Support

Support Options

  • Knowledge Base

    Find information on common questions and issues.

  • Support Messages

    Check on the status of your correspondences with members of the QUBES team.

Contact Us

About you
About the problem

Citations

Search Citations
Citations
Kaitlin Bonner, Arietta Fleming-Davies, Kristine Grayson, Alison N Hale, Ben Wu, Sam S Donovan, (2017), "Bringing Research Data to the Ecology Classroom through a QUBES Faculty Mentoring Network", Teaching Issues and Experiments in Ecology, 13: November, . Cited by:
Kaitlin Bonner, Arietta Fleming-Davies, Kristine Grayson, Alison N Hale, Ben Wu, Sam S Donovan, (2017), "Bringing Research Data to the Ecology Classroom through a QUBES Faculty Mentoring Network", Teaching Issues and Experiments in Ecology, 13: November, . Cited by:
Hamerlinck, Gabriela, Kidder, Kevin E., LoRe, Sondra, Hale, Alison N., Bishop, Pamela, Jenkins, Kristin, Donovan, Sam (2017), "Professional development in quantitative biology and its relationship to promoting scholarly teaching", Ecological Society of American Annual Conference 2017, : August, (DOI: 10.25334/Q4T95S). Cited by:
Monfils, Anna, Phillips, Molly, Linton, Debra, Donovan, Sam, Hale, Alison, (2017), "Resources for Collections-Based Undergraduate Education Faculty Mentoring Network", Online, : Online, April, . Cited by:
Fleming-Davies, Arietta, Wojdak, Jeremy, Hale, Alison, Jenkins, Kristin, (2016), "Math Attitudes and Anxiety Faculty Mentoring Network", Online, : Online, September, . Cited by:
Donovan, Sam, Jenkins, Kristin, Hale, Alison, Meir, Eli, Roach, John, (2016), "SimBio Faculty Mentoring Network", Online, : Online, July, . Cited by:
Donovan, Sam, Hale, Alison, Monfils, Anna, Orndorf, Hayley, (2017), "Designing undergraduate biology curricula to teach skills and knowledge for data-intensive environmental research", ESA 2017 Annual Meeting, : Portland, OR, August, (DOI: 10.25334/Q4HW9C). Cited by:
Fleming-Davies, Arietta, Hamerlinck, Gabriela, Hale, Alison N, Langen, Tom, Mourad, Teresa, Jenkins, Kristin, Donovan, Sam, (2017), "Confronting the challenges of bringing research data into undergraduate classrooms using online faculty mentoring networks", Multi-Scale Evaluation in STEM Education, : Knoxville, Tennessee, February, . Cited by:

Using ecological research data in undergraduate courses has many potential benefits for student learning. Students gain knowledge of ecological concepts, increased understanding of the scientific process, and meaningful opportunities to develop and practice quantitative skills (Langen et al. 2014). As ecological datasets continue to become larger and more complex, faculty may need additional support both to build their own skills and to teach effectively with research data. 

LaMar, M. Drew, Donovan, Sam, Diaz-Eaton, Carrie, Fleming-Davies, Arietta, Gower, Stith, Hale, Alison N., Hamerlinck, Gabriela, Jenkins, Kristin, Poli, DororthyBelle, Sheehy, Bob, Wojdak, Jeremy, (2016), "QUBES: Building a community to promote undergraduate quantitative biology education", The 11th Gateway Computing Environments Conference, : San Diego, California, November, . Cited by:

Quantitative skills have been recognized as core competencies for career success in biology, and many faculty are interested in teaching more quantitative biology in their courses. The QUBES project is designed to improve communication among educators, assist faculty in understanding and implementing novel content and teaching strategies in their unique classroom settings, and create an academic reward system that emphasizes teaching as well as research. To meet these goals, QUBES is building a diverse online community of educators interested in quantitative biology.

Grayson, Kristine, Donovan, Sam, Bonner, Kaitlin, Fleming-Davies, Arietta, Hale, Alison, Wu, Ben, (2017), "Bringing Research Data to the Ecology Classroom: Opportunities, Barriers, and Next Steps", Ecological Society of America Annual Conference 2017, Portland, OR: August, . Cited by:

The broad vision for transforming undergraduate biology education includes promoting scientific literacy in the "New Biology" (NRC, 2009), where the development of quantitative competencies is central to understanding the process of science (AAAS, 2011). Instruction that incorporates student-driven inquiry using authentic data can emphasize quantitative skills and contextualize core ecological concepts using real-world questions. A great deal of progress has been made in the collection, sharing, and discoverability of biological research data as a public resource. Access to data is no longer the primary factor limiting its use in undergraduate classrooms and great strides have been made in the best practices for teaching with data. The first goal of this session is to highlight current knowledge on effective strategies for bringing authentic research data into introductory biology and ecology classrooms through describing several cutting-edge practices and curriculum resources. The Ecological Society of America has been recognized as a leader in transforming undergraduate biology (AAAS, 2001) and they continue to play an important coordinating role in emerging efforts to bring more data into classrooms. The speakers include pioneers in these efforts who have worked closely with professional societies, data providers, and educational specialists to demonstrate the efficacy of using data in diverse educational settings. The second goal of this session is to provide a forum to discuss challenges facing development, dissemination, and broad implementation of data-centric curricula. Using ecological data in the classroom presents unique challenges, as ecological processes are often scale-dependent and complex to interpret. Successful execution of data-driven student inquiry requires the correct balance of exploration and self-discovery with tangible outcomes that reinforce core concepts. The speakers will address perceived barriers to using data in the classroom and how new approaches can promote student learning and increase the reach of resources for teaching. The successful integration of data exploration into the classroom has the potential to play a major role in the quest for quantitative literacy in undergraduate students. Because we are in the midst of a rapid evolution of both our science and our science education, it is important that we critically examine the development and use of data-driven teaching resources. In this session, leading thinkers in ecology and biology education will provide a conceptual framework for addressing barriers to classroom use and identifying paths toward the continued expansion of authentic data in ecology classrooms.

Fleming-Davies, Arietta, Hamerlinck, Gabriela, Hale, Alison N, Langen, Tom, Mourad, Teresa, Jenkins, Kristin, Donovan, Sam, (2016), "Confronting the challenges of bringing research data into undergraduate classrooms using online faculty mentoring networks", ACUBE Annual Meeting, : Milwaukee, WI, October, . Cited by:

Using ecological research data in undergraduate courses has many potential benefits for student learning. Students gain knowledge of ecological concepts, increased understanding of the scientific process, and meaningful opportunities to develop and practice quantitative skills (Langen et al. 2014). As ecological datasets continue to become larger and more complex, faculty may need additional support both to build their own skills and to teach effectively with research data.

Hanselman, Jennifer, Scherer, Hannah, Donovan, Sam, Hale, Alison, Hamerlinck, Gabriela, (2016), "InTeGrate QUBES Faculty Mentoring Network", Online, : Online, August, . Cited by:
Donovan, Sam, Hale, Alison, Fleming-Davies, Arietta, Hamerlinck, Gabriela, Wojdak, Jeremy, Jenkins, Kristin, (2016), "Faculty Mentoring Networks: A Model for Promoting Teaching Scholarship in Quantitative Biology Education", National Association of Biology Teachers 2016 Annual Conference, Denver, Colorado: November, . Cited by:

Faculty Mentoring Networks (FMNs) are designed to support the development of teaching scholarship by promoting teacher identity, self-efficacy, and knowledge/experience via four core design principles. We draw these principles from our experience developing and running 13 FMNs with over 200 participants.

Donovan, Sam, Jenkins, Kristin, Hale, Alison, Hamerlinck, Gabriela, (2016), "Design, Implementation, and Evaluation of Faculty Mentoring Networks: A Model for Promoting Faculty Teaching Scholarship", National Association of Biology Teachers 2016 Annual Conference, : Denver, Colorado, November, . Cited by:

NGSS, AP Biology, and Vision & Change all highlight the importance of quantitative skills to understanding biology. The Quantitative Undergraduate Biology Education and Synthesis (QUBES, qubeshub.org) project addresses the many of the challenges associated with improving students’ quantitative skills. Although the project primarily focuses onundergraduate settings, high school faculty may also find the project resources valuable.This symposium will include 3-4 brief presentations by faculty who have adapted and used a diverse collection quantitative reasoning teaching resources as part of their participation in various Faculty Mentoring Networks (FMNs). FMNs are long duration, low intensity, online learning communities that support faculty through the customization and implementation of effective teaching materials. The FMNs represented will include HHMI Biointeractive, ESA/TIEE, DryadLab, and AIMS. These projects are all chosen because they leverage existing high quality quantitative teaching resources that should be of interest to the broad NABT audience. The resources will be presented as a collection of “implementation stories” which feature peer-to-peer descriptions of how a wide range of disciplinary topics, institutional settings, and quantitative skills were accommodated. Portions of these resources will be distributed during the symposium and additional supporting materials will be available online.In addition to sharing specific teaching resources we will highlight ways for symposium attendees to participate in the QUBES project. An introductory presentation will raise attendees awareness of our approach to supporting quantitative reasoning in biology classrooms and share opportunities for their participation in future Faculty Mentoring Networks. The closing presentation will reflect on, and generalize from, the specific “implementation stories” to provide an overview of how Faculty Mentoring Networks are used to support teaching scholarship, and ways that attendees can participate.

Fleming-Davies, Arietta, Hamerlinck, Gabriela, Hale, Alison N, Langen, Tom, Mourad, Teresa, Jenkins, Kristin, Donovan, Sam, (2016), "Confronting the challenges of bringing research data into undergraduate classrooms using online faculty mentoring networks", National Association of Biology Teachers 2016 Annual Conference, : Denver, Colorado, November, . Cited by:

Using ecological research data in undergraduate courses has many potential benefits for student learning. Students gain knowledge of ecological concepts, increased understanding of the scientific process, and meaningful opportunities to develop and practice quantitative skills (Langen et al. 2014). As ecological datasets continue to become larger and more complex, faculty may need additional support both to build their own skills and to teach effectively with research data. 

Fleming-Davies, Arietta, Hamerlinck, Gabriela, Hale, Alison N, Langen, Tom, Mourad, Teresa, Jenkins, Kristin, Donovan, Sam, (2016), "Confronting the challenges of bringing research data into undergraduate classrooms using online faculty mentoring networks", Ecological Society of America Annual Conference 2016, : Fort Lauderdale, Florida, August, . Cited by:

Using ecological research data in undergraduate courses has many potential benefits for student learning. Students gain knowledge of ecological concepts, increased understanding of the scientific process, and meaningful opportunities to develop and practice quantitative skills (Langen et al. 2014). As ecological datasets continue to become larger and more complex, faculty may need additional support both to build their own skills and to teach effectively with research data. 

Jenkins, Kristin, Hamerlinck, Gaby, Donovan, Sam, Hale, Alison, Orndorf, Hayley, LaMar, M. Drew, Fleming-Davies, Arietta, Wojdak, Jeremy, Gower, Stith, (2016), "“Lowering the Activation Energy: Making Quantitative Biology More Accessible"", 2016 National Academies Special Topics Summer Institute on Quantitative Biology, : North Carolina State University, Raleigh, North Carolina, June, . Cited by:

Modeled on the National Academies Summer Institutes, the Quantitative Biology Summer Institute (QB SI) is presented by BioQUEST, Science Case Net and QUBES.  This will be a working meeting during which participants will learn about and use evidence-based teaching strategies such as backward design, active learning, and assessment, as well as methods such as cases and modeling.  Hands on sessions at the institute will focus on resources and methods to address the special challenges associated with teaching quantitative biology.  The workshop is developed by BioQUEST, which celebrates 30 years of leadership in biology education reform in 2016, and Science Case Network, which brings expertise on using case based pedagogies. The QUBES project will support ongoing collaborations among participants.

Hanselman, Jennifer, Scherer, Hannah, Donovan, Sam, Hale, Alison, (2016), "Adapting geoscience materials for introductory biology courses using the Faculty Mentoring Network", Earth Educators' Rendezvous, : Madison, Wisconsin, July, . Cited by:

InTeGrate and the Quantitative Undergraduate Biology Education and Synthesis (QUBES) project have partnered to support the adaptation of these geoscience modules into introductory biology courses. The modules all include a systems thinking approach while focusing on students' metacognitive abilities. The QUBES project partners with high quality content providers, like InTeGrate, to coordinate long duration (3-4 month), low intensity (biweekly synchronous meetings) faculty communities called faculty mentoring networks (FMN). The goal of a FMN is to support the faculty community through the process of customizing the materials for use in their instructional settings, implementing them with students, and publishing the products for use by other faculty. These efforts provide rich scholarly experiences for participants and add value to the existing teaching materials by building paradata (information about the use of the materials) that will support future adoption.Situated learning postulates that learning is embedded in experience such that learning outcomes for participants in the FMN are a product of their efforts to incorporate geoscience concepts into biology courses. Analysis of FMN activities from the perspective of situated learning in a community of practice allows for identification of mechanisms through which participants learn from their experience, each other, and input and facilitation from the mentors. Understanding how the participants experienced the FMN leads to identification of components of the FMN that were particularly instrumental or detrimental to faculty adaptation and implementation of InTeGrate materials. Faculty are adapting InTeGrate modules for the biology context with a range of approaches and degrees of revision. Analysis of how faculty approach these changes provides insight into strategies for supporting more faculty members in the use of existing materials in new disciplinary settings.

Grayson, Kristine, Hale, Alison, Wu, X-Ben, (2016), "Data-based inquiry in the Classroom using Authentic Research Data from the Dryad Digital Repository", 2016 National Academies Special Topics Summer Institute on Quantitative Biology “Lowering the Activation Energy: Making Quantitative Biology More Accessible", : Raleigh, North Carolina, June, . Cited by:

Looking for real datasets to use in the classroom? DryadLab modules encourage students to focus on core competencies such as critical thinking and data analysis by promoting an active learning environment for all students. Through the use of authentic data sets, students develop an ability to analyze and represent data to solve a problem, understand the relationship between the data and the hypothesis, cope with missing data, recognize confounding factors, interpret ambiguous results, and come to better understand how scientific knowledge is constructed – come learn how to use these materials in your classroom!

Hale, Alison, Orndorf, Hayley, Donovan, Sam, Diaz-Eaton, Carrie, Fleming-Davies, Arietta, Gower, Stith, Hamerlinck, Gabriela, Jenkins, Kristin, LaMar, A. Drew, Poli, DorothyBelle, Sheehy, Bob, Wojdak, Jeremy, (2016), "Faculty Mentoring Networks: A model for promoting teaching scholarship in quantitative biology education", 2016 National Academies Special Topics Summer Institute on Quantitative Biology “Lowering the Activation Energy: Making Quantitative Biology More Accessible", : Raleigh, North Carolina, June, . Cited by:

The incorporation of quantitative skills and concepts into biology classrooms remains a major hurdle for biology education reform. Biology faculty often feel underprepared to teach quantitative reasoning, may not feel supported to develop and implement change, and receive little or no credit for time devoted to reforming their teaching. We hypothesize that promoting the scholarly aspects of quantitative biology education can increase faculty participation and persistence in their reform efforts. Our model of the factors influencing faculty perceptions of their teaching scholarship has three primary components: 1) faculty must have sufficient knowledge of quantitative reasoning content and effective pedagogy; 2) they must exhibit high self-efficacy around their teaching; and, 3) they must self-identify as quantitative biology teachers. To test our proposed model, we have designed, implemented, and assessed faculty mentoring networks (FMNs), which are online communities that support faculty in their efforts to infuse quantitative skills into their existing courses. The structure of FMNs have emerged from the use of four design principles that connect the activities faculty engage to components of our change model. The faculty mentoring networks are designed to provide mentoring in quantitative biology from experienced peers and content experts, support a collaborative community working on shared problems and goals, engage faculty all the way through classroom implementation and encourage the public sharing of teaching projects. The design of FMNs will continue to be refined as more networks are developed, but early evidence points to their success as measured by faculty implementation of projects in their classrooms.

Export Multiple Citations

Check the citations that you would like to have exported.

|
Reference Type
Author Geography
Author Affiliation