Support

Support Options

  • Knowledge Base

    Find information on common questions and issues.

  • Support Messages

    Check on the status of your correspondences with members of the QUBES team.

Contact Us

About you
About the problem

Faculty Mentoring Networks: A model for promoting teaching scholarship in quantitative biology education

By: Hale, Alison, Orndorf, Hayley, Donovan, Sam, Diaz-Eaton, Carrie, Fleming-Davies, Arietta, Gower, Stith, Hamerlinck, Gabriela, Jenkins, Kristin, LaMar, A. Drew, Poli, DorothyBelle, Sheehy, Bob, Wojdak, Jeremy

The incorporation of quantitative skills and concepts into biology classrooms remains a major hurdle for biology education reform. Biology faculty often feel underprepared to teach quantitative reasoning, may not feel supported to develop and implement change, and receive little or no credit for time devoted to reforming their teaching. We hypothesize that promoting the scholarly aspects of quantitative biology education can increase faculty participation and persistence in their reform efforts. Our model of the factors influencing faculty perceptions of their teaching scholarship has three primary components: 1) faculty must have sufficient knowledge of quantitative reasoning content and effective pedagogy; 2) they must exhibit high self-efficacy around their teaching; and, 3) they must self-identify as quantitative biology teachers. To test our proposed model, we have designed, implemented, and assessed faculty mentoring networks (FMNs), which are online communities that support f show moreaculty in their efforts to infuse quantitative skills into their existing courses. The structure of FMNs have emerged from the use of four design principles that connect the activities faculty engage to components of our change model. The faculty mentoring networks are designed to provide mentoring in quantitative biology from experienced peers and content experts, support a collaborative community working on shared problems and goals, engage faculty all the way through classroom implementation and encourage the public sharing of teaching projects. The design of FMNs will continue to be refined as more networks are developed, but early evidence points to their success as measured by faculty implementation of projects in their classrooms.

Hale, Alison, Orndorf, Hayley, Donovan, Sam, Diaz-Eaton, Carrie, Fleming-Davies, Arietta, Gower, Stith, Hamerlinck, Gabriela, Jenkins, Kristin, LaMar, A. Drew, Poli, DorothyBelle, Sheehy, Bob, Wojdak, Jeremy, (2016), "Faculty Mentoring Networks: A model for promoting teaching scholarship in quantitative biology education", 2016 National Academies Special Topics Summer Institute on Quantitative Biology “Lowering the Activation Energy: Making Quantitative Biology More Accessible", : Raleigh, North Carolina, June, . Cited by:

About

Type Poster
Book title 2016 National Academies Special Topics Summer Institute on Quantitative Biology “Lowering the Activation Energy: Making Quantitative Biology More Accessible"
Year 2016
Month June
Location Raleigh, North Carolina