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A “Rule-of-Five” Framework for Models

and Modeling to Unify Mathematicians and

Biologists and Improve Student Learning

Abstract:

Despite widespread calls for the incorporation of mathematical modeling

into the undergraduate biology curriculum, there is lack of a common under-

standing around the definition of modeling, which inhibits progress. In this

paper, we extend the “Rule-of-Four,” initially used in calculus reform efforts,

to a framework for models and modeling that is inclusive of varying disci-

plinary definitions of each. This unifying framework allows us to both build

on strengths that each discipline and its students bring, but also identify gaps

in modeling activities practiced by each discipline. We also discuss benefits to

student learning and interdisciplinary collaboration.

Keywords: modeling, biology, rule of five, interdisciplinary education,

experiential learning, multiple representations

1 MANY CALLS TO ACTION

From computer games and medicine to weather predictions and new

technologies, nearly every aspect of our lives is influenced by mathemat-

ical modeling. Primary barriers to forward progress in teaching mathe-

matical modeling across our partner disciplines are misconceptions and

biases around what constitutes modeling. We (the co-authors) are part

of an interdisciplinary working group at the National Institute for Math-

ematical and Biological Synthesis (NIMBioS) that has brought together

mathematicians, biologists, and education researchers to address teach-

ing quantitative biology, especially modeling. Each of us has experienced
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reaching out to collaborate with a member of another discipline, only to

have the conversation shut down before it has really started because of

the naive assumptions we make about the other’s discipline. We posit

that if mathematicians and biologists alike can improve their under-

standing of the similarities and differences in their approaches to and

language around modeling, then each discipline will play a more effec-

tive role in advancing the other [55], and we will be able to teach this

valuable skill more effectively. In this paper we describe a framework

for models and modeling that can bridge the communication gap be-

tween disciplinary boundaries, enabling mathematicians, statisticians,

and biologists to come together to improve student learning.

In 2012, the President’s Council of Advisors on Science and Tech-

nology (PCAST) released the Engage to Excel report [44]. The report

recommends that we should engage in a national experiment that encour-

ages faculty from math-intensive fields other than math to be involved in

teaching mathematics as a way to help close the mathematics achieve-

ment gap [44]. The subtext is that traditionally trained mathematics

educators are failing at helping our students succeed at mathematics as

applied to science and technology. Soon after, the National Research

Council (NRC) released a study, titled The Mathematical Sciences in

2025, which suggests that in order for the mathematical sciences to

remain strong in the United States, the education of students should

be conducted in a cross-disciplinary manner that reflects these ever-

changing realities [40]. This requires a rethinking of the curricula in the

mathematical sciences, especially for mathematics and statistics depart-

ments, in order to provide the additional quantitative skills needed for

students entering the workforce in the fastest growing career fields, such

as those in STEM.

Mathematics professional societies responded to this call with the

Common Vision project, which identifies ways of improving undergrad-

uate curricula and education in the mathematical sciences by bringing

together leaders from five mathematical and statistical associations [50].

The project summarizes the collective recommendations of seven other

curricular guides on undergraduate education from the associations, as
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well as adds its own suggestions for improving undergraduate education

in the mathematical sciences, especially in the first two years of col-

lege. The Common Vision project concludes that departments should

increase efforts to update curricula, support evidence-based pedagogical

methods, and establish connections with other disciplines.

From the survey of curricular guides, the Common Vision project

identifies six themes for improving undergraduate curricula. They are:

(1) to find more pathways into and through the curriculum for both

STEM and non-STEM majors; (2) to increase the presence of statistics

in student training; (3) to increase the use of modeling and computation

in order to enhance conceptual understanding and introduce the scien-

tific method into math classes; (4) to connect to skills needed in other

disciplines; (5) to improve communication skills through technical writ-

ing and presentations; and (6) to aid in the transition from secondary

to post-secondary education as well as from two-year to four-year insti-

tutions for transfer students.

Modeling can play an important part of several of these themes, not

just where it is mentioned explicitly. Common Vision notes that an

early introduction to modeling, along with statistics and computation,

can be a pathway “into and through mathematical sciences curricula

[50].” The Society for Industrial and Applied Mathematics (SIAM) sug-

gests that professional societies should play a greater role in the incorpo-

ration of modeling throughout the undergraduate curriculum [54]. This

is reflected in the newly formed SIAM Special Interest Activity Group

on Applied Mathematics Education, which recommends the develop-

ment of a first-year modeling course that “precedes and motivates the

study of calculus and other fundamental mathematics for STEM majors

[53].” The American Statistical Association’s Curriculum Guidelines for

Undergraduate Programs in Statistical Science suggests that incorpo-

rating statistical modeling with simulations into mathematics courses

can improve computational skills [54]. The Mathematics Association of

America’s subcommittee on Curriculum Renewal Across the First Two

Years (CRAFTY) released a report in 2004 [37], titled The Curriculum

Foundations Project: Voices of the Partner Disciplines, which empha-
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sizes mathematical modeling in math courses. The report notes that

“every disciplinary group in every workshop” identifies mathematical

modeling as an essential part of training students in the first two years of

their undergraduate experience. Furthermore, having students engage in

mathematical modeling can “provide a mechanism for communication,

expression, and reasoning that is cross-cultural and cross-disciplinary

[37],” while having students develop a “set of transferable skills that has

the potential to be far more impactful on their futures [17].”

These findings are not exclusive to mathematics communities, but in

fact run parallel to findings within mathematics’ partner disciplines. For

example, in biology, three reports, Bio2010 by the National Academy

of Science (NAS), Vision and Change by the American Association for

the Advancement in Science (AAAS) and the Scientific Foundations for

Future Physicians (SFFP) Report of the American Association of Medi-

cal Colleges - Howard Hughes Medical Institute Committee, all mention

the important role of mathematics, and specifically modeling, in the

future of biology as a discipline [3, 23, 38]. Bio2010 outlines, in an

incredible amount of detail, the core concepts that future research bi-

ologists need from mathematics and computing, which include multiple

mentions of modeling (both mathematical and statistical) throughout,

as well as a section devoted to important modeling concepts [38]. Vi-

sion and Change specifically names the “ability to use modeling and

simulation” as a Core Competency [3]. The SFFP report also identifies

modeling as a Core Competency in the following way: students should

be able to “apply quantitative knowledge and reasoning–including inte-

gration of data, modeling, computation, and analysis–and informatics

tools to diagnostic and therapeutic clinical decision making [23].”

2 WANTED: A COMMON FRAMEWORK FOR MODELS

AND MODELING

At the onset of our own interdisciplinary conversation as researchers,

it was clear that there were disciplinary differences by what is meant

by models and modeling between the mathematicians, the biologists,



Framework for Teaching Models and Modeling 7

the statisticians, and the STEM educators. We generated the following

questions: Does modeling require the use of data, or even numbers?

Does a model or the process of modeling require the use of symbolic

equations or formulas? Does a schematic qualify as a model? Are you

still engaged in modeling if you have not completed an entire iterative

modeling process?

This linguistic confusion about what constitutes models and mod-

eling between mathematicians and the other disciplines is a barrier to

interdisciplinary conversation. It is compounded by the historical, philo-

sophical, and physical separation of departments of mathematics and de-

partments of statistics on large campuses. In addition, the teaching of

statistics occurs in many different departments (statistics, mathematics,

biology, psychology, economics, business, education, kinesiology, etc.)

on many campuses, both large and small. Furthermore, individual biol-

ogists identify primarily with one of the many different subdisciplines of

biology, each with their own approaches and rich modeling traditions,

e.g., physiological modeling, ecological modeling, and more recently, sys-

tems biology modeling. Lastly, there is also the specific field of mathe-

matical biology, whose practitioners are asked to move fluidly between

the identities of mathematician and biologist, while still respecting the

disciplinary cultures of each. If, in all of this diversity, we are not clear

about our definitions of models and modeling, then our students will

not be clear. We suggest, however, that it is possible to articulate an

overarching framework for models and modeling that will unify what

seem like disparate traditions with the advantage of improving student

learning.

For our discussions below, we define model as a simplified, abstract

or concrete representation of relationships and/or processes in the real

world, constructed for some purpose. By simplified, we mean that the

model corresponds to a caricature of the real world rather than the real

world itself, as shown in Figure 1, which depicts the parable of the blind

men and the elephant, discussed more fully in Section 3.1. The pur-

pose of a model is typically to enhance understanding of the process or

relationship being modeled; there is a rich literature on model utility
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to which we refer the reader [15, 42, 57]. Next, we categorize model

representations into five types in our framework: Experiential, Nu-

merical, Symbolic, Verbal, and Visual (see the boxes in Figure 2).

This “rule-of-five” categorization has been used previously in different

contexts ( e.g. [27, 29, 52]) and will be discussed in detail in Section 3.

The rationale for making these categories explicit is that most mathe-

maticians look at a model primarily as a collection of formulas, which

is the way of looking at a model that is least accessible to biologists,

thereby serving as a deterrent to the goal of increasing the amount of

modeling that occurs in biology. We seek to bridge the gap between

mathematical and biological cultures by introducing the concept of mul-

tiple representations of models. If both mathematicians and biologists

appreciate that the same model given with formulas by the mathemati-

cian can be thought of in terms of graphs, data, or experiences by the

biologist, then it is much easier to achieve a common understanding that

is more nuanced than the individual understandings of the members of

each discipline.

With model representations as objects clearly defined, we now define

modeling as a process composed of the various sets of activities involved

in a larger modeling enterprise. These individual modeling activities in-

clude: 1) moving from observations of reality to an abstracted model,

either as an initial step in developing a model or as part of a model

revision, 2) moving from one model representation to another represen-

tation of the same model (the arrows in the framework figure, Figure

2), or 3) comparing models to each other (e.g., model selection) or to

reality (model validation). One or more of these modeling activities com-

prises modeling. Some of the tasks involved in the modeling enterprise,

such as finding equilibrium solutions or solving a quadratic equation,

are mathematical activities for which knowing the context of the model

is not required. Hence, we identify modeling activities as comprising

just those tasks that make sense only in the context of modeling, such

as translating a verbal representation into a mathematical representa-

tion or comparing the predictions made by different models; these are

the tasks that require moving from one model representation to another
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Figure 1. Depiction of the blind men and the elephant parable, which illus-

trates the relationship between reality (the small circle) and different types

of model representations (the large circle) [49], discussed fully in section 3.1.

Elephant images used in this illustration are Creative Commons public domain

from Pixabay.com.
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representation of the same model (the arrows in the framework figure,

Figure 2).

Our definition re-frames the modeling process as having two levels

of detail: a holistic level that defines the modeling enterprise as the

traditional iterative process, with a goal of creating a useful final model,

and a finer more granular level that considers individual tasks (models

and modeling activities) that, taken together, comprise a modeling

process. Our definition includes conceptions of the modeling process as

a complete set of steps that are iterated (for example, as presented in the

GAIMME report [17]: state the problem, make simplifying assumptions,

mathematize, analyze the model, refine or extend the model). While

it is important for students to experience the full modeling enterprise,

in particular the iterative nature of modeling (one’s first attempt at a

model is seldom adequate), we suggest that there is value in practicing

individual modeling activities as well. Thus, defining modeling as any set

of modeling activities is both more expansive and more inclusive of what

“counts” as modeling. Pedagogically, our definition allows the instructor

to more easily scaffold modeling into the curriculum, which is especially

useful in our partner disciplines and also allows us to acknowledge to

our partner disciplines that we are all modelers.

In the sections below, we will explain what we mean by the “rule-

of-five” framework, with special attention to Experiential as a repre-

sentation that is critical to and often missing from how mathematicians

are currently teaching modeling to students. We then give illustrative

examples of model representations, modeling activities, and modeling

pathways for the logistic growth model, the Hardy-Weinberg Equilib-

rium (HWE) model, and a physical model of the structure of DNA.

These examples are often found in introductory biology classes, and can

therefore be used by students to practice modeling activities in biology

classrooms and learn modeling concepts more deeply. We show how this

framework can be used to 1) provide a common language with which to

engage in interdisciplinary conversations around the modeling process,

inclusive of whether approached from the point of view of mathemat-

ics, statistics, or biology, and 2) provide a common framework for the
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Figure 2. “Rule-of-five” framework for models and modeling. Each box is

a model representation (defined in Table 1). Each arrow is an activity in the

modeling process (defined in Table A2).
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teaching of modeling across disciplines. While our focus in this paper

is to provide a framework that will facilitate communication between

mathematicians, statisticians, and biologists, we believe this framework

to be adaptable to any discipline.

3 “RULE-OF-FIVE” FRAMEWORK

3.1 Background and Justification

The CRAFTY report, described above, noted that by engaging in math-

ematical modeling, students have an opportunity to describe their work,

“Analytically, Graphically, Numerically, and Verbally” [16, 37].

These model descriptions are historically referred to as the “Rule-of-

Four” [66]. This concept came about in the 1980s and 1990s when it

was recognized that over half of students enrolled in calculus courses in

the United States did not finish the course [13]. This led to a number

of calculus reform projects, many of which were funded by the National

Science Foundation. Several of these projects used a “multiple represen-

tation approach,” as was suggested in the National Council of Teachers

of Mathematics’ Curriculum and Evaluation Standards for School Math-

ematics [62, 39]. These ideas then came to the forefront with the work

of Hiebert and colleagues [19, 20]. Hiebert argued that in order to learn

mathematics, a student must understand mathematics. Such under-

standing occurs when there is a continually evolving and strengthening

network of connections to internal mental representations of mathemat-

ical ideas and procedures. Hiebert proposed a framework to aid in the

understanding of mathematics by making connections between Numer-

ical, Graphical, and Symbolic representations. The Calculus Connec-

tions Project of Oregon State University implemented a reform calculus

emphasizing the representations of Graphical, Numerical, and Sym-

bolic, and the importance of switching between representations [12, 62].

The St. Olaf Project also described moving among the representations

of Graphical, Numerical, and Algebraic as being crucial to learning

the concepts of calculus [43]. The Calculus Consortium at Harvard Uni-

versity coined the term “Rule-of-Three” in their reform textbook [18].
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The “rule” stated that equal weight should be given to describing topics

Algebraically, Numerically, and Geometrically [26]. Note that the

original word choice for the representations parallels course descriptions

at the secondary school level [25]. In the second edition of the text [27],

this became a “Rule-of-Four” with a fourth equal-emphasis on Verbal

descriptions of math problems by teachers and students. In subsequent

editions of the text [28, 29], the descriptions of the four representations

became Graphical, Numerical, Symbolic, and Verbal. Since the in-

ception of calculus reform in the 1990s, it is now commonplace to see a

wider variety of problems and the use of multiple representations in “tra-

ditional” math textbooks, though it is not yet ubiquitous in all circles

[24].

More recently, a fifth rule was proposed by Simundza in a labora-

tory course for precalculus [52]. This fifth rule, Experiential, is, in the

words of Simundza, a “direct sensory experience of quantitative phe-

nomena [52].” The importance of the Experiential representation is

alluded to in the American Mathematical Association of Two-Year Col-

leges (AMATYC) standards where they propose that mathematics be

taught like the sciences as a laboratory discipline [4]. It may be no sur-

prise then that by including Experiential among our representations,

the biologists in our group felt more agency to readily engage with the

conversation on models and modeling.

Introducing students to multiple forms of representation is well- doc-

umented to improve student learning. For example, the first principle

guideline from the Universal Design for Learning (UDL) is a recommen-

dation to provide students multiple forms of representation since there

are diverse ways learners comprehend information [10]. UDL is a frame-

work that addresses high variability in learners’ responses to instruction

by suggesting flexibility in the curriculum to meet the varied needs of

the students. Using multiple representations can allow students to make

connections within and between concepts [10]. When students solved

problems using more than one representation, student performance was

better than for those learners who used a single strategy [2, 11, 58].

Our use of Experiential in the context of modeling is slightly dif-
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ferent than, but still in alignment with, what is meant by “experi-

ential learning” in other contexts [7]. There is an abundance of evi-

dence that experiential learning can improve student-learning outcomes

[31, 32, 33, 52]. There is also early evidence that adopting the practices

in our proposed framework, in particular multiple model representations

and movements between them, can lead to success in subsequent quanti-

tative courses [10]. Some students may enter into the learning experience

more comfortable with a subset of these representations due to their own

ways of knowing or disciplinary identity, but the goal is that they should

know all and be able to move between them. This goal also resonates

with our multidisciplinary group’s conversations around modeling.

The use of multiple forms of representation and the “rule-of-five”

mirrors the parable of the blind men and the elephant as seen in Figure

1. John Godfrey Saxe’s poem version of the parable describes six blind

men touching different parts of an elephant in order to “understand”

it [49]. Each blind man compares each different elephant part to an

everyday object that is similar - a wall (side), snake (trunk), spear (tusk),

tree (knee), fan (ear) or rope (tail). Just as in the parable, it is only

through the use of different forms of representation that we may hope to

gain the truest understanding of a problem. Interestingly, this analogy

to the parable also works when considering the different ways in which

mathematicians and biologists approach problems - each is experiencing

one aspect of the problem, and through communication using a common

language around modeling, we can create together a clearer picture of

the world.

3.2 Model Representations (The Boxes)

As discussed above and shown in Figure 2 and Table 1, we extend the

“Rule-of-Five” from its original use as an aid to calculus and precalculus

instruction to a useful general description of the various types of model

representations that may be used in the modeling process. Again we re-

emphasize these representations are considered model representations

only when connected to a context.
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Table 1: The five types of model representations, corresponding to

Figure 2 with their definitions and classroom examples.

Type of

representation

Classroom examples

Experiential

Direct experiences that

are concrete rather than

abstract such as, virtual

laboratories and

animations, kinesthetic

experiences and

manipulations of physical

models, actual scientific

experiments, case studies,

and simulation case

studies.

• A video of bacterial growth; beanbag

biology [30]; virtual laboratories (e.g,

SimBio [35], the BUGBOX-predator

virtual laboratory [35]);

• Physical model of the structure of

DNA;

• Experiment to measure bacterial

growth in the laboratory.

• An in-class activity where students

make decisions based on a dice roll to

shake hands and transmit a disease.

Verbal

Hypotheses used to

design experiments,

predictions, assumptions

used to construct

mathematical models,

simple descriptions of

observations, qualitative

experimental data.

• Hypothesis: a mutation in a

particular gene will reduce the rate of

bacterial growth because the mutation

impairs DNA replication;

• Prediction: on average global

temperature will increase;

• Assumption: we assume that the

population is well mixed;

• Simple descriptions of observations:

the rate of increase is decreasing; we

observe far more of the blue flower

type then the purple flower type.

• Qualitative data: spiciness ratings

by tasters of chili peppers.
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Numerical

Data sets collected from

model-based simulations,

data calculated from

other data (derived data),

experimentally-collected

quantitative data.

• Numbers of infected individuals

calculated from a Symbolic epidemic

model;

• Derived data: low density growth

rate and carrying capacity calculated

from plotting relative growth rate

versus population for logistic growth;

• Measured population counts from

experiments.

Visual

Graphs, schematics.

• A graph of relative growth rate

versus population;

• A schematic of an epidemic model;

stock-and-flow diagrams;

• Data visualizations (e.g., histograms,

scatter plots, infographics, etc.).

Symbolic

Formal mathematical

constructs such as

formulas, equations,

algorithms, parameters,

and state variables.

• Discrete difference equation for

geometric growth xn+1 = λxn and

continuous differential equation for

exponential growth
dP

dt
= rP ;

• If in HWE, p = frequency of one

allele, p2 = frequency of homozygotes

for that allele.

• State variable: P (t) = population at

time t (in years);

• Equation from a linear regression;

• Equation from a probability

distribution.

Instructors well-versed in the “Rule-of-Four” should immediately find

our definitions of the Numerical, Symbolic, Verbal, and Visual

model representations familiar, although we have broadened their defi-

nitions to be inclusive of perspectives from mathematics, statistics, and
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biology. Symbolic representations are also referred to as Analytic by

the CRAFTY report [16, 37] and as Algebraic by the St. Olaf Project

and the Harvard Calculus Consortium [43, 18]. Visual representations,

in particular x-y plots, are called Graphical in the “Rule-of-Four.” We

suggest Visual is more inclusive of the emerging field of data visualiza-

tion [59].

3.2.1 Experiential representation as a link between science

and mathematics

Experiential representations are treated as distinct from the other rep-

resentations, particularly the Visual representation, because the model-

ing enterprise is not pure mathematics, but theoretical science. Mathe-

matics is abstract, so Visual representations of mathematical construc-

tions in calculus, where the “Rule-of-Three” originated, are almost al-

ways graphs. Science is both abstract and concrete, with direct sen-

sory experience playing a distinct and independent role. Experiential

representations of a model are more easily connected with the original

phenomena than any of the other representations. In a mathematical

modeling process, this may involve movie-like simulations of growing

populations, simulation-based case-studies, or bean-bag tactile manipu-

lations, e.g., [30]. In biology, this would include the experiments them-

selves. It may seem strange to define experiments as a model, but an

experiment cannot encompass the entirety of reality (Cf. blind men and

elephant parable, Figure 1). Referring to our definition of a model, an

experiment is a concrete simplification of reality, designed with some

purpose in mind, that depends on a particular experimental design for-

mulated by a scientist and carried out with some type of apparatus that

interacts with the real world, but is not the real world itself.

3.2.2 Using experiential approaches in teaching

An advantage for students working with Experiential representations

is that they provide an entryway for understanding models that do not

require the abstraction of Symbolic or Visual representations, the in-
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tegration of detail needed to understand a Numerical representation,

or the conceptual knowledge and reading comprehension needed to un-

derstand a Verbal representation.

An example of an Experiential representation is the BUGBOX-

predator virtual laboratory [35], which simulates an agent-based model

of an experiment in which one predator is given a fixed amount of time

to find and consume stationary prey at some initial population density

of prey. We can describe to students the Verbal assumptions of the

Holling type 2 functional response model [21, 22] and show them the

resulting Symbolic equation, Numerical data, and graph visualization

(Visual). These are helpful, but they are a poor substitute for showing

students the animation and letting them observe for themselves that the

predator must divide its time between searching and handling, with more

searching at low prey density and more handling at high prey density.

As an additional bonus, no prerequisite sophistication is required to

appreciate purely sensory observation [30].

3.2.3 Five representations of the logistic growth model

The logistic growth model is another fitting example with which to il-

lustrate the five different types of model representations. The Experi-

ential box includes experiments measuring the growth of bacteria. This

includes conducting an actual laboratory experiment or manipulating

a simulation. However, it also includes viewing the results of a time-

lapse video or animation. The quantitative population data (from the

experiment or simulation) and absolute and relative growth rates (de-

rived data) go in the Numerical box. A Symbolic representation is

the set of equations that approximately describe this relationship, i.e.,

the equation for logistic growth. Visual representations of the model

can be obtained by plotting the data in different ways, for example, as

population versus time or as per capita population rate of change as a

function of population size. Verbal representations of logistic growth

include statements about the growth rate, e.g., “the relative growth rate

is a decreasing linear function of population,” or as a statement linking
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the mathematical model to the biological concepts and processes at play,

e.g., “the absolute growth rate is proportional to the population and the

remaining capacity for population growth.”

3.3 Modeling Activities (The Arrows)

As defined earlier, modeling activities for a specific model are those that

connect different representations or connect the model to the real-world

scenario. Recall above our definition of modeling activities involved

within the process of modeling: 1) moving from observations of reality

to an abstracted model, either as an initial step in developing a model or

as part of a model revision, 2) moving from one model representation to

another representation of the same model (the arrows in the framework

figure, Figure 2), and 3) comparing models to each other (e.g. model

selection) or to reality (model validation). To be clear, we intend for the

boxes in Figure 2 to stand for different representations of models, and

the arrows to stand for different modeling activities within the modeling

process. In the next section, we discuss the use of the framework in the

context of the modeling process and enterprise.

Table A2 describes the modeling activities contained in the arrows

between boxes in the framework figure, Figure 2. A fully connected

graph (arrows which describe the transition between any two of the

model representations) is the most inclusive of all potential uses of this

framework. Some activities (arrows) would be more commonly per-

formed than others, likely dependent on the discipline. In the table in

the Appendix, we have interpreted the modeling activities in the con-

text of logistic growth, Hardy-Weinberg Equilibrium, or the structure

of DNA to assist readers in imagining its implementation. We will use

model representations and activities as building blocks of the modeling

process.

We want to emphasize that work performed entirely within one par-

ticular box alone is not a “modeling activity” per se, but the province

of the disciplinary context within which the work is performed. “Ap-

plication” problems in which students are given a formula and asked
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to use it to compute an answer without explaining the meaning is not

modeling [17]. However, more extended problems in which models are

used to create simulated data (arrow 10 in framework Figure 2 going

from Symbolic to Numerical), and in which these results are checked

against additional data (arrow 4 in framework Figure 2 going from Nu-

merical to Experiential) are a much better illustration of modeling.

4 USING THE FRAMEWORK TO UNIFY MODELING AP-

PROACHES

We are certainly not the first group to describe a framework for teaching

modeling. Frameworks can be more or less rigid in specifying a particu-

lar order of steps in the modeling process [6, 8, 9, 34, 41]. Recently, the

GAIMME report discusses the [mathematical] modeling process, as well

as resources for teaching modeling [17, 54]. It emphasizes that the en-

tire iterative process of modeling is flexible, i.e., moving back-and-forth

between the different stages of model formulation and analysis, with the

report focusing its discussion in the context of mathematical modeling.

These more modern discussions of the modeling framework are consis-

tent with the “messy” and non-linear nature of what happens in actual

expert practice [60].

One powerful feature of our framework is that we can explicitly ac-

knowledge and practice a variety of activities important to the modeling

process without having to engage in the full modeling enterprise. This

allows us to scaffold and reinforce activities more easily, particularly in

classes that are not explicitly modeling classes, such as partner disci-

pline classes. Furthermore, if we refer to approaches taken by partner

disciplines as different uses of a larger modeling framework, then when

students engage in those approaches, we are setting them up to engage

in the mathematical modeling process with more ease later.

Our framework is fully compatible with these envisionings of math-

ematical modeling, but it is more inclusive in the following ways: Our

framework 1) encourages deliberate and thoughtful development of indi-

vidual modeling activities and skills in not only mathematics, but other
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partner discipline classes; 2) avoids what some might call “disciplinary

microaggressions” by providing a framework inclusive of disciplinary-

specific research approaches taken by mathematicians, statisticians, and

biologists, and 3) emphasizes that the Experiential representation is

crucial for student learning, particularly in partner disciplines.

4.1 Multiple Modeling Pathways

In this section, we describe the modeling process as a pathway through

the modeling framework. We have chosen just one representative path-

way for each discipline to discuss in detail - a mathematical model-

ing example using logistic growth, a statistical modeling example using

Hardy-Weinberg Equilibrium, and a third example from biology using

the structure of DNA. However, we explicitly acknowledge that multiple

valid modeling pathways exist even within disciplines and encourage the

reader to examine his or her own pathways through the framework in

class and in research. The particular examples described below have

been chosen due to their ubiquity as models taught in mathematics and

biology. We now explore these as opportunities for instructors to engage

more deeply using the framework presented here.

4.1.1 A mathematical modeling pathway - logistic growth

As we noted previously, a modeling investigation becomes more and more

valuable as the number and variety of connections made between differ-

ent model representations increases. In teaching mathematical modeling

activities to students, it is very helpful to begin with something Experi-

ential. Ideally this would use real observations of biological phenomena,

as would be done in biology laboratory courses. If this is not possible,

a manipulatable representation of a model would serve as a reasonable

starting point (for example, in biology courses without a lab component,

or in mathematics/statistics courses). Actual experiments and simulated

experiments both belong in the Experiential box (framework Figure 2).

Depending on the initial experience, Experiential observations might

generate either qualitative or quantitative data, which lead to Verbal
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and Numerical representations of a model, respectively.

The mathematical modeling process is a pathway through the frame-

work that includes the symbolic box. In this example, we discuss the

logistic growth model and follow the path Experiential→ Numerical

→ Visual → Verbal → Symbolic. We begin with an Experiential

representation by performing an experiment to measure the growth of

a bacterial culture over time. If this cannot be done in class, one could

find a time-lapse video of the phenomenon. This approach to developing

a Numerical model would be to use raw population data to calculate

absolute and relative growth rates. One could then obtain a Visual

representation of the model by plotting the data in different ways (for

example, population size versus time, or relative growth rate versus pop-

ulation size). Then these steps lead to a Verbal model consisting of the

assumption that the growth rate is proportional to population. An alter-

nate path would go from Experiential → Verbal → Symbolic when

the Symbolic model is obtained from the qualitative observation that

more parents produce more offspring. In either pathway, the Symbolic

representation of the model does not come directly from qualitative data

(Verbal box) or quantitative data (Numerical box), but comes rather

from a Verbal representation obtained from the initial observations. In

this example, the Verbal representation leads to a Symbolic represen-

tation in the form of a differential (or difference) equation. The path-

way can then be extended from Symbolic → Numerical → Visual

by running a simulation to produce data generated by the mathemat-

ical Symbolic model, which can be graphed. Or the pathway can be

extended from a Symbolic→ Experiential representation by creating

an animation with computer graphics. The pathway can be extended

from Symbolic directly to Visual by solving the equation analytically

and using the resulting formula to prepare a graph. In either case, the

Visual representation may contribute a statement of model behavior to

the Verbal representation. Note that in this description of these path-

ways, the boxes and arrows are traversed several times and the order

of the traversal is not fixed. As the students engage in each of these

activities, they should be thinking about what they are doing and the
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connections they are making.

4.1.2 A statistical modeling pathway - Hardy-Weinberg Equi-

librium

The previous example illustrates a modeling pathway that leads to a

Symbolic representation of a mechanistic mathematical model (logis-

tic growth). The next example illustrates a modeling pathway leading

to a Symbolic representation of a statistical model, given in the con-

text of Hardy-Weinberg Equilibrium (HWE), which is typically taught

in introductory biology courses. Pulling from previous experiments and

observations (Experiential → Verbal), students are introduced to the

five major forces in evolution: (1) selection, (2) genetic drift, (3) muta-

tion, (4) gene flow, and (5) non-random mating [47]. To arrive at the

probability model (Symbolic) of HWE, we first assume a null Verbal

model that no evolutionary forces are present. In particular, suppose

we have an isolated (no gene flow), infinite population (no genetic drift)

where random mating, no selection, and no mutation occur. A simpli-

fied genetic model also assumes one locus and two alleles. Given this

Verbal model, the Symbolic probability model representation is de-

rived (HWE) stating that allele and genotype frequencies do not change

in subsequent generations. Many times this is where instruction stops,

but it is informative to mention that this probability model can then

be used to statistically test for the presence of HWE, which is a neces-

sary but not sufficient condition for lack of evolutionary forces. This is

accomplished by measuring genotype frequencies in a population of in-

terest (Experiential→Numerical) and then performing a chi-squared

test to the null probability model of HWE (Numerical → Symbolic).

Results of the test are then used as evidence for the presence or ab-

sence of evolutionary forces (Symbolic → Verbal). It should be noted

that most hypothesis testing in statistics follows this pathway: observed

data collected from experiment (Experiential→ Numerical) is tested

against a null probability model (Numerical → Symbolic), and the

results are used as a quantification of evidence for a biological hypothesis
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(Symbolic → Verbal).

4.1.3 A biological modeling pathway - the structure of DNA

Finally, let’s describe a pathway followed by biologists. One of the most

famous physical models in molecular biology is the physical model of

the structure of DNA created by James Watson and Francis Crick, that

inspired the more abstract schematic that appears in their Nature pa-

per [64]. To build this model, they integrated both quantitative and

qualitative data from multiple sources (Numerical and Verbal→ Ex-

periential). This physical model enabled a hypothesis about mecha-

nism (Experiential → Verbal): “It has not escaped our notice that

the specific pairing we have postulated immediately suggests a possible

copying mechanism for the genetic material” [64]. One of the co-authors

of the current paper regularly uses building a chemically-correct physi-

cal model of DNA as an activity in her courses. Students gain a much

deeper understanding of the chemical structure of DNA from the direct

manipulation of the physical model than from Verbal descriptions or

Visual aids alone. Note that in this example, not all of the boxes or

arrows were traversed, yet it is still an example of a modeling activity

that enhances student learning.

4.2 Modeling Pathways and the Modeling Enterprise

Ultimately, the results of a modeling investigation need to be checked

against original or new qualitative and/or quantitative data (or even

other mathematical models). Thus, recall the first and third parts of

our definition of modeling activities which include model abstraction

and revision, model validation, and model selection. These are not rep-

resented in our framework Figure 2 as arrows, but are important mod-

eling activities when engaging in the full modeling enterprise. A careful

critique can almost always identify features of the biological system that

are missing from the model. In biology, a large amount of stochasticity

is often superimposed on deterministic phenomena, so we cannot expect

a model to exactly reproduce experimental data. Our first example of
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a modeling pathway, using Experiential activities to examine logistic

growth, would almost surely lead to a data set that does not precisely

match the deterministic logistic growth example. Thus, an important

part of the modeling process includes recognizing when a model may

need to be further refined to address the question at hand. In the course

of a modeling investigation with students, the instructor’s role often is to

remind students to pause, validate the model, and if needed, reexamine

the model assumptions or mathematization to refine it.

In the instructional setting, we can use the analogy of the blind men

and the elephant (Figure 1) to remind students that results obtained

from the study of a particular mathematical model pertain only to that

model. Whether they are useful in understanding the biological setting

depends on comparing and contrasting the model formulation with the

corresponding biological process, and model-generated data with ob-

served or experimental data. This is a key ingredient in encouraging

students to engage in any modeling activity that is part of the modeling

process. Even if students are only practicing individual modeling ac-

tivities (smaller pieces of a larger modeling process), it is imperative to

remind them that they are working in a conceptualized model of reality

[17, 51]. They are using caricatures of reality, not dealing with reality

itself, and the assumptions and results should be critically analyzed in

that light.

In our example model of logistic growth, there are a number of mod-

els that one can use for limited growth. If the per capita growth rate is

constant, the population is growing exponentially
(
i.e., 1

P
dP
dt = r

)
. How-

ever there are a number of ways in which a population can experience a

decreasing per capita growth rate that results in limited growth. Each of

these limited growth scenarios says something different about the process

of growth or the growth relationship and each results in slightly different

limited growth curves. When the inflow of a population is exponential

and the outflow is mediated by intraspecific competition for resources,(
e.g., dPdt = rP − r

KP
2
)
, this is equivalent to saying that overall, the per

capita growth rate is linear
(
i.e., 1

P
dP
dt = r

(
1− P

K

))
. However, growth

may be limited by other processes which may result in a non-linear de-
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crease of per capita growth rate. In this case, one might fit many types

of mathematical models to the data set and select the model that mini-

mizes error and avoids over-fitting, for example by using a measure such

as the Akaike Information Criterion (often referred to as AIC; for a re-

view of model fitting, see [36]). The model that has the lowest AIC may

tell you something about which processes may be driving the population.

In some cases, the fact that a model is not matching the outcomes

observed in reality can also be important. Such is the case with the

primary use of the HWE model discussed above. This model predicts

the distribution of offspring genotypes in a population given a list of as-

sumptions. If those assumptions are true, and if in the parent generation

the probability or frequency of allele A occurs is p and the probability

that allele a occurs is q, then the next generation will have the following

distribution of genotypes: P(AA) = p2, P(Aa) = 2pq, P(aa) = q2. If

the observed distribution in the offspring does not match, this is useful,

because then we know that one of the assumptions of the HWE model

have been violated. HWE is considered a classic use-case of a null model

in biology [57].

5 USING THE FRAMEWORK TO IMPROVE STUDENT

LEARNING

We have synthesized a framework around modeling with the view that a

unified framework allows us to be more purposeful practitioners around

the teaching of modeling. While traversing the modeling pathways may

be intuitive for expert practitioners, some studies have found that stu-

dents have difficulty translating between model representations [2], al-

though the facility of translation did vary depending upon the specific

relations selected [1]. Yet, in keeping with the recommendation from

Understanding Science to be explicit [60], one study showed that sim-

ply telling students the purpose of the multiple representations can have

a positive impact on learning [51]. In particular, Schwonke et al. con-

ducted two studies, collecting gaze data from students viewing multiple

representations of the same problem. From the initial study, many stu-
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dents did not understand why they should have different representations

and why they should transfer between them. To improve the transitions

between representations, one group of students in a follow-up study (re-

ported in the same paper [51]) received additional instructions explaining

the “bridge between [the] problem texts and equations,” while a control

group did not have these instructions. Schwonke et al. concluded that an

explanation of the different representations improved the learning out-

comes for both low- and high-prior knowledge students, but in different

ways. The low-prior knowledge group seemed to “transfer knowledge

more easily between representations,” while the high-prior knowledge

students benefited because they paid more attention to the different

representations. Our conclusion from this prior work is that while it is

important for the instructor to facilitate use of multiple model repre-

sentations and modeling activities, it is most valuable when the reasons

behind it are made clear to the students, i.e., make it explicit, reflect and

connect, and provide context [1, 2, 51, 60]. “Understanding Science,” a

website that lays out a framework for the process of science, suggests

the following three main actions for bringing the process of science into

the classroom: (1) make it explicit, (2) help the students reflect upon

it, and (3) give it context, again and again [60]. Because modeling is

theoretical science, we suggest the same actions to bring our modeling

framework into the classroom to strengthen both students’ understand-

ing of, and abilities in, modeling. We list these actions again here with

specific modeling framework examples:

Be explicit. Tell your students what you are doing, and why, in the

context of modeling. Teach students the modeling framework, including

definitions of models and modeling, the different model representations

(boxes), and the many modeling activities (arrows). Be clear that biol-

ogists are already engaged in modeling but may not realize it or use the

same language or approach as mathematicians or statisticians. There

are many first steps with which one can begin modeling, and it does not

have to begin the same way that was outlined in our example modeling

pathways. Teaching any arrow can be a first step in teaching modeling

as long as one is explicit in connecting it to the modeling process.
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Help them reflect (and connect). Have students reflect upon

the modeling process by assigning metacognitive exercises, such as a

one-minute paper. Work with instructors from different disciplines to

help students make connections between classes to solidify their under-

standing of modeling. Using a common framework can help us engage

in conversations with colleagues from other disciplines, and thus bring

the connections to our students.

Give it context, again and again. Ground the modeling investi-

gation in the biological problem, using the Experiential representation.

Use the framework to acknowledge and clarify the various approaches

that each discipline takes to solving the same scientific problem. Show

that different practitioners have different paths through the boxes that

are equally valid. Give examples of different paths in the same context.

For information and ideas around using our framework for teaching,

see the following collection at qubeshub.org (https://qubeshub.org/

primus-ruleoffive) [45].

6 CONCLUDING REMARKS

There have been numerous calls for mathematicians to work more closely

with members of partner disciplines, such as biology, to improve student

learning and retention in STEM (e.g., The Mathematical Sciences in

2025 and A Common Vision, [40, 50]). Analogous to this, there have

been numerous calls for biologists to incorporate more mathematical

modeling into their curriculum to better prepare students for future ca-

reers in research and the health professions (e.g., Vision and Change,

Bio2010, Scientific Foundations for Future Physicians, [3, 23, 38]). De-

spite this widespread agreement on what needs to happen, implementing

the recommendations has been slow. One barrier that must be over-

come to initiate true transdisciplinary conversations and collaborations

on improving the modeling curriculum is to agree upon a common def-

inition of what is meant by models and modeling between biologists,

mathematicians, and statisticians. Therefore, we have proposed adapt-

ing the “Rule-of-Five”, which has previously informed calculus reform
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efforts, to describe a framework for modeling that can bring all the dis-

ciplines together. This framework defines five types of model represen-

tations (Experiential, Verbal, Numerical, Visual, and Symbolic)

and modeling activities that provide flexible routes through a modeling

investigation by students. We give examples about what the implemen-

tation of this framework may look like in the classroom, along with the

associated benefits to student learning [52]. In particular, an advantage

for students working with Experiential representations is that they

provide an entryway for understanding models that do not require the

abstraction of Symbolic or Visual representations, the integration of

detail needed to understand a Numerical representation, or the con-

ceptual knowledge and reading comprehension needed to understand a

Verbal representation. Finally, we share resources that we think will

be helpful for others to use.

We also hope this framework will unify practitioners coming from

different parent fields (mathematics, statistics, biology, and others) and

allow them to find the similarities and differences in their approaches

to modeling, leading to more productive interdisciplinary conversations.

Having initiated such conversations ourselves, we have some advice based

on our own experiences:

Have a shared goal. The goal could be simply to improve student

learning in a disciplinary course, or it could be to answer a research ques-

tion of mutual interest. One of us found her way to teaching modeling

through first forming a research collaboration.

Start small, but have a concrete deliverable. It is overwhelm-

ing to try to revamp a whole course; a lot can be accomplished by

modifying a single lesson plan, upon which further course modifications

can be built. On the research side, aim for an internal grant proposal,

a conference poster or co-advising a thesis (Deadlines help!). A few of

us have been involved in using this framework to modify one lesson plan

on Hardy-Weinberg Equilibrium. What lesson plan would you change

first?

Be willing to be both a student and a teacher. Listen with

respect and be open to another perspective. We are highly trained in
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our own disciplines and used to being in the position of expert; learning

the language, culture, and foundational knowledge of another discipline

requires leaving our comfort zones, which, by definition, is uncomfort-

able. Being willing to be uncomfortable requires the courage to be in

the vulnerable position of learner versus expert. It can be humbling to

be a student again, but is also an opportunity to remind us of what our

own students experience.

Be explicit about language. Model is not the only word that has

different meanings to different disciplines. For us, defining our language

meant writing this paper. It is often necessary to clarify meanings to

gain insight. One tactic is to include one or more students in on conver-

sations. We often naturally change our language and our assumptions

about prior knowledge and context to accommodate students, and this

change should also benefit communication between new interdisciplinary

collaborators. In addition, students benefit from observing and partici-

pating in interdisciplinary conversations.

Be in it for the long term. Interdisciplinary relationships take

time, and persistence will pay off. If this was easy, we would not have

the multiplicity of reports encouraging us to do more.

A positive outcome from these interdisciplinary conversations will

be making the connections explicit to students in different disciplinary

courses, reinforcing the concepts for students, and empowering them to

apply knowledge from one domain to another, making them informed

citizens for the 21st century. In their professional futures, students will

not encounter textbook questions with multiple choice answers. Instead,

they will hear a wildlife biologist discuss the rate of population growth,

they will see a graph in a paper that they are reading, they will monitor

a population, or they will use software to run management scenario

planning. A student that can move between these representations to

help solve problems is one with a superior preparation for the profession.

We have a trained disciplinary identity, but we are all modelers. We can

work together to help our students be modelers, too.
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APPENDICES

APPENDIX: INTERPRETING THE ARROWS

Table 2: Modeling activities that correspond to the arrows in Fig-

ure 2 with a description and an example.

Arrow Classroom Example

1. Exp→Ver

Crafting a formal

scientific hypothesis

(which implies

mechanism) based on

observations; predictions;

collecting of qualitative

experimental data.

• Students make a hypothesis based

on their observations of bacterial

population growth.

• A population satisfying the

assumptions of Hardy-Weinberg

Equilibrium (HWE) will maintain the

same allele frequencies generation after

generation.

2. Ver→Exp

Designing an experiment.

• Based on a hypothesis about

bacterial growth rates, make a

prediction about growth rates under

different conditions. Design an

appropriate experiment to support or

refute the prediction.

• Based on a hypothesis that a

population is in HWE, plan an

experiment to test for HWE.

3. Exp→Num

Collecting data.

• Collecting quantitative data from

the Experiential simulations/

animations.

• Sampling populations over time in a

field study.

• Measuring a culture of bacteria over

time through spectroscopy.
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4. Num→Exp

Feeding experimental

data into a simulation;

using experimental or

simulated data to make a

physical model;

performing model

validation against new

experiments.

• Using coordinates derived from

X-ray crystallography to build a

physical model of DNA.

• Using data from a numerical

simulation to create an animation of a

population growing.

• Running a longer experiment to test

when an exponential growth model of

bacteria fails to match the data.

5. Ver→Num

Estimating;

approximating.

• Finding estimates for parameters in

a logistic model from the literature.

• Back-of-the-envelope calculations or

reasoning that allow students to test a

Verbal prediction.

6. Num→Ver

Describing patterns and

trends in the data; using

data to refine hypotheses.

• Looking for trends in a data set that

may indicate the presence of a

carrying capacity for the population.

• Interpreting the results of a

statistical test for HWE.

7. Sym→Ver

Interpreting/ analyzing a

mathematical model.

• dP
dt

= rP − rP 2

K
is the rate of

change of population size, positively

affected by a net positive intrinsic

birth-death rate and negatively

affected by intraspecific competition

over resources.

• Interpreting p and q in the HWE

model as frequency of allele A and

frequency of allele a.
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8. Ver→Sym

Mathematizing.

• The converse of #7, going from the

explanation to the Symbolic

representation.

• Activities traditionally associated

with mathematical modeling, i.e.,

formalizing the language of the

Verbal description by assigning

parameters such as carrying capacity

and intrinsic growth rate, state

variables such as population size and

writing formulas and equations such

as,
dP

dt
= rP − rP 2

K
.

9. Num→Sym

Statistical modeling.

• Fitting a logistic model to a data set.

• Testing the experimentally measured

data of genotype frequencies to the

HWE null statistical model.

10. Sym→Num

Simulating data.

• Simulate data from the logistic

differential equation using an ODE

solver and a particular parameter set.

• Performing in silico experiments.

11. Vis→Ver

Interpreting

visualizations of processes

or results.

• Going from a “stock-and-flow/

box-and-arrow” schematic

representation of a model to the

Verbal description, a hypothesis, or

prediction to test.

• Interpretation of a graph of logistic

growth, identifying the lag phase

(early exponential), the log phase

(greatest rate of growth), and the

stationary phase (saturation) of the

logistic growth rate.
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12. Ver →Vis

Sketching a graph or

schematic that illustrates

a hypothesis or

observation.

• Sketching a graph of a population

that starts off growing exponentially,

but then has a carrying capacity.

• Drawing a schematic of what

processes might be involved in a

logistically growing population.

13. Num→Vis

Graphing, visualizing

data.

• Traditional plot of population data

versus time or rate of growth versus

population size.

• Creating appropriate infographics for

a “big data” set.

14. Vis→Num

Interpolating data points

from a graph, using a

visual modeling program

such as STELLA,

Insightmaker, or

Simulink.

• Interpolating between given data

points.

• Estimating data points or parameter

values, such as carrying capacity, from

a graph (a.k.a., “Reverse

engineering”).

15. Sym→Vis

Graphing or drawing a

schematic of a process

described by a formal

mathematical model.

• Traditional graphing of the logistic

growth curve.

• Drawing a stock-and-flow diagram

from seeing SIR model equations.
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16. Vis→Sym

Modeling based on

qualitative features of a

graph or processes laid

out in a schematic.

• Writing the equation for logistic

growth of a population based on a

graph knowing the carrying capacity,

the initial population size, and the

time at which the population is at half

the carrying capacity or the doubling

time.

• Build the Symbolic representation

of a model based on the schematic of

processes involved, such as net

exponential growth and death due to

competition.

17. Sym→Exp

Programming an

animated simulation.

• Programming in NetLogo a

simulation illustrating the logistic

growth of bacteria in a virtual petri

dish.

• Creating a manipulative beanbag

biology experiment to explore

algebraic relationships of the HWE

equation.

18. Exp→Sym

Writing mathematical

equations directly based

on observations

(experienced modelers

may not need to pass

through additional

Verbal or Visual boxes).

• Recognizing logistic growth is at

played based on an experiential

activity and immediately writing the

resulting equations.
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19. Exp→Vis

Drawing a schematic or

cartoon based on

experiential observations.

• Drawing a sketch of DNA from an

animation or a physical model.

• Drawing a process schematic or

concept map of processes at play when

observing the growth of a bacterial cell

culture.

20. Vis→Exp

Experimenting with

manipulatives, assembling

a physical model that

replicates a process

schematic, or animating a

sketch or cartoon of a

process.

• Constructing a physical model of

DNA from a picture.

• Perform an experiment to replicate

graphical or schematic results.
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