Support

Support Options

  • Knowledge Base

    Find information on common questions and issues.

  • Support Messages

    Check on the status of your correspondences with members of the QUBES team.

Contact Us

About you
About the problem

Citations

Search Citations
Citations
Hanselman, Jennifer, Holmberg, Tara, Steinweg, Meg, Hamerlinck, Gaby, (2017), "InTeGrate 2017 Faculty Mentoring Network", Online, : Online, January, . Cited by:
Hamerlinck, Gaby, Fleming-Davies, Arietta, Jenkins, Kristin, Mourad, Teresa, (2017), "ESA Data Discovery Faculty Mentoring Network", Online, : Online, January, . Cited by:
Amagai, Satoshi, Csikari, Melissa, Hamerlinck, Gaby, (2016), "HHMI Biointeractive Faculty Mentoring Network", Online, : Online, June, . Cited by:
Jenkins, Kristin, Donovan, Sam, LaMar, Drew, Hamerlinck, Gabriela, Orndorf, Hayley, (2017), "Making the Most of Models", National Association of Biology Teachers 2017 Annual Conference, : St. Louis, MO, November, . Cited by:
Fleming-Davies, Arietta, Hamerlinck, Gabriela, Hale, Alison N, Langen, Tom, Mourad, Teresa, Jenkins, Kristin, Donovan, Sam, (2017), "Confronting the challenges of bringing research data into undergraduate classrooms using online faculty mentoring networks", Multi-Scale Evaluation in STEM Education, : Knoxville, Tennessee, February, . Cited by:

Using ecological research data in undergraduate courses has many potential benefits for student learning. Students gain knowledge of ecological concepts, increased understanding of the scientific process, and meaningful opportunities to develop and practice quantitative skills (Langen et al. 2014). As ecological datasets continue to become larger and more complex, faculty may need additional support both to build their own skills and to teach effectively with research data. 

Hamerlinck, Gabriela, (2017), "Infusing quantitative skills into the biology classroom", 4th Life Discovery - Doing Science Education Conference, : Norman, Oklahoma, October, . Cited by:

Increasing quantitative reasoning skills of biology students is necessary, but can be difficult. Participants will explore resources to introduce students to quantitative skills. We will discuss how these skills and resources might be implemented to support biological understanding.

LaMar, M. Drew, Donovan, Sam, Diaz-Eaton, Carrie, Fleming-Davies, Arietta, Gower, Stith, Hale, Alison N., Hamerlinck, Gabriela, Jenkins, Kristin, Poli, DororthyBelle, Sheehy, Bob, Wojdak, Jeremy, (2016), "QUBES: Building a community to promote undergraduate quantitative biology education", The 11th Gateway Computing Environments Conference, : San Diego, California, November, . Cited by:

Quantitative skills have been recognized as core competencies for career success in biology, and many faculty are interested in teaching more quantitative biology in their courses. The QUBES project is designed to improve communication among educators, assist faculty in understanding and implementing novel content and teaching strategies in their unique classroom settings, and create an academic reward system that emphasizes teaching as well as research. To meet these goals, QUBES is building a diverse online community of educators interested in quantitative biology.

Hamerlinck, Gaby, Jenkins, Kristin, (2016), "Bringing Real Ecological Data into the Classroom: DryadLab on QUBESHub", ACUBE Annual Meeting, Milwaukee, WI: October, . Cited by:
Fleming-Davies, Arietta, Hamerlinck, Gabriela, Hale, Alison N, Langen, Tom, Mourad, Teresa, Jenkins, Kristin, Donovan, Sam, (2016), "Confronting the challenges of bringing research data into undergraduate classrooms using online faculty mentoring networks", ACUBE Annual Meeting, : Milwaukee, WI, October, . Cited by:

Using ecological research data in undergraduate courses has many potential benefits for student learning. Students gain knowledge of ecological concepts, increased understanding of the scientific process, and meaningful opportunities to develop and practice quantitative skills (Langen et al. 2014). As ecological datasets continue to become larger and more complex, faculty may need additional support both to build their own skills and to teach effectively with research data.

Hanselman, Jennifer, Scherer, Hannah, Donovan, Sam, Hale, Alison, Hamerlinck, Gabriela, (2016), "InTeGrate QUBES Faculty Mentoring Network", Online, : Online, August, . Cited by:
Donovan, Sam, Hale, Alison, Fleming-Davies, Arietta, Hamerlinck, Gabriela, Wojdak, Jeremy, Jenkins, Kristin, (2016), "Faculty Mentoring Networks: A Model for Promoting Teaching Scholarship in Quantitative Biology Education", National Association of Biology Teachers 2016 Annual Conference, Denver, Colorado: November, . Cited by:

Faculty Mentoring Networks (FMNs) are designed to support the development of teaching scholarship by promoting teacher identity, self-efficacy, and knowledge/experience via four core design principles. We draw these principles from our experience developing and running 13 FMNs with over 200 participants.

Donovan, Sam, Jenkins, Kristin, Hale, Alison, Hamerlinck, Gabriela, (2016), "Design, Implementation, and Evaluation of Faculty Mentoring Networks: A Model for Promoting Faculty Teaching Scholarship", National Association of Biology Teachers 2016 Annual Conference, : Denver, Colorado, November, . Cited by:

NGSS, AP Biology, and Vision & Change all highlight the importance of quantitative skills to understanding biology. The Quantitative Undergraduate Biology Education and Synthesis (QUBES, qubeshub.org) project addresses the many of the challenges associated with improving students’ quantitative skills. Although the project primarily focuses onundergraduate settings, high school faculty may also find the project resources valuable.This symposium will include 3-4 brief presentations by faculty who have adapted and used a diverse collection quantitative reasoning teaching resources as part of their participation in various Faculty Mentoring Networks (FMNs). FMNs are long duration, low intensity, online learning communities that support faculty through the customization and implementation of effective teaching materials. The FMNs represented will include HHMI Biointeractive, ESA/TIEE, DryadLab, and AIMS. These projects are all chosen because they leverage existing high quality quantitative teaching resources that should be of interest to the broad NABT audience. The resources will be presented as a collection of “implementation stories” which feature peer-to-peer descriptions of how a wide range of disciplinary topics, institutional settings, and quantitative skills were accommodated. Portions of these resources will be distributed during the symposium and additional supporting materials will be available online.In addition to sharing specific teaching resources we will highlight ways for symposium attendees to participate in the QUBES project. An introductory presentation will raise attendees awareness of our approach to supporting quantitative reasoning in biology classrooms and share opportunities for their participation in future Faculty Mentoring Networks. The closing presentation will reflect on, and generalize from, the specific “implementation stories” to provide an overview of how Faculty Mentoring Networks are used to support teaching scholarship, and ways that attendees can participate.

Fleming-Davies, Arietta, Hamerlinck, Gabriela, Hale, Alison N, Langen, Tom, Mourad, Teresa, Jenkins, Kristin, Donovan, Sam, (2016), "Confronting the challenges of bringing research data into undergraduate classrooms using online faculty mentoring networks", National Association of Biology Teachers 2016 Annual Conference, : Denver, Colorado, November, . Cited by:

Using ecological research data in undergraduate courses has many potential benefits for student learning. Students gain knowledge of ecological concepts, increased understanding of the scientific process, and meaningful opportunities to develop and practice quantitative skills (Langen et al. 2014). As ecological datasets continue to become larger and more complex, faculty may need additional support both to build their own skills and to teach effectively with research data. 

Fleming-Davies, Arietta, Hamerlinck, Gabriela, Hale, Alison N, Langen, Tom, Mourad, Teresa, Jenkins, Kristin, Donovan, Sam, (2016), "Confronting the challenges of bringing research data into undergraduate classrooms using online faculty mentoring networks", Ecological Society of America Annual Conference 2016, : Fort Lauderdale, Florida, August, . Cited by:

Using ecological research data in undergraduate courses has many potential benefits for student learning. Students gain knowledge of ecological concepts, increased understanding of the scientific process, and meaningful opportunities to develop and practice quantitative skills (Langen et al. 2014). As ecological datasets continue to become larger and more complex, faculty may need additional support both to build their own skills and to teach effectively with research data. 

Jenkins, Kristin, Hamerlinck, Gaby, Donovan, Sam, Hale, Alison, Orndorf, Hayley, LaMar, M. Drew, Fleming-Davies, Arietta, Wojdak, Jeremy, Gower, Stith, (2016), "“Lowering the Activation Energy: Making Quantitative Biology More Accessible"", 2016 National Academies Special Topics Summer Institute on Quantitative Biology, : North Carolina State University, Raleigh, North Carolina, June, . Cited by:

Modeled on the National Academies Summer Institutes, the Quantitative Biology Summer Institute (QB SI) is presented by BioQUEST, Science Case Net and QUBES.  This will be a working meeting during which participants will learn about and use evidence-based teaching strategies such as backward design, active learning, and assessment, as well as methods such as cases and modeling.  Hands on sessions at the institute will focus on resources and methods to address the special challenges associated with teaching quantitative biology.  The workshop is developed by BioQUEST, which celebrates 30 years of leadership in biology education reform in 2016, and Science Case Network, which brings expertise on using case based pedagogies. The QUBES project will support ongoing collaborations among participants.

Fleming-Davies, Arietta, Hamerlinck, Gabriela, Jenkins, Kristin, (2016), "Data Discovery Faculty Mentoring Network", Online, : January, . Cited by:

The goal of this faculty mentoring network is to help faculty bring research data into undergraduate classrooms.

Hale, Alison, Orndorf, Hayley, Donovan, Sam, Diaz-Eaton, Carrie, Fleming-Davies, Arietta, Gower, Stith, Hamerlinck, Gabriela, Jenkins, Kristin, LaMar, A. Drew, Poli, DorothyBelle, Sheehy, Bob, Wojdak, Jeremy, (2016), "Faculty Mentoring Networks: A model for promoting teaching scholarship in quantitative biology education", 2016 National Academies Special Topics Summer Institute on Quantitative Biology “Lowering the Activation Energy: Making Quantitative Biology More Accessible", : Raleigh, North Carolina, June, . Cited by:

The incorporation of quantitative skills and concepts into biology classrooms remains a major hurdle for biology education reform. Biology faculty often feel underprepared to teach quantitative reasoning, may not feel supported to develop and implement change, and receive little or no credit for time devoted to reforming their teaching. We hypothesize that promoting the scholarly aspects of quantitative biology education can increase faculty participation and persistence in their reform efforts. Our model of the factors influencing faculty perceptions of their teaching scholarship has three primary components: 1) faculty must have sufficient knowledge of quantitative reasoning content and effective pedagogy; 2) they must exhibit high self-efficacy around their teaching; and, 3) they must self-identify as quantitative biology teachers. To test our proposed model, we have designed, implemented, and assessed faculty mentoring networks (FMNs), which are online communities that support faculty in their efforts to infuse quantitative skills into their existing courses. The structure of FMNs have emerged from the use of four design principles that connect the activities faculty engage to components of our change model. The faculty mentoring networks are designed to provide mentoring in quantitative biology from experienced peers and content experts, support a collaborative community working on shared problems and goals, engage faculty all the way through classroom implementation and encourage the public sharing of teaching projects. The design of FMNs will continue to be refined as more networks are developed, but early evidence points to their success as measured by faculty implementation of projects in their classrooms.

Eaton, Carrie D., Donovan, Sam, Gower, Stith, Jenkins, Kristin, LaMar, M. Drew, Poli, DorothyBelle, Sheehy, Robert, Wojdak, Jeremy, Hale, Alison N., Fleming-Davies, Arietta, Hamerlinck, Gabriela, (2015), "Building a Community to Promote Undergraduate Quantitative Biology Education", MPE 2013 Workshop on Education for the Planet Earth of Tomorrow, : Knoxville, TN, September, . Cited by:
Hamerlinck, Gabriela, (2016), "I was told there would be no math involved: Introducing students to quantitative biology", Wisconsin Society for Science Teachers, : La Crosse, WI, April, . Cited by:

Banish mathphobia! Come explore some great, open access resources designed to help students understand how to use mathematical tools in a biological context.

Fleming-Davies, Arietta, Hamerlinck, Gabriela, Jenkins, Kristin, (2016), "Scaling Up ESA/QUBES Faculty Mentoring Network", Kickoff at Life Discovery - Doing Science Education Conference, : Baltimore, MD, March, . Cited by:

This QUBES Faculty Mentoring Network focused on supporting faculty to equip students with the quantitative skillset needed to ‘scale up’ to large ecological datasets. This network ran from January - May 31, 2016.

Export Multiple Citations

Check the citations that you would like to have exported.

|
Reference Type
Author Geography
Author Affiliation