
Peeking into the Black Box: Modeling as an Epistemic Tool  1 

for Building Student Disciplinary Knowledge and  2 

Scientific Inquiry Skills 3 

Kam D. Dahlquist*, Department of Biology, Loyola Marymount University, Los Angeles, CA 90045 4 

Melissa L. Aikens, Department of Biological Sciences, University of New Hampshire, Durham, NH 5 

03824 6 

Joseph T. Dauer, School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, 68503 7 

Samuel S. Donovan, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260 8 

Carrie Diaz Eaton, Digital and Computational Science, Bates College, Lewiston, ME 04240 9 

Hannah Callender Highlander, Department of Mathematics, University of Portland, Portland, OR 97203 10 

Kristin P. Jenkins, BioQUEST, Boyds, MD 20841 11 

John R. Jungck, Department of Biological Sciences, University of Delaware, Newark, DE 19716 12 

M. Drew LaMar, Department of Biology, College of William and Mary, Williamsburg, VA, 23187 13 

Glenn Ledder, Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588 14 

Robert L. Mayes, College of Education, Georgia Southern University, Statesboro, GA 30460 15 

Richard C. Schugart, Department of Mathematics, Western Kentucky University, Bowling Green, KY 16 

42101 17 

 18 

*Corresponding author:  19 

Kam D. Dahlquist 20 

Department of Biology 21 

Loyola Marymount University 22 

1 LMU Drive, MS 8888 23 

Los Angeles, CA 90045 USA 24 

Tel: 310-338-7697 25 

Fax: 310-338-5317 26 

kdahlquist@lmu.edu 27 

 28 

Article type: Essay 29 

Character count (with spaces): 54,404 (without title page or references); 77,203 (entire document) 30 

Running title: Peeking into the Black Box 31 

Keywords: models and modeling, process of science, quantitative skills, introductory biology, 32 

undergraduate  33 

mailto:kdahlquist@lmu.edu


Peeking into the Black Box  Dahlquist et al. 

2 

 

Abstract 34 

Models and the process of modeling are fundamental to the discipline of biology, and therefore 35 

should be an important component of undergraduate biology courses. Engaging students with models and 36 

modeling is an epistemic approach which can provide opportunities to use widely shared scientific 37 

practices to make and evaluate knowledge claims. Modeling can support effective pedagogy because it 38 

provides students opportunities to ask questions, seek evidence, perform analyses, and construct 39 

arguments that can increase students’ understanding of the scientific process and biological content.  40 

Modeling also affords opportunities for anchoring course content in real-world problems and facilitating 41 

metacognition.  Models can be found in any introductory biology curriculum, and we present suggestions 42 

to help instructors leverage models and modeling for greater learning in the classroom. We use the Hardy-43 

Weinberg Equilibrium model to illustrate how students can progress from using models as a “black box”, 44 

to looking inside to explore the why and how of the observed behaviors, and finally to propose models of 45 

their own.  We propose that even small shifts in the way models and modeling are used in the classroom 46 

could provide increased understanding of key biological concepts, insights into realistic scientific inquiry, 47 

and opportunities to build quantitative and communication skills. 48 

  49 
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Overview 50 

The central role of models and modeling in scientific practice should be reflected in the way we teach 51 

science.  Scientists use models to study complex systems, make predictions, test ideas that are 52 

experimentally difficult or impossible to test, develop conceptual frameworks, and generate causal 53 

relationships (Box 1, Table 1; Odenbaugh, 2005; Svoboda and Passmore, 2011).  Biologists’ use of 54 

models to communicate ideas and explore theories is an integral part of the scientific process (Tomasi, 55 

1988; Gilbert, 1991; Lander, 2010; Jungck, 2011).  Although, there are many types of models, including 56 

physical, computational, diagrammatic, and quantitative (Bryce et al., 2016; Frigg and Hartman, 2017), 57 

all models share the goal of representing the components of a system and the relationships between those 58 

components.  Using a variety of model types to represent different aspects of the same system can provide 59 

insights for researchers and students alike.  For example, physical models built from ball and stick 60 

modeling kits are useful for understanding molecular structures, such as the primary structure of a peptide 61 

or the secondary structure of DNA (Figure 1A; Cooper & Oliver-Hoyo, 2017).  Pairing these physical 62 

models with computational models that can be used to visualize properties such as hydrophobicity and 63 

charge (e.g. Jaswal et al., 2013; FirstGlance in Jmol, among others) or sequence conservation (e.g. 64 

ConSurf; Ashkenazy et al., 2016) can increase understanding of the complex intra- and intermolecular 65 

interactions of macromolecules, such as regulatory transcription factors binding to DNA.  As 66 

computational power and access to data increases, biologists are able to employ quantitative models more 67 

frequently and to greater effect. For example, the Critical Assessment of protein Structure Prediction 68 

(CASP) has seen substantial improvement in models used to predict protein structures (Moult et al., 69 

2018). 70 

For students, working with models can lead to a deeper understanding of key biological concepts, 71 

provide practice in realistic modes of scientific inquiry, and build both quantitative and communication 72 

skills (Windschitl et al., 2008; Lehrer and Schauble, 2005; Garfunkel and Montgomery, 2016).  Indeed, 73 

national reports and proposed standards for improving biology education have advocated for the 74 
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development of competencies and skills related to using models and modeling (AAMC-HHMI, 2009; 75 

AAAS, 2011; NGSS, 2013; College Board, 2015).  Engaging with multiple representations of a system 76 

provides students with repeated exposure to the biological concepts underlying the components and 77 

relationships in a system (Bryce et al., 2016).  The process of building models of a complex system is 78 

valuable because it helps a student evaluate which are the key characteristics and relevant interactions in a 79 

system (Wimsatt, 1987; Nesserian, 1999; Sins et al., 2005).  In support of quantitative modeling, it has 80 

been shown that teaching students quantitative modeling both increases and refines their conceptual 81 

understanding of biological processes (Svoboda & Passmore, 2011; Schuchardt and Schunn, 2016). 82 

Who we are and our goals for this essay 83 

We, the authors, are an interdisciplinary group of biologists, mathematicians, mathematical 84 

biologists, and education researchers who came together for a working group at the National Institute for 85 

Mathematical and Biological Synthesis (NIMBioS), organized by the leadership team from the 86 

Quantitative Undergraduate Biology Education and Synthesis project (QUBES, 2017b; Donovan et al., 87 

2015), to address the challenges of teaching modeling in general and introducing students to quantitative 88 

modeling in particular. The working group has provided us the opportunity to explore the education 89 

research on modeling, share how modeling is applied and taught in our various disciplines, and examine 90 

our individual teaching experiences for best practices.  There is an extensive education literature on 91 

models, modeling, and model-based reasoning.  Our discussions were informed by close readings of 92 

selections from this literature, cited in this essay, but these are not meant to be taken as an exhaustive 93 

review.  Instead we wish to share insights distilled from our discussions about how we might improve our 94 

approach to teaching with models in biology courses, especially introductory biology, without substantial 95 

changes to the curriculum.  In this essay we have three goals: 96 

1. To explore the epistemic value of using models and modeling to increase students’ understanding 97 

of biological concepts;  98 

2. To link established pedagogical approaches to the teaching of models and modeling; and 99 
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3. To suggest ways that scaffolding modeling in introductory courses provides a foundation for 100 

students to perform quantitative modeling in both introductory and advanced-level courses. 101 

We hope these goals inspire you to enlist your students in “peeking into the black box” by emphasizing 102 

models, modeling, and model-based reasoning more frequently in your biology courses. 103 

Epistemic Value of Models and Modeling 104 

Describing models 105 

Our working definition is that a model is a simplified representation of real-world objects and 106 

their mechanistic or functional relationships, constructed for a purpose, such as understanding or making 107 

predictions about a real-world phenomenon (Box 1; Table 1; Frigg, 2002; Lehrer and Schauble, 2010; 108 

Eaton et al., 2018).  The statistician George Box is credited with the observation, “All models are wrong, 109 

but some are useful.” (Box, 1976).  Clearly, models are incredibly useful in science, but Box’s quote 110 

serves as a reminder that no model represents all aspects of a system’s components and relationships.  A 111 

model is an inherently incomplete representation of a system because in order to be simple enough to be 112 

useful, a model is built based on assumptions that foreground certain aspects of a system while leaving 113 

others out entirely.  For example, in a simple SIR (Susceptible, Infectious, Recovered) epidemiology 114 

model (Kermack and McKendrick, 1927), it is assumed that there is a constant recovery rate for infected 115 

individuals.  This is not how diseases work in the real world, but despite this obvious flaw, SIR models 116 

provide surprisingly useful information for predicting the pattern of disease outbreaks that can be used to 117 

inform the timing and distribution of health care responses (Keeling and Danon, 2009).  However, it is 118 

important to be aware of the assumptions and omissions of a model and how they influence the output.  A 119 

more complex model can be built that reduces the number of assumptions and incorporates more 120 

variables, but doing so constrains the model and limits its flexibility.  Thus, both the value and limitation 121 

of models is that they simplify systems.  When a student can explain how the assumptions of a model can 122 
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affect model outcomes, she is moving beyond treating the model as “content” to be memorized and is 123 

progressing toward model-based reasoning. 124 

One way to compensate for simplifying assumptions is to use multiple types of model 125 

representations to fully explore a system.  Model representations can be experiential (physical 126 

manipulatives, animations/simulations, experiments; Figure 1A), visual (schematics, diagrams, 127 

flowcharts; Figure 1B), verbal (hypotheses, predictions, descriptions, assumptions; Figure 1C), numerical 128 

(data tables, graphs; Figure 1D), or symbolic (equations, formulas; Figure 1E) (Simundza, 2006; Eaton et 129 

al., 2018).   Using multiple representations of a system is particularly relevant as a pedagogical approach 130 

to support student understanding.  Each model provides insight into some aspects of the system and 131 

compensates for the shortcomings of other models (Svoboda and Passmore, 2011; Bryce et al., 2016).  In 132 

addition, moving between different model representations provides an opportunity for conceptual change 133 

(Nesserian, 1999).  For example, genes can be represented in different ways in different models.  A 134 

molecular biologist might use a visual gene diagram in a model of the mechanism of gene expression, 135 

whereas a population geneticist might incorporate genes symbolically into a mathematical model for 136 

understanding how evolutionary processes act on populations (Figure 1A, 1E; Marbach-Ad & Stavy, 137 

2000; Dauer et al., 2013). Both of these representations of genes are abstractions, including some details 138 

and leaving others out appropriate to the desired application and the relevant biological theories.  In these 139 

two examples, the modelers have organized their knowledge of the system, focusing their attention on the 140 

aspects of most relevance to the question they are asking.  Neither model encompasses all aspects of the 141 

phenomenon of “genes” because not all models are appropriate for all purposes (Table 1; Odenbaugh, 142 

2005; Frigg and Hartman, 2017).  When a student connects these two models and can describe the utility 143 

of each, he has enhanced his disciplinary knowledge. 144 

Engaging in the modeling process 145 

Using multiple model representations is part of the process of modeling.  Our working definition 146 

is that modeling is an iterative process in which a model is proposed, explored, validated, and refined 147 
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(Box 1; Figure 2; Louca and Zacharia, 2012; Garfunkel and Montgomery, 2016).  Engaging in modeling 148 

both nurtures and reflects a growing understanding of specific phenomena and overarching concepts in 149 

students (Nesserian, 1999; 2002).  Proposing models to organize information, focusing on potentially 150 

relevant features, and communicating with others about ideas allows the student to explore the “goodness 151 

of fit” between her mental model and scientific models, which, in turn, reflects her understanding of a 152 

biological concept and the real world (Ifenthaler, 2011).  Teaching the process of modeling is the 153 

difference between having students sketch a picture of a gene (which often results in drawings of an X-154 

shaped chromosome or a double helix) versus having them propose a gene model that explains the 155 

interactions, relationships, and observed properties of gene expression.  The resulting diagram of a gene 156 

model that has a promoter, transcription start site, open reading frame, and terminator begins to explain 157 

the mechanism of gene expression (Figure 1B).  This pedagogical difference can be described as “models 158 

of versus models for” (Gouvea and Passmore, 2017).  When students are engaged in “modeling for” 159 

understanding, they learn biology more deeply.   160 

Like any skill, learning how to effectively propose models requires instruction and repetition that 161 

comes by generating different models with application to different biological problems.  Students 162 

engaging in modeling for the first time will need support moving from the concrete real world to an 163 

abstract representation (Hestenes, 1992; Lehrer and Schauble, 2010; Mulder et al., 2016).  In order for 164 

students to effectively propose models, they must be able to envision features of the real world in an 165 

abstract form that can be measured (Kline, 1980).  Initially students may need their abstract 166 

representations to closely resemble the real world.  With practice, students can move to more abstract 167 

representations that focus on just the relevant components of the phenomenon under study (see Lehrer & 168 

Schauble, 2005 for additional references), including quantitative models.  The development of 169 

“representational competence”, which is  the ability to interpret and move between the abstract 170 

representations of a phenomenon (diSessa, 2004; Lehrer and Schauble, 2010; Sim and Daniel, 2014), is a 171 

reflection of an increase in model-based reasoning and deeper disciplinary understanding. 172 
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While it may sound daunting to provide novice modelers with the support they need to develop 173 

these complex cognitive and scientific skills, we suggest that effective teaching of these skills requires a 174 

change in approach, rather than a substantial change in curriculum.  The process of modeling can begin as 175 

simply as sketching an explanation for an observed phenomenon for the purposes of discussion (Dauer et 176 

al., 2013; Long et al., 2014; Box 2).  Such a model meets multiple educational needs simultaneously.  177 

Students organize the information they have about the phenomenon mentally, and in sketching and 178 

discussing the model, begin to refine it and identify gaps in their knowledge.  Meanwhile, faculty receive 179 

a glimpse into students’ current understanding of the phenomenon (Pearsall et al., 1997; Speth et al., 180 

2014).  For example, sketching a visual model of how odor molecules move through space gives students 181 

an opportunity to organize their understanding of the phenomenon, communicate their ideas to others for 182 

discussion, as well as suggest how to test that idea (Nesserian, 1999; Gilbert, 2004).  This initial model is 183 

an opportunity to identify key components of the system, and decide if it is critical to one’s purpose to 184 

quantify the relationships.   185 

It is important to recognize the enormous cognitive shift required of students as they move from 186 

real world biological systems to abstract model representations, and to support or scaffold that transition 187 

(Lehrer and Schauble, 2010).  To support this transition, it can be helpful to represent a model in multiple 188 

modalities (experiential, visual, verbal, numerical, and symbolic, Figure 1, cf. Eaton et al., 2018).  Having 189 

students use multiple representations of a model which complement one another can support disciplinary 190 

learning (Ainsworth, 1999), as different representations highlight different aspects of a phenomenon.  191 

Importantly, the initial model should be considered a starting point, and should be repeatedly revisited.  192 

Revising and refining the model based on new information and a deeper understanding of the 193 

phenomenon is an important part of modeling (Latour, 1999; Hogan and Thomas, 2001). 194 

Another key aspect of modeling is returning to the biological system and asking if the outputs 195 

from the model make biological sense.  The output of a mathematical model in particular must be 196 

returned to the original biological question to consider whether the modeling outputs make sense in the 197 
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biological context (Schuchardt and Schunn, 2016), empirically testing the model against the observations 198 

of the phenomena to determine if the model fits the observed data (Windschitl et al., 2008; Schwarz et al., 199 

2009).  This is a key moment where conceptual change can occur.  As students try to reconcile their 200 

explanation of the phenomenon, their model, with the actual event, they must articulate how the outcomes 201 

of the model support understanding of the phenomenon (Mayes et al., 2013a).  Explaining the connection 202 

is an opportunity for intellectual growth, and additional growth is afforded when this step is followed by 203 

an opportunity to revise and refine the model.  Shortcomings of a model can be addressed, or different 204 

aspects of a model might be foregrounded.  Students can also refine their models by comparing them with 205 

models from their peers and with established models of the phenomenon. This provides the opportunity 206 

for students to develop the important soft skills of communication and collaboration, while increasing 207 

their deep understanding of biological processes. 208 

Quantitative modeling and the process of science 209 

The relationship between various scientific models and quantitative models bears some 210 

exploration at this point.  Many models can be represented symbolically as mathematical equations, but a 211 

mathematical equation needs to be grounded in a particular context with meaning to be considered a 212 

mathematical model (Frigg et al., 2012).  Further, one of the strengths of mathematical modeling is that, 213 

in many cases, the same mathematical equation is appropriate to describe interactions or relationships of 214 

components of different models.  When one equation can describe multiple phenomena, the modeler can 215 

use information from other phenomena that can be described by the same mathematical equation to 216 

generalize about the behavior of the new system to which the equation is applied (Nesserian, 1999).  For 217 

students, recognizing the similarities between models described by mathematical equations reduces the 218 

cognitive load of information-rich biology courses.  For example, an exponential function can describe 219 

both population growth and radioactive decay.  In both cases, the use of the exponential function provides 220 

critical information about the assumptions and behavior of the system.  In contrast, statistical models are 221 
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mathematical models derived from data that allow users to evaluate the probability of an outcome when 222 

the entire system cannot be studied, and instead, samples are examined.   223 

Computational models include simulations and other software-based modeling approaches, such 224 

as agent-based models.  Computational models are frequently based in complex mathematical or 225 

statistical descriptions of a phenomenon, yet have a unique epistemic role to play in modeling, especially 226 

for novices.  Modifying mathematical or statistical models to explore a biological phenomenon requires 227 

students to grapple with both the biological and quantitative aspects simultaneously, creating additional 228 

challenges for learners.  However, computational models allow students to explore biological phenomena 229 

without being intimidated by the underlying mathematics or statistics.  Students can use these “black box” 230 

constructions to explore extremes, null models, and the effects of stochasticity by comparing differing 231 

outcomes generated by repeatedly running the model (Wilensky and Reisman, 2006).  For the purposes of 232 

this discussion, we will no longer focus on the distinction between mathematical, statistical, and 233 

computational models and will refer to all as either “mathematical” or “quantitative” models 234 

interchangeably. 235 

Figure 2 is meant to help show students the epistemic value of mathematical modeling.  We have 236 

used model-based reasoning (Windschitl et al., 2008) as a framework to show the parallels between an 237 

experimental approach and a mathematical modeling approach to the process of science.  In this 238 

framework, to address a biological problem, we must identify the problem in its biological context, 239 

organize the relevant information, ask questions, and formulate hypotheses (Figure 2, top). We then seek 240 

evidence, in this example through experiments or quantitative modeling (Figure 2, middle, discussed 241 

below). Finally we analyze the results, constructing an argument for a biological interpretation of the 242 

results within a larger disciplinary conceptual framework that is then subjected to review by the scientific 243 

community (Figure 2, bottom). Feedback from other scientists leads to a reframing of the biological 244 

problem itself, kicking off the next iteration of the entire process.  245 
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Windschitl and colleagues (2008) stress the idea of viewing science as the process of creating and 246 

refining explanatory models of the world.  Model-based reasoning includes the practice of seeking 247 

multiple lines of evidence (e.g., mathematical and/or experimental) in order to choose one hypothesis 248 

from a set of competing hypotheses.  Thus, as can be seen in Figure 2, mathematical models and 249 

experimental models are different ways to construct evidence to test a hypothesis, with parallels even 250 

within the individual steps of each (Servedio et al., 2014).  Within this framework, experimental research  251 

(Figure 2, right) and mathematical modeling (Figure 2, left) are two parallel tracks that can be pursued 252 

when seeking to understand a phenomenon.  While we highlight experiments in Figure 2 (right),  we note 253 

that observational field studies, evolutionary reconstructions, and meta-analyses are other modes of 254 

investigation carried out by biologists.  There is a philosophical argument to be made that experimental 255 

research could be considered modeling, since the experimenter and modeler both go through a process of 256 

defining a system for study and identifying variables and parameters relevant to the study.  However, the 257 

main point we wish to make here is to draw attention to the use of quantitative modeling as an 258 

opportunity for students to engage in the process of science.  Even if it is not feasible to offer a hands-on 259 

experimental science experience in class, it is entirely possible to give students experience with the 260 

scientific process using quantitative models.  Modeling is a critical tool in research and including it in 261 

introductory course instruction emphasizes this.   262 

Engaging in quantitative modeling is challenging for novices since it requires moving from the 263 

biological realm to the symbolic mathematical realm, quantifying components and relationships in a more 264 

abstract way.  Moving to an abstract representation of a real phenomenon is made even more challenging 265 

by the language barrier between mathematical and biological disciplines.  Mathematicians and biologists 266 

may use entirely different terms to describe the same function (e.g. the first order autonomous differential 267 

equation versus specific application areas, such as Newton’s Law of Cooling, Von Bertalanffy growth, or 268 

the first-order kinetic model of a reaction product), making it more difficult for novices to bridge the gap 269 

between biological and mathematical representations (Feser et al. 2013).  Often in biology, students are 270 
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not comfortable with mathematical descriptions of systems.  Proposing a model in the form of a verbal 271 

description or visual schematic can provide a transition between the real world and the symbolic 272 

mathematical representation.  This first allows students to explore the biological system and identify the 273 

key components and their relationships in more familiar descriptive terms before translating it into 274 

mathematical language.  In the SIR model, students can easily relate to the three disease states 275 

(Susceptible, Infectious, Recovered) and represent them as variables for quantitative analysis (Jungck, et 276 

al. 2010).  Performing the modeling process (as opposed to learning a model as “content”) also answers 277 

student questions about “why do I need to know this?” (Schwarz and White, 2005). 278 

Linking Established Pedagogical Approaches to Modeling 279 

Members of our working group have used models in the classroom to accomplish a variety of 280 

learning outcomes for our students, ranging from a clearer understanding of a biological process to the 281 

development of mathematical modeling skills (Boxes 2 & 3).   The discussion of our collective 282 

experiences has given us a more practical understanding of the problems that students and faculty face 283 

when including modeling as part of the curriculum. Because modeling, and specifically quantitative 284 

modeling, can be a complex and lengthy process which requires time not often available in the biology 285 

curriculum, we do not expect students to engage in the entire modeling process in every course (Figure 2 286 

left, top to bottom). Instead, we engage students frequently in more granular “modeling activities” 287 

(individual arrows of Figure 2) that can be supported in every class as part of a longer learning trajectory 288 

across their undergraduate experience (Eaton et al., 2018).  289 

There are many ways to leverage the existing presence of models and modeling in the curriculum 290 

to achieve greater learning outcomes.  Integrating modeling specific methods with evidence-based 291 

pedagogical practices, such as engaging students in compelling, real world problems (Box 3; Schwarz et 292 

al., 2009) can be extremely productive.  Using relevant, real biological problems provides students with a 293 

“need to know” that drives their interest in the problem (e.g., Dohn et al., 2009), motivating students as 294 

they struggle to learn new modeling skills and new disciplinary information (Hidi and Harackiwiecz, 295 
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2000).  In addition, real biological problems provide an opportunity for students to engage in both the 296 

scientific process and the modeling process by asking questions about a biological phenomenon (Figure 2, 297 

top).  The ability to ask good scientific questions is an important part of the scientific process, and is 298 

another opportunity for students to increase their understanding of this process as well as biological 299 

concepts (Jungck, 1985; Peterson and Jungck, 1988; Windschitl et al., 2008; Rothstein and Santana, 300 

2011). This fundamental process-of-science skill requires practice and is worth the time to develop. An 301 

iterative process, in which students pose questions, sketch models that align with those questions, and 302 

then move between the question and sketched model, refining both, will help students (and their 303 

instructors) identify where they are missing information (Pearsall et al., 1997; Dauer et al., 2013; Long et 304 

al., 2014; Speth et al., 2014). When students produce a model, they can then discuss what quantitative 305 

aspects are included, or should be included, in the model and for what purpose (Weisstein, 2011) . 306 

Shifting between a qualitative verbal or visual model and a quantitative mathematical model 307 

(mathematization, Figure 2, left track) can be particularly challenging for students. The first steps in 308 

mathematizing a problem involve identifying the variables, a unit measure for each variable, and 309 

attributes of each variable that help determine covariation between variables (Thompson, 2011).  One way 310 

to help students with moving from a qualitative to a quantitative model is to use modeling language about 311 

variables, assumptions and limitations (Brewe, 2008) and discuss concepts such as model use and utility 312 

(Windschitl et al., 2008).  In addition to moving between multiple representations, it is vital to connect the 313 

biological phenomenon with the qualitative and quantitative interpretation of these models.  The 314 

biological context should serve as the unifying link between models, evaluating trends, and making 315 

predictions based on models (Mayes et al., 2013b).  By changing how we think about presenting this 316 

information as part of a lecture or activity, we can achieve the goals of raising student awareness and 317 

understanding of models, increasing the recognition of the epistemic value of modeling for both learning 318 

and research, and giving them the language and skills to develop proficiency in modeling.  319 
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These practices, in turn, can promote student metacognition about both modeling and disciplinary 320 

learning.  The goal of having students reflect about using models is to help them develop an awareness 321 

and evaluation of their thinking (a.k.a., metacognition) about models when they encounter new scientific 322 

problems. Some have defined this level of awareness about modeling as “metamodeling”, which is the 323 

ability to be metacognitive about the process of modeling (Boxes 2 & 3; Schwarz and White, 2005; 324 

Papaevripidou et al., 2007). Metamodeling can improve students’ understanding of practices like 325 

predicting, observing, and explaining phenomena (Barab et al., 2000; Schwarz and White 2005; Sins et 326 

al., 2005) and the ability to make mechanistic explanations (Fretz et al., 2002; Louca and Zacharia, 2012). 327 

Importantly, metamodeling enhances students’ abilities to regulate their own learning (Papaevripidou and 328 

Zacharia, 2015). As students gain awareness of where they are relative to a learning progression of 329 

modeling (Schwarz et al., 2009), they can be more aware of how they are using models to address 330 

biological problems.  In the section that follows, we flesh out these recommendations in the context of the 331 

commonly taught Hardy-Weinberg Equilibrium (HWE) population genetics model (Soderberg and Price, 332 

2003). 333 

Peeking into the Black Box:  the Hardy-Weinberg Equilibrium Model 334 

The Hardy Weinberg Equilibrium (HWE) is usually introduced in the “evolution section” of 335 

introductory survey courses along with the forces that drive evolution:  natural selection, nonrandom 336 

mating, genetic drift, gene flow, and mutation.  Although we refer to HWE as an equation, it is a null 337 

model representing how a simple biological system functions if no evolutionary forces were to act on a 338 

population.  Already, this presents three cognitive challenges for students.  First, students are typically not 339 

familiar with the use and value of a null model to explore a biological phenomenon.  A common response 340 

to HWE from thoughtful, puzzled, and somewhat frustrated students is that HWE never represents reality, 341 

so what good is it?  Second, at the introductory level, students are often struggling with genetic concepts 342 

like “gene” and “allele”.  Exploring organisms at the abstract genetic level is a new way of thinking and 343 

students’ application of these ideas is often muddled (Speth et al., 2014).  Finally, HWE plunges students 344 
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into population thinking, which is yet a different level of biological abstraction than thinking about 345 

individual organisms.  Many misconceptions about evolution are revealed when students extrapolate from 346 

a specific example of evolutionary forces at work at the individual level to the resulting evolutionarily 347 

meaningful population-level effects.  Add to this a modicum of math anxiety, and it becomes clear why 348 

HWE, despite its simplicity, presents such a challenge to students.   349 

This set of challenges also provides numerous opportunities to engage students actively in a 350 

deeper learning of evolution and population thinking by using models as pedagogical tools.  HWE is one 351 

of the few mathematical equations to which almost all students are exposed in introductory biology (Box 352 

3).  If framed as a simple model of a complex system (Table 1), and used in conjunction with 353 

computational models and experiential manipulative models, it can become more accessible, which may 354 

help students master core biological concepts.  First, to address the challenge of students not 355 

understanding the value of a simple, null model in exploring dynamic systems, a pedagogical approach 356 

could be to draw parallels between mathematical modeling and scientific experiments (Figure 2).  Just as 357 

scientists remove extraneous confounding variables in experiments to isolate causative forces and effects, 358 

modelers make simplifying assumptions to remove extraneous variables and factors so they can attribute 359 

the resulting model behavior to the variables and relationships of interest.  Null models can act as controls 360 

for the behaviors of complex systems.  The ability to predict what would be observed if nothing happened 361 

allows researchers to detect when something actually has happened, similar to a negative control in 362 

experimental systems.  The observed variation from the null model predictions can indicate the forces at 363 

work in the system, the targets of those forces, and suggestions for how to study the outcomes.  Students 364 

readily grasp that the HWE does not accurately represent real world systems, which leads to opportunities 365 

to discuss how HWE fails to represent the system, and how the model would need to be altered to more 366 

accurately reflect the impact of evolutionary forces.  The ability to represent the system in a simple, 367 

abstract mathematical representation becomes an efficient and convenient way to discuss complex system 368 

behaviors without getting bogged down in the details. 369 
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Next, students can explore the concepts of genetic change and evolution with various experiential 370 

manipulative models which focus on the behavior and outcomes of an individual in a system.  There are 371 

many physical models and paper and pencil activities that demonstrate the fluctuations of alleles using 372 

small populations (Jungck et al., 2010; Froehlich and London, 1996; Barton, 2000).  These activities 373 

usually have students simulate the passage of several generations by hand, and generally result in a 374 

random distribution of alleles and genotypes.  If the results of the manipulative models are compared to 375 

the outcomes predicted by the HWE null model, students can see the variation between the null model 376 

and their results.  When there is variation, an assumption of the HWE model has been violated.  In 377 

activities where there is an absence of all other evolutionary forces, this variation must be the result of a 378 

small population size.  This is an opportunity for students to stretch their conceptual understanding from 379 

the individual level (or very small population) toward population thinking. The next step in this process is 380 

to provide an opportunity to explore allele frequencies in large population, typically through 381 

computational models.  382 

Computational models overcome the time constraints of manipulative models and allow students 383 

to explore changes in larger populations over hundreds or thousands of generations.  They rapidly 384 

generate multiple outcomes under conditions that satisfy the assumptions of the HWE null model and in 385 

the presence of various evolutionary forces for comparison.  A variety of these types of models are freely 386 

available (Table 2; Figure 1A).  Observation of the repeated emergence of patterns can help students 387 

understand how random events at the individual level generate predictable evolutionary outcomes at the 388 

population level, supporting the cognitive shift toward population thinking.  These patterns can also 389 

address genetic misconceptions such as the expectation that dominant alleles will tend to be more 390 

frequent in a population.  Indeed, this very misconception is what prompted Hardy to generate his version 391 

of the Hardy-Weinberg Equilibrium model (Hardy, 1908).  Shifting between computational models and 392 

the HWE equation provides students with multiple representations of the concepts.  When using 393 
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computational models, often the algorithms generating the patterns are “black boxes” to students.  394 

Relating these models to the HWE equation provides an entry point to complex calculations. 395 

Students can also validate the HWE model by making predictions and explaining outcomes by 396 

testing the model with data collected from existing populations. Starting with a pool of F0 genotypes that 397 

are in Hardy-Weinberg equilibrium, students can explore F1 pools and ask if evolutionary forces 398 

impacted the allele frequencies observed in each pool. For example, a much smaller number of aa 399 

genotypes and much larger number of AA genotypes is consistent with a population in which the 400 

homozygous recessive individuals fail to survive to adulthood. For some courses it may be appropriate to 401 

introduce students to the Chi-square test to quantify the probability that a given F1 population is in HWE. 402 

In doing so, we are layering the Chi-square statistical model on top of the HWE null mathematical model. 403 

In terms of model validation, it is important to note that when one compares the observed F1 genotypes to 404 

the expected HWE values, one is checking to see if the experimental population is in HWE, but when one 405 

compares the expected HWE values to the observed population data, one is also validating the 406 

assumptions of the mathematical model. 407 

In the example above, the recognition that the genotype frequencies in the F1 generation do not 408 

fit the HWE null model leads to the biological explanation that evolutionary forces may be at play. 409 

However, it should also be recognized that this is an evaluation of the assumptions of the mathematical 410 

model and that an appropriate revision of the model could improve its explanatory power. This calls for 411 

students to cross the threshold into creating a new model through refinement of an existing model to meet 412 

new criteria or to apply it to a new situation. With a better understanding of the mathematical modeling 413 

process, students can thoughtfully explore the consequences of adding a third allele or a second locus, or 414 

explore the outcomes of various adaptive landscapes. These consequences could be reasoned through and 415 

tested with the PopGen simulator or Biological ESTEEM Project modules (Table 2). We recognize that 416 

this may be beyond the scope of a typical introductory biology course, but include this example here to 417 

show where this learning trajectory is leading. The modeling activities described in this essay are a part of 418 
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a learning progression from model description and exploration, to model development and refinement. In 419 

this process, students shift from seeing mathematical models as a “black box” to a “glass box”, exploring 420 

the why and how of the observed behaviors. Finally, by developing and refining their own mathematical 421 

models, they are operating with “no box”, having learned skills that can be transferred to new biological 422 

problems (http://bioquest.org/esteem/Intro_to_ESTEEM.pdf). 423 

Repeated Practice:  Scaffolding Quantitative Modeling Throughout the 424 

Curriculum 425 

While we have explored the HWE model in this essay to demonstrate how to use models as 426 

pedagogical tools, we do not wish to imply that models only apply to this particular content domain. As 427 

with all skills, it is important to provide students practice with modeling throughout their degree program 428 

to reinforce these skills.  It is not necessary for students to engage in the full mathematical modeling 429 

process from conception to dissemination (Figure 2) in every course. For example, it may not make sense 430 

to have students engage in mathematical modeling activities such as deriving the Hardy-Weinberg 431 

mathematical equation in introductory biology. In contrast, it may be an explicit goal of an upper division 432 

genetics or evolution course to not only do so, but to revise the equation for absolute selection against a 433 

homozygous recessive genotype or to move from a one locus-two allele model to more loci or alleles or 434 

both. These goals can be supported by using non-mathematical modeling language in introductory 435 

biology through discussions of how to measure evolution and emphasizing the assumptions of the HWE 436 

model.  437 

Another reason to engage students in mathematical modeling is that students come to biology 438 

with quantitative knowledge and reasoning skills (AP Calculus or Statistics, college-level math courses; 439 

see Jungck, 2011), but need practice retrieving and applying these skills properly in novel contexts 440 

(Hester et al., 2014). Students have exhibited significant learning gains when applying their quantitative 441 

skills to biological problems in mathematics courses designed for biology majors (Eaton and Highlander, 442 

2017), and we encourage biology faculty to provide opportunities for students to practice and apply these 443 
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important skills in biology courses as well. If foundational mathematics and modeling knowledge is not 444 

practiced throughout the curriculum, proficiency in the skill will be lost. 445 

Additional Resources for Peeking into the Black Box with Students 446 

One of our main goals in this essay is to inspire you to use models and modeling more frequently 447 

and emphasize model-based reasoning in your biology courses.  Use of a variety of models can help 448 

students understand biological concepts and processes better and lay the foundation for incorporating 449 

more quantitative modeling into your courses. We invite you to join our community of faculty interested 450 

in using models in biology education. There are many resources available to support your efforts in this 451 

area. For mathematical modeling, we encourage you to read the GAIMME report (Garfunkel and 452 

Montgomery, 2016), explore the resources provided by the Society of Industrial and Applied 453 

Mathematics (SIAM, 2012; SIAM, 2014; SIAM, 2017), and join the QUBES community 454 

(https://qubeshub.org; Donovan et al., 2015), which provides resources, tools, and professional 455 

development opportunities around quantitative biology, especially through the Modeling Hub 456 

(https://mmhub.qubeshub.org, QUBES, 2017a). While we have not addressed the assessment of modeling 457 

skills in this essay, sample rubrics are available in the GAIMME report (Garfunkel and Montgomery, 458 

2016; Bryce et al., 2016). We hope you will join us in helping students to peer inside the black box of 459 

modeling! 460 
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Figure Legends 742 

Figure 1. Different model representations. (A) a physical DNA model put together by students (see also, 743 

Cooper & Oliver-Hoyo, 2017) and a screenshot of the PopGen simulator (Sheehy, 2017) are examples of 744 

experiential model representations; (B) a schematic of a gene is an example of a visual model 745 

representation; (C) a statement of the null hypothesis of the Hardy-Weinberg model is an example of a 746 

verbal model representation; (D) a graph and data table of genotype frequencies are examples of 747 

numerical model representations; (E) the Hardy-Weinberg equations are an example of a symbolic model 748 

representation. 749 

Figure 2. The parallel and iterative nature of the process of mathematical modeling and the process of 750 

experimental science as instances of model-based reasoning (cf. Servedio, 2014). When approaching a 751 

new problem, one begins by identifying the problem and organizing contextual information before 752 

proceeding to asking questions and formulating hypotheses, which then inform the seeking of evidence. 753 

Evidence can be obtained through either mathematical models or experiments (shown), or other avenues 754 

such as observational field studies, evolutionary reconstruction approaches, or meta-analyses. In each 755 

track (left and right), the steps of the mathematical and experimental model design have clear parallels. 756 

Validation (dashed arrow) occurs when experimental data are compared to model output or vice versa. 757 

The analysis of mathematical model and experimental model results are used to construct an argument for 758 

a particular biological interpretation, which is documented (Grimm et al., 2014) and disseminated to other 759 

scientists. This, in most cases, leads to even more questions. Each arrow is a modeling activity that can be 760 

performed with students. While this diagram was drawn in a top-to-bottom, linear fashion to facilitate 761 

easy viewing, we recognize that actual practice may be messier, requiring entering the diagram at 762 

different points, traversing the steps in a different order, and repeating steps (Eaton et al., 2018; 763 

Understanding Science)1
  764 
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Footnote 765 
1 Interestingly, this figure, depicting the relationships and parallels between mathematical and 766 

experimental approaches to modeling, is itself a model. It has served an important purpose in the 767 

negotiation of our shared understanding of modeling over the course of collaboratively writing this paper. 768 

We have actively used this model as a point of focus during our attempts to articulate our claims about the 769 

modeling process. Questions like, “What exactly does this box represent?”,  “Why is this word used 770 

instead of another?”, and “Why are there unidirectional arrows here but bidirectional arrows in another 771 

place?” have been asked by the biologists and mathematicians to each other when developing our ideas. 772 

This figure has been refined many times. 773 
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Box 1: Definitions of terms 

Model: A simplified representation of real-world objects and their mechanistic or functional 

relationships, constructed for a purpose (Frigg, 2002; Lehrer and Schauble, 2010; Eaton et al., 2018) 

Model utility: The purpose(s) for constructing and using the model, e.g. developing conceptual 

frameworks or making accurate predictions (see Table 1; Odenbaugh, 2005). 

Modeling: An iterative process in which a model is proposed, explored, validated, and refined (the 

arrows of Figure 2; Louca and Zacharia, 2012; Garfunkel and Montgomery, 2016). 

Mathematization: The modeling process of going from a visual schematic or verbal description of the 

model and assumptions to a symbolic mathematical model representation. 

Model exploration: Depending on the type of mathematical model, model exploration can consist of 

mathematical analyses or computer simulations to observe the behavior of the model as a function of its 

assumptions, inputs, and parameters. 

Model validation: The process of assessing a model’s output and assumptions with regard to its desired 

utility (is it addressing our goals?) and accuracy (is it consistent with other lines of evidence, e.g., 

experimental data, observations and/or different models?). 

Model refinement: Modifying aspects of the model, including changing the objects, processes and/or 

relationships. 

Reframe: Incorporating the model and results into the broader set of scientific work, leading to new 

questions, hypotheses, or foci for scientific exploration. 

Model-based Reasoning: Forms of inquiry based on the process of modeling; using models to 

understand biological concepts. 
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Box 2:  Practicing model building and refinement in introductory biology 

Modeling in my introductory biology course is used by students to organize their thoughts about the 

components of a system in order to better understand the system dynamics. There are some basic tenets 

to modeling in my class that are common to all the contexts. I primarily use visual models based loosely 

on the Structure, Behavior, Function (SBF) framework (Goel et al., 1996; Hmelo-Silver et al., 2017). 

These models have labeled boxes that represent structures, usually nouns, connected by labeled arrows 

that represent behaviors, usually verbs or modifiers, created to represent the function of a system. While 

the behaviors can be mathematical, in introductory biology I usually keep these non-mathematical. I 

have students make sure all the boxes, and especially all the arrows, are labeled in the model to tell a 

single consistent story. Here are two instances where I use this type of modeling in the classroom. 

1. Hox genes 

Hox genes, the homeotic box genes found in all animals, produce regulatory transcription factors 

that turn on their target genes during development. To create a systems model for Hox genes, 

students are provided with a list of components and the list of relationships in order to show how 

Hox genes usually activate multiple target genes when they bind to enhancer regions on 

chromosomes. The objectives are to reinforce the mechanistic relationship of gene to protein and 

establish a baseline model that will be used in the following assignment to explore the evolution of 

development. With this model successfully built, students are then asked to modify the model to 

predict what would happen due to mutations in different regions of the genome, considering the 

proximate and ultimate impacts of these mutations on animal phenotype. This model helps lay the 

groundwork for a discussion of biodiversity. 

2. Tracing matter and energy in animals and plants 

When learning about animal and plant systems, such as the circulatory system or photosynthesis, it 

is easy for students to focus on the components, while missing the connections (i.e., the inputs and 

outputs) to other systems within the organism. The purpose of these models is for students to 

develop a conceptual framework that shows conservation of matter in order to describe how any cell 

in the organism obtains the necessary nutrients for biosynthesis and cellular respiration and 

eliminates wastes. Students trace carbon, hydrogen, and oxygen atoms through the organism, 

incorporating a vast amount of knowledge about different systems. This activity reveals both the 

simplicity and complexity of organ systems and gives students the space to explore their own 

knowledge about system interconnectivity. 
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Box 3:  Using mathematical models to test hypotheses in introductory biology 

The fields of ecology and evolutionary biology have a rich history of mathematical modeling. Therefore, 

in my Introductory Biology: Evolution, Biodiversity, and Ecology course, I stress the importance of 

models as tools for biologists.  One of my course learning objectives is that students will be able to 

interpret the output of models to make claims about hypotheses. I have students complete several problem 

sets over the course of the semester in which they are expected to use a given mathematical model to test 

a hypothesis. I anchor all of my problem sets in a conservation or animal physiology context to promote 

interest, since my students are majoring in zoology, marine biology, environmental science, or biology 

with an emphasis in ecology. Here are two examples. 

1. Hardy-Weinberg Equilibrium Model 

I use a modified version of the NCCSTS “Why did the snake cross the road?” case study (Drott 

and Sarvary, 2016), which is anchored in the conservation context of the effect of a road bisecting 

the habitat of the timber rattlesnake.  Students test the hypothesis that snakes living on either side 

of a road represent one large population versus two smaller populations using the Hardy-

Weinberg Equilibrium model. The goal is for students to practice calculating expected genotype 

frequencies, compare them to observed genotype frequencies, and draw conclusions about 

whether or not populations are in Hardy-Weinberg Equilibrium. 

 

2.  Fick’s Law of Diffusion 

In one of the animal physiology problem sets, I ask students, what respiratory structural traits 

allow for greater oxygen uptake rates? I then present them with the mathematical model for Fick’s 

Law of Diffusion and have them generate a hypothesis based on the model. Students need to 

understand that because thickness of the respiration barrier is in the denominator of the equation, 

a decrease in respiration barrier thickness would be predicted to increase oxygen uptake rates, 

whereas an increase in respiration surface area would be predicted to increase oxygen uptake 

rates. I then give students data from a paper by Gillooly and colleagues (2016) that includes all of 

the parameters needed to calculate oxygen uptake rates for a variety of vertebrate animals using 

Fick’s Law of Diffusion. The students graph the oxygen uptake rates they calculated as a function 

of respiration surface area and barrier thickness. They then use the graphs to determine whether 

their hypotheses were supported or not. 
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Table 1: Five types of model utility as described by Odenbaugh (2005) with example models. 1 

Model Utility Example Model 

Simple, unrealistic 

models for exploring 

complex systems 

● Using Tetrahymena is used as a model organism to study telomeres 

because it has tens of thousands of short linear chromosomes (Kain, 

2009). 

● A model of an epidemic with different initial populations of susceptible, 

infected, and resistant individuals could be explored with different rules 

for transmission and recovery to provide insights into how different 

diseases spread through a population (Allen et al., 2008; Weisstein, 2011; 

Just et al., 2015). 

Exploring unknown 

possibilities 

● Building 3D models based on predicted protein structures could be used 

to understand drug-target interactions. 

● Agent-based models could be used to identify simple interaction rules 

that can lead to different emergent population level behaviors like 

flocking (Macal and North, 2006; Railsback and Grimm, 2011). 

Developing conceptual 

frameworks 

● A pathway diagram is a conceptual model summarizing experimental 

results (examples can be found at WikiPathways, 

http://wikipathways.org; Kutmon et al., 2015). 

● The Hardy-Weinberg null model can provide a starting point for 

explaining diverse evolutionary forces. 

Making accurate 

predictions 

● Data-driven population models of fish stocks inform sustainable harvests. 

● An enzyme kinetic model of pyruvate carbon distribution in lactic acid 

bacteria accurately predicted which genes to manipulate to increase 

flavor compound production (Hoefnagel et al., 2002). 

Generating causal 

explanations 

● A common garden experiment was used to determine whether 

differences in traits among populations of a plant species is due to 

genetic differences or phenotypic plasticity (Cordell et al., 1998).  

● The Hodgkin-Huxley symbolic model of ion flow across cell membranes 

helps to explain the all or none firing of action potentials. 
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Table 2: Computational models for population genetics. 1 

Computational Model URL 

PopGen (Sheehy, 2017) http://www.radford.edu/~rsheehy/Gen_flash/popgen/  

Deme 2.0 (Biological ESTEEM 

Project., 2015b) 
http://bioquest.org/esteem/esteem_details.php?product_id=193  

DeFinetti 1.0 (Biological ESTEEM 

Project., 2015a) 
http://bioquest.org/esteem/esteem_details.php?product_id=204  

Evolution Through Natural Selection 

(Biological ESTEEM Project., 2015c) 
http://bioquest.org/esteem/esteem_details.php?product_id=7080  

 2 
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