, Sierk, Michael, Wright, Robin, Rosenwald, Anne, Dinsdale, Elizabeth, Triplett, Eric W, Donovan, Sam, (2016), "Incubators: A community based model for improving the usability of bioinformatics learning resources", National Association of Biology Teachers 2016 Annual Conference, : Denver, Colorado, November, . Cited by:

There are a variety of barriers to faculty participation in scholarly approaches to teaching. Primary among these are the challenges undergraduate faculty face in finding and participating in a scholarly community, and in receiving academic credit for their work. The Open Education Resources (OER) movement was designed in part to make it easier for faculty to share their work, particularly in the context of adopting and adapting existing resources. However, participation in the OER community by undergraduate biology faculty is hampered by a lack of awareness, lack of an active disciplinary community, and technical difficulties involved in sharing modified materials. Furthermore, recognition for this type of teaching scholarship is undermined by the lack of clear and consistent ways to document participants' intellectual contributions. We have designed a system for facilitating collaborative projects around existing learning resources that both improve the quality of the materials and also document participant contributions. Incubators are small, peer-driven, relatively short-lived, online communities that work with a learning resource to 1) move it toward publication, 2) improve its usability, and 3) provide customizations for different student audiences and teaching settings. Incubators are formed around specifically identified goals in one or more of these areas. Incubator participants work in an online environment with both editorial and technical facilitators to produce materials that will be shared publicly, with the ultimate goal of publication in an open-access journal. This work is a collaboration between the NSF- funded Network for Integrating Bioinformatics into Life Sciences Education (NIBLSE) and the Quantitative Undergraduate Biology Education & Synthesis (QUBES) projects. The NIBLSE community brings both bioinformatics teaching expertise and learning resources to the Incubators. The QUBES community provides online infrastructure and experience in facilitating online collaboration and publication. Please visit https://qubeshub.org/groups/niblse/resourcecollection for more information.

Jenkins, Kristin, Hamerlinck, Gaby, Donovan, Sam, Hale, Alison, Orndorf, Hayley, LaMar, M. Drew, Fleming-Davies, Arietta, Wojdak, Jeremy, Gower, Stith, (2016), "“Lowering the Activation Energy: Making Quantitative Biology More Accessible"", 2016 National Academies Special Topics Summer Institute on Quantitative Biology, : North Carolina State University, Raleigh, North Carolina, June, . Cited by:

Modeled on the National Academies Summer Institutes, the Quantitative Biology Summer Institute (QB SI) is presented by BioQUEST, Science Case Net and QUBES.  This will be a working meeting during which participants will learn about and use evidence-based teaching strategies such as backward design, active learning, and assessment, as well as methods such as cases and modeling.  Hands on sessions at the institute will focus on resources and methods to address the special challenges associated with teaching quantitative biology.  The workshop is developed by BioQUEST, which celebrates 30 years of leadership in biology education reform in 2016, and Science Case Network, which brings expertise on using case based pedagogies. The QUBES project will support ongoing collaborations among participants.

Fleming-Davies, Arietta, Hamerlinck, Gabriela, Jenkins, Kristin, (2016), "Data Discovery Faculty Mentoring Network", Online, : January, . Cited by:

The goal of this faculty mentoring network is to help faculty bring research data into undergraduate classrooms.

Wojdak, Jeremy, (2016), "Analyzing Images to learn Mathematics and Statistics (AIMS) - faculty mentoring network", Online, : February, . Cited by:

This faculty mentoring network will provide participants with a basic introduction to image analysis and using image analysis and interesting biological contexts to motivate student learning of mathematics and statistics. 

Linton, Deb, Ellwood, Libby, Nelson, Gil, Goodwin, Jillian, James, Shelley, Phillips, Molly, Babaro, Tracy, Monfils, Anna, Roberts, Mari, (2017), "Building and disseminating resources for collections-based undergraduate education", Building and disseminating resources for collections-based undergraduate education: Kickoff Workshop, : Gainesville, Florida, May, . Cited by:
Griffin, Michael P., (2016), "Clarkson University Faculty Participate in Teaching Workshop to Make Quantitative Biology More Accessible", : July, . Cited by:
Hanselman, Jennifer, Scherer, Hannah, Donovan, Sam, Hale, Alison, (2016), "Adapting geoscience materials for introductory biology courses using the Faculty Mentoring Network", Earth Educators' Rendezvous, : Madison, Wisconsin, July, . Cited by:

InTeGrate and the Quantitative Undergraduate Biology Education and Synthesis (QUBES) project have partnered to support the adaptation of these geoscience modules into introductory biology courses. The modules all include a systems thinking approach while focusing on students' metacognitive abilities. The QUBES project partners with high quality content providers, like InTeGrate, to coordinate long duration (3-4 month), low intensity (biweekly synchronous meetings) faculty communities called faculty mentoring networks (FMN). The goal of a FMN is to support the faculty community through the process of customizing the materials for use in their instructional settings, implementing them with students, and publishing the products for use by other faculty. These efforts provide rich scholarly experiences for participants and add value to the existing teaching materials by building paradata (information about the use of the materials) that will support future adoption.Situated learning postulates that learning is embedded in experience such that learning outcomes for participants in the FMN are a product of their efforts to incorporate geoscience concepts into biology courses. Analysis of FMN activities from the perspective of situated learning in a community of practice allows for identification of mechanisms through which participants learn from their experience, each other, and input and facilitation from the mentors. Understanding how the participants experienced the FMN leads to identification of components of the FMN that were particularly instrumental or detrimental to faculty adaptation and implementation of InTeGrate materials. Faculty are adapting InTeGrate modules for the biology context with a range of approaches and degrees of revision. Analysis of how faculty approach these changes provides insight into strategies for supporting more faculty members in the use of existing materials in new disciplinary settings.

Monfils, Anna K., Ellwood, Elizabeth, Linton, Debra L., Phillips, Molly, Cook, Joseph, Kerski, Joseph, Barbaro, Tracy, Donovan, Sam, Powers, Karen, Prather, L. Alan, Guralnick, Rob, (2016), "Integrating Natural History Collections into Undergraduate Education: Creating the Resources and Growing the Community", GREEN MUSEUM – HOW TO PRACTICE WHAT WE PREACH? 2016 SPNHC conference, : Berlin, Germany, June, . Cited by:

Natural history collection specimens and associated data provide unique physicaland virtual opportunities to engage students in the practice of science in authentic, place based lessons. We will present information on how collections, and the data associated with collections, can facilitate student learning and teach valuable skill sets necessary for the 21st century workforce. The talk will highlight ongoing efforts to engage students using museum data and provide examples of current educational opportunities and existing educational modules. We will present results from recent surveys of students working in collections, collection professionals speaking to new skill sets needed for workforce training, and the collections community's insight on future directions in the use of museums in undergraduate education. We will address challenges associated with implementing natural history collection modules into undergraduate education and introduce emerging collaborative efforts to incorporate specimens and associated data into the undergraduate curriculum.

Monfils, Anna K., Ellwood, Elizabeth, Linton, Debra L., Phillips, Molly, Cook, Joseph, Kerski, Joseph, Barbaro, Tracy, Donovan, Sam, (2016), "Integrating Natural History Collections into Undergraduate Education: Creating the Resources and Growing the Community", Botany 2016, : Savannah, Georgia, August, . Cited by:

In 2010, the United States National Science Foundation funded a research coordination network (RCN), Advancing Integration of Museums into Undergraduate Education: AIM-UP! (AIMUP.unm.edu). That project has produced a thriving national network of undergraduate educators, curators, collection managers, database managers, and scientists, that is identifying and developing novel ways to use natural history collections (e.g. herbarium specimens) in undergraduate education. To extend this work and broaden the visibility and utility of AIM-UP resources we have launched a collaborative effort among AIM-UP! participants, that extends our project to the Integrated Digitized Biocollections Education and Outreach working group (iDigBio.org), the Esri EdCommunity (edcommunity.esri.com), Kurator developers (wiki.datakurator.net/web/Kurator), and the Quantitative Undergraduate Biology Education and Synthesis community (QUBEShub.org). We report on a plant/pollinator co-evolution collaborative educational module under development and a vetted workflow for producing, evaluating, and assessing additional educational modules based in the extensive museum and herbarium databases now available on-line. We will introduce other emerging opportunities to build the AIM-UP! collaborative network and expand existing modules through a QUBES sponsored Faculty Mentoring Network (qubeshub.org/community/fmn). We also provide details on a pilot "train the teacher" workshop that will prepare and enable faculty to use and incorporate specimen-based data (and associated tools) into the introductory undergraduate biology curriculum and upper-level botany courses.

Grayson, Kristine, Hale, Alison, Wu, X-Ben, (2016), "Data-based inquiry in the Classroom using Authentic Research Data from the Dryad Digital Repository", 2016 National Academies Special Topics Summer Institute on Quantitative Biology “Lowering the Activation Energy: Making Quantitative Biology More Accessible", : Raleigh, North Carolina, June, . Cited by:

Looking for real datasets to use in the classroom? DryadLab modules encourage students to focus on core competencies such as critical thinking and data analysis by promoting an active learning environment for all students. Through the use of authentic data sets, students develop an ability to analyze and represent data to solve a problem, understand the relationship between the data and the hypothesis, cope with missing data, recognize confounding factors, interpret ambiguous results, and come to better understand how scientific knowledge is constructed – come learn how to use these materials in your classroom!

Hale, Alison, Orndorf, Hayley, Donovan, Sam, Diaz-Eaton, Carrie, Fleming-Davies, Arietta, Gower, Stith, Hamerlinck, Gabriela, Jenkins, Kristin, LaMar, A. Drew, Poli, DorothyBelle, Sheehy, Bob, Wojdak, Jeremy, (2016), "Faculty Mentoring Networks: A model for promoting teaching scholarship in quantitative biology education", 2016 National Academies Special Topics Summer Institute on Quantitative Biology “Lowering the Activation Energy: Making Quantitative Biology More Accessible", : Raleigh, North Carolina, June, . Cited by:

The incorporation of quantitative skills and concepts into biology classrooms remains a major hurdle for biology education reform. Biology faculty often feel underprepared to teach quantitative reasoning, may not feel supported to develop and implement change, and receive little or no credit for time devoted to reforming their teaching. We hypothesize that promoting the scholarly aspects of quantitative biology education can increase faculty participation and persistence in their reform efforts. Our model of the factors influencing faculty perceptions of their teaching scholarship has three primary components: 1) faculty must have sufficient knowledge of quantitative reasoning content and effective pedagogy; 2) they must exhibit high self-efficacy around their teaching; and, 3) they must self-identify as quantitative biology teachers. To test our proposed model, we have designed, implemented, and assessed faculty mentoring networks (FMNs), which are online communities that support faculty in their efforts to infuse quantitative skills into their existing courses. The structure of FMNs have emerged from the use of four design principles that connect the activities faculty engage to components of our change model. The faculty mentoring networks are designed to provide mentoring in quantitative biology from experienced peers and content experts, support a collaborative community working on shared problems and goals, engage faculty all the way through classroom implementation and encourage the public sharing of teaching projects. The design of FMNs will continue to be refined as more networks are developed, but early evidence points to their success as measured by faculty implementation of projects in their classrooms.

Hale, Alison, Donovan, Sam, (2015), "Data-based inquiry in the Classroom using Authentic Research Data from the Dryad Digital Repository", National Association of Biology Teachers 2015 annual conference, : Providence, Rhode Island, November, . Cited by:
Eaton, Carrie D., Donovan, Sam, Gower, Stith, Jenkins, Kristin, LaMar, M. Drew, Poli, DorothyBelle, Sheehy, Robert, Wojdak, Jeremy, Hale, Alison N., Fleming-Davies, Arietta, Hamerlinck, Gabriela, (2015), "Building a Community to Promote Undergraduate Quantitative Biology Education", MPE 2013 Workshop on Education for the Planet Earth of Tomorrow, : Knoxville, TN, September, . Cited by:
Jenkins, Kristin, (2015), "Diving into the Deep End: Teaching Interdisciplinary Science", MPE2013, : October, . Cited by:
Jenkins, Kristin, Sturner, Kelly, Reichert, Susan, (2016), "Biology by Numbers: Math and Life Science are Better Together", National Science Teachers Association, : April, . Cited by:
Hamerlinck, Gabriela, (2016), "I was told there would be no math involved: Introducing students to quantitative biology", Wisconsin Society for Science Teachers, : La Crosse, WI, April, . Cited by:

Banish mathphobia! Come explore some great, open access resources designed to help students understand how to use mathematical tools in a biological context.

Fleming-Davies, Arietta, Hamerlinck, Gabriela, Jenkins, Kristin, (2016), "Scaling Up ESA/QUBES Faculty Mentoring Network", Kickoff at Life Discovery - Doing Science Education Conference, : Baltimore, MD, March, . Cited by:

This QUBES Faculty Mentoring Network focused on supporting faculty to equip students with the quantitative skillset needed to ‘scale up’ to large ecological datasets. This network ran from January - May 31, 2016.

Jenkins, Kristin, Hamerlinck, Gabriela, (2015), "Quantitative Biology in Introductory Biology", Kickoff at the National Association of Biology Teachers annual conference, : November, . Cited by:

This QUBES Faculty Mentoring Network focused on infusing quantitative reasoning throughout the existing intro bio curriculum. This network ran from November 11, 2015 to April 30, 2016.

Hamerlinck, Gabriela, (2016), "I was told there would be no math involved: Introducing students to quantitative biology", Life Discovery - Doing Science Education Conference, : March, . Cited by:
Liu, Loretta, Grobengeiser, Katie, Donovan, Sam, Hale, Alison N., (2016), "The Impact of Diversity on Group Productivity Within Online Faculty Mentoring Networks (FMNs) of Educators", University of Pittsburgh Office of Undergraduate Research Celebration of Research 2016, : Pittsburgh, PA, April, . Cited by:

With the fast growing pace of online technology for teaching and obtaining information, increasingly, many educators are turning their browsers on to immerse both themselves and their students in the plethora of resources that the internet has to offer. QUBES (Quantitative Undergraduate Biology Education Synthesis) is one of these online resources, specializing in aiding professors who want to implement more quantitative biology into their lecture material. QUBES allows educators to participate in various “modules” available for professors to utilize via Faculty Mentoring Networks (FMNs). FMN members attend meetings with each other to discuss their progress in implementing new teaching strategies, tools, and resources through video chat on Google Hangouts. Our research specifically focuses on comparing the productivity of these meetings in each FMN to the level of diversity of that specific group. Various claims suggest that a greater diversity of thinkers contribute to more successful projects. Therefore, we predict that a greater diversity in geography, institution type and size, and percent of tenure will correlate to a greater measure of productivity in FMN meetings. Diversity is measured and analyzed as differences in geographic location, type and size of institution the participant teaches at and whether or not the participant has tenure. To quantitatively score the productivity of members, a second set of data is gathered from analyzing FMN recordings of each group. This data set will analyze educator-educator interactions as well as educator-mentor interactions to give a holistic view of overall group productivity. Analyzing the data using a statistical and mathematical model will highlight any significant correlating trends in three different FMNs. Further analysis and conclusions will be determined from the gathered data.

Balsan, Leah, McLaughlin, Connor, Donovan, Sam, Hale, Alison N., (2016), "Quantitative biology: how educators that "buy-in" demonstrate greater productivity in teaching scholarship", University of Pittsburgh Office of Undergraduate Research Celebration of Research 2016, : Pittsburgh, PA, April, . Cited by:

How does one teach effectively? Teachers and school administrators have been asking this question for generations. However, in the biological sciences, this question has been complicated by the growth of technology. Research methods are rapidly changing due to new technology, tools, and data analysis processes. Quantitative Undergraduate Biology Education and Synthesis (QUBES) is an online project funded by the National Science Foundation with the overall goal of integrating quantitative reasoning and research into biology classrooms. But in order to teach their students, teachers must first understand these techniques themselves. QUBES Mentoring Networks (FMNs) allow for the sharing of these skills. They provide guidance and resources to use in the classroom to facilitate students understanding of quantitative biology concepts. The purpose of our current research is to assess the effectiveness of the FMNs. In order to explore this topic, we collected “buy-in” data and compared it to the amount of participation in the small group meetings. The buy-in data included two major areas: profile completion and the total number of online posts, both to the forum and the collection. Productivity data was collected from FMN recordings on Google Hangouts and measured as: attendance and substance of contributions. Substance was scored as: unsubstantial (1), substantial feedback (2), substantial reporting of their own work (3), and both substantial feedback/reporting (4). From this we predicted that more buy-in would correlate with a higher level of participation. Preliminary results indicate that participants with greater profile completion and posts have high attendance, supporting our original prediction. In the future, additional data will be collected in order to determine if a consistent relationship is present.

Hale, Alison, Fleming-Davies, Arietta, Hamerlinck, Gabriela, Aikens, Melissa, Donovan, Sam, Jenkins, Kristin, Wojdak, Jeremy, (2016), "Faculty Mentoring Networks: A model for professional development in undergraduate quantitative biology education", Ecological Society of America annual conference 2016, : Fort Lauderdale, Florida, . Cited by:

There is a significant need to design and test alternative models for faculty development around undergraduate science teaching. Existing models for helping faculty adopt evidence-based teaching strategies have generally been shown to be ineffective at promoting change in classroom practices. Additionally, the existing models do not scale well and often do not reflect the pedagogical strategies that they promote. Here we report early outcomes from the faculty development portion of the Quantitative Undergraduate Biology Education and Synthesis (QUBES) project. The interventions involved participation in Faculty Mentoring Networks (FMN). FMNs are unique in that participants interact over multiple weeks in an online community to customize and implement a particular high quality teaching strategy focused on quantitative biology. We report on two FMNs that each had 10-15 faculty participants and shared many structural features but focused on very different teaching strategies. One network focused on the use of agent based modelling in the classroom (ABM) while the other network focused on student use of research datasets associated with the Dryad data repository (DL). To assess the effectiveness of FMNs in faculty development, we collected data from faculty participation in the FMN activities and surveys conducted at the end of the interventions. Overall, participants indicated that the FMN experience provided strong motivation, guidance, and support to create and/or adapt materials targeting students’ quantitative reasoning skills (Likert scale: 1 - 5; ABM (N = 10): 4.9 /- 0.1; DL (N = 9): 5.0 /- 0). In ABM, 50% of participants developed and shared a sketch for a student activity using BehaviorSpace simulations. In DL, 70% of participants produced and shared an adaptation of a data-driven curriculum module. Participants unanimously agreed that they would recommend FMNs to colleagues, and 95% indicated they would be interested in participating in another network. Qualitative analysis of free response survey questions suggests that peer interactions are a key element underlying the successful adoption of new teaching strategies in FMNs. Through the sharing of materials and experiences (i.e. “teacher talk”), faculty saw how others “put their own spin” on a topic. By comparing and contrasting different approaches, faculty could decide which strategies might work in their own classroom. Seven additional FMNs are running in spring 2016. We will refine our assessment for these networks to further identify the mechanisms that promote a positive and productive professional development experience for faculty and encourage implementation of quantitative biology in undergraduate classrooms.

Donovan, Sam, Diaz-Eaton, Carrie, Fleming-Davies, Arietta, Gower, Stith, Hale, Alison N., Hamerlinck, Gabriela, Jenkins, Kristin, LaMar, M. Drew, Poli, DorothyBelle, Sheehy, Bob Wojdak, Jeremy (2015), "QUBES: Building a community to promote undergraduate quantitative biology education", National Association of Biology Teachers 2015 annual conference, : Providence, Rhode Island, November, . Cited by:
Donovan, Sam, Hale, Alison, Hanselman, Jennifer, Scherer, Hannah, (2015), "InTeGrate faculty mentoring network", Kickoff at National Association of Biology Teachers 2015 annual conference, : November, . Cited by:

The goal of this faculty mentoring network was to help faculty teach for a sustainable future in their undergraduate biology classrooms. This network ran from November 11, 2015 to May 31, 2016.

Eaton, Carrie D., Donovan, Sam, Gower, Stith, Jenkins, Kristin, LaMar, M. Drew, Poli, DorothyBelle, Sheehy, Robert, Wojdak, Jeremy, Hale, Alison N., Fleming-Davies, Arietta, (2015), "QUBES: Building a community to promote undergraduate quantitative biology education", The International Symposium on Biomathematics and Ecology: Education and Research, : Normal, IL, October, . Cited by:
Poli, DorothyBelle, Cartier, Jen, Donovan, Sam, Diaz Eaton, Carrie, Gower, Stith, Jenkins, Kristin, LaMar, M. Drew, Sheehy, Bob, Wojdak, Jeremy, Hale, Alison N., Fleming-Davies, Arietta, (2016), "Supporting Faculty in Quantitative Undergraduate Biology Education and Synthesis (QUBES)", Envisioning the Future of STEM Education (EnFUSE) AAAS, : Washington, DC, April, . Cited by:
Eaton, Carrie, (2015), "QUBES Hub: An online community", International Symposium on Biomathematics and Ecology Education and Research, : Normal, IL, . Cited by:
Eaton, Carrie D., Donovan, Sam, Gower, Stith, Jenkins, Kristin, LaMar, M. Drew, Poli, DorothyBelle, Sheehy, Robert, Wojdak, Jeremy, Hale, Alison N., Fleming-Davies, Arietta, (2015), "?", Gordon Research Conference on Undergraduate Biology Education Research, : Lewiston, ME, July, . Cited by:
Eaton, Carrie, H., Callender, (2016), "The case for biocalculus: Interdisciplinary Conversations", Joint Mathematics Meetings, : Seattle, WA, January, . Cited by:
Eaton, Carrie, Donovan, Sam, Gower, Stith, Jenkins, Kristin, LaMar, M. Drew, Poli, DorothyBelle, Sheehy, Robert, Wojdak, Jeremy, (2015), "QUBES: Supporting faculty in the teaching of mathematical biology", Society for Mathematical Biology 2015 Conference, : Atlanta, GA, . Cited by:
Eaton, Carrie, (2015), "Calculus, Zombies, Community, and QUBES: Education at the interface of mathematics and biology", Pizza Pi Colloquium, Mathematics Department, University of Maine, : Orono, ME, March, . Cited by:
Poli, DorothyBelle, (2015), "QUBES: A Tool for Resources, Research, Mentoring, and Community in Quantitative Biology Education", Society for Integrative and Comparative Biology, : West Palm Beach, FL, January, . Cited by:
Poli, DorothyBelle, Cartier, Jen, Donovan, Sam, Diaz Eaton, Carrie, Gower, Stith, Jenkins, Kristin, LaMar, M. Drew, Sheehy, Bob, Wojdak, Jeremy, (2015), "QUBES: Bringing improved quantities education to more undergraduates and faculty", Society for Integrative and Comparative Biology, : West Palm Beach, FL, January, . Cited by:
Donovan, Sam S., (2014), "QUBES: Building a community to promote undergraduate quantitative biology education", Interdisciplinary STEM Education for Millennial Students, : June, . Cited by:
Donovan, Sam S., (2014), "High Performance Computing in Undergraduate Education: Scanning the Landscape", Invited Workshop Cold Spring Harbor Research Lab, : Cold Spring Harbor, NY, September, . Cited by:
Hale, Alison N., Fleming-Davies, Arietta, Donovan, Sam S., (2015), "2015 Resources for Ecology Education: Fair and Share", 2015 Ecological Society of America, : Baltimore, MD, August, . Cited by:
Orndorf, Hayley, Hale, Alison N., Donovan, Sam S., (2015), "The Effect of Instructor Communication on Student Perceptions of Mathematics in Biology", University of Pittsburgh Honors College Undergraduate Research Fair 2015, : Pittsburgh, PA, April, . Cited by:

Student perceptions of the importance of mathematics in biology are context dependent. While students often view math as unnecessary to understanding biology, certain conditions can promote positive responses to math-bio topics. The goal of this project was to investigate factors that promote positive student attitudes. First, we created a model describing possible influences on student perceptions of math in biology. Based on this model, we predicted that instructor communication about course goals would influence student responses about the importance of mathematics in biology. To test this prediction, we altered instructor communication to Foundations of Biology 2 (BIOSC 0160) students and monitored impacts on student perceptions through the use of a survey. Instructor communication consisted of a statement of the course objectives at the beginning of the survey. Half of the students received surveys with objectives emphasizing the link between math and biology, while the other half received a survey with traditional course objectives. Following this “instructor communication,” students were asked to express their opinions about what biology is and how they learn biology. We found that our instructor communication influenced students’ perceptions about certain aspects of what biology is. Specifically, students that were primed with math-bio course objective rated statements that biological knowledge is a set of core concepts and results from classical experiments significantly lower than traditionally primed students. While student perceptions of how they learn biology were largely independent of the objectives they received, students receiving the math-bio course objectives agreed more strongly with the statement that mathematical representations can provide meaning to biological concepts. Overall, our results indicate that the majority of students acknowledged the usefulness of quantitative skills in solving biological problems but did not believe math to be a central part of biology. The results of this pilot project will be used to guide further investigation on students' attitudes towards quantitative biology.

Akoto, Atteh, Garber-Talamo, Michelle, Donovan, Sam S., Hale, Alison N., (2015), "Pre-Health Students' Attitudes towards the Relative Importance of Biology and Statistics for their Preparation for Professional School", University of Pittsburgh Honors College Undergraduate Research Fair 2015, : Pittsburgh, PA, April, . Cited by:

During a recent review of the MCAT exam, the American Association of Medical Colleges (AAMC) surveyed medical school faculty to determine the relative importance of basic science and statistics topics for medical school preparation and success. Based on the results of this survey, the AAMC identified statistical reasoning as one of the major competencies expected of incoming medical students. The purpose of this project was to ascertain how students who self-identify as pre-med/pre-health: 1) perceive the importance of statistics to their academic preparation for professional school and 2) how this relates to their attitudes towards the incorporation of basic statistical reasoning in their undergraduate biology classes. We administered a survey similar to that of the AAMC to pre-health students at the University of Pittsburgh. Students were asked to rate the importance of 10 biology and 10 statistics topics from the original AAMC survey. Topics were selected based on their medical relevance and relative importance ranking in the AAMC survey. Students were also asked if they had ever encountered the statistics topics within the context of a biology course and if they believed that working with each statistical concept in a biology course would be beneficial to their preparation for medical school. The results of our survey indicate that, compared to the AAMC, students overestimated the relative importance of comparative anatomy and topics related to body systems. In contrast, students underestimated the relative importance of measures of central tendency to their preparation for medical school. Students felt that additional exposure to all of the statistics topics in biology courses would be helpful to their preparation for medical school. Not surprisingly, students’ ranking of the relative importance of a statistics topic correlated with their interest in studying it in a biology course. Our research was conducted in the context of an initiative to promote math in undergraduate biology courses and is exploratory in nature. Our results will be used to inform faculty about the attitudes of pre-health students and to inform students of the expectations of the AAMC in preparation for medical school.

Levenson, Wendy Jo, Herbst, Monika Norea, Donovan, Sam S., Hale, Alison N., (2015), "Characterizing the Quantitative Biology Curricula from Institutions Across the United States", University of Pittsburgh Honors College Undergraduate Research Fair 2015, : Pittsburgh, PA, April, . Cited by:

Due to the increasingly quantitative nature of the biological sciences, many schools now offer majors in mathematical biology. As this is a new major, there is no standard for how the program should be designed nor is there a place to easily access information about each school’s curriculum. In this study we analyzed the curriculum of ten mathematical biology programs to characterize their core components and their interdisciplinary nature. We then compared these programs to elucidate similarities and differences in: the percentage of credit hours devoted to mathematics vs. science; the department in which the major is housed; the number of required courses at different levels of learning (introductory, intermediate, and advanced); the number of undergraduate students enrolled in the major; and the number of interdisciplinary courses offered. Preliminary analyses indicate that programs vary across a wide spectrum in the percentage of credit hours devoted to mathematics vs. science. The programs that are heavily skewed towards either math or science lack courses that are cross-listed between departments. However, most programs offer courses with titles that suggest a blend of mathematical and biology concepts. We also found that most mathematical biology programs are housed in the mathematics department. By characterizing the layout, focus, and difficulty of mathematical biology programs, professionals in this field will be able to compare their curriculum with others to create a more consistent curriculum.

Donovan, Sam, Eaton, Carrie Diaz, Gower, Stith T., Jenkins, Kristin P., LaMar, M. Drew, Poli, DorothyBelle, Sheehy, Robert, Wojdak, Jeremy M., (2015), "QUBES: a community focused on supporting teaching and learning in quantitative biology", Letters in Biomathematics, Proceedings of the Seventh International Symposium on Biomathematics and Ecology: Education and Research, Taylor & Francis, 2, 1: pg: 46-55, June, (DOI: 10.1080/23737867.2015.1049969). Cited by:

This letter provides an overview of the Quantitative Undergraduate Biology Education and Synthesis (QUBES) Project funded through the National Science Foundation. The project has five distinct, but interdependent, initiatives which work together to support faculty and students in the teaching and learning of quantitative biology (QB). QUBES has adopted an integrated strategy to improving the frequency and effectiveness of QB instruction that includes coordinating a broad consortium of professional stakeholders, supporting faculty development and the implementation of new teaching practices, providing an infrastructure for collaboration and access to high quality materials, establishing new metrics for faculty teaching scholarship and documenting the project outcomes.

Jenkins, Kristin, Donovan, Sam, Dewey, Tanya, Gower, Tom, LaMar, M. Drew, (2015), "2015 Quantitative Biology Education Summit", 2015 Quantitative Biology Education Summit, : National Evolutionary Synthesis Center (NESCent), Durham NC, February, . Cited by:

This meeting will be supported by two NSF funded projects: the Data In Inquiry RCN, and the newly funded Quantitative Undergraduate Biology Education and Synthesis Project (QUBES). The Data in Inquiry RCN is wrapping up its activities but the community we established and many of the educational issues we addressed will be picked up as part of the QUBES project. QUBES will focus on supporting faculty throughout their efforts to bring a more quantitative perspective as they teach biology, including providing students with opportunities to work with modern tools and data. This support extends from learning about new quantitative approaches, to finding and adapting existing quantitative teaching resources, implementing new lessons, and evaluating their effectiveness.

At this meeting we will build on the initial work generated by the Data in Inquiry RCN and the QUBES RCN - forerunner of the current QUBES project - and establish priorities for our future efforts. We will discuss the immediate, “low hanging fruit” as well as the long term challenges in quantitative biology education. Specifically, we hope to make progress in two areas: 1) identifying critical next steps required to move undergraduate biology classrooms into the 21st century and 2) an analysis of the kinds of data inquiry currently being used in biology classrooms.

We are interested in building on, and learning from, previous and ongoing projects as we launch the 5-year Quantitative Undergraduate Biology Education and Synthesis (QUBES) project: http://www.qubeshub.org/. We will be identifying objectives for immediate action, as well as strategizing for longer term projects.

This meeting will be a unique opportunity to work collaboratively to survey the dynamic field of quantitative biology education and share input on strategies for advancing our knowledge and practice around effectively teaching modern biological methods. It will be a working meeting that will involve some pre-meeting responsibilities and opportunities to contribute to the meeting products. Additional information about pre-meeting work and potential products will be in the next update email. Together we hope to lay out a clear path for both the near and far futures of quantitative biology education.

Poli, DorothyBelle, (2015), "Counting the Forest and the Trees: Quantitative Undergraduate Biology Education and Synthesis (QUBES) is a tool for Vision and Change", Botany 2015, : Edmonton, Alberta - Canada, July, . Cited by:

Vision and Change stressed the importance of quantitative skills for the future of science in the United States. In response to this plea, biologists and mathematicians came together to discuss quantitative education, and QUBES (Quantitative Undergraduate Biology Education and Synthesis) was born. QUBES was recently awarded a five-year grant from the Improving Undergraduate STEM Education (IUSE) Program at the National Science Foundation, and aims to improve learning opportunities for all students enrolled in undergraduate biology courses. This presentation will focus on how QUBES plans to achieve this goal (for example, through mentoring networks and an online Hub of collaborating educators) and how you can get involved in this new community.

Export Multiple Citations

Check the citations that you would like to have exported.

|
Reference Type
Author Geography
Author Affiliation