
  Wiley and Wildlife Society are collaborating with JSTOR to digitize, preserve and extend access to The Journal of Wildlife 
Management.

http://www.jstor.org

On the Use of Demographic Models of Population Viability in Endangered Species Management 
Author(s): Steven R. Beissinger and M. Ian Westphal 
Source:   The Journal of Wildlife Management, Vol. 62, No. 3 (Jul., 1998), pp. 821-841
Published by:  on behalf of the  Wiley Wildlife Society
Stable URL:  http://www.jstor.org/stable/3802534
Accessed: 09-09-2015 19:41 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/
 info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content 
in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. 
For more information about JSTOR, please contact support@jstor.org.

This content downloaded from 152.18.103.175 on Wed, 09 Sep 2015 19:41:05 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org
http://www.jstor.org/action/showPublisher?publisherCode=black
http://www.jstor.org/action/showPublisher?publisherCode=wildlife
http://www.jstor.org/stable/3802534
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


Invited Paper: 

ON THE USE OF DEMOGRAPHIC MODELS OF POPULATION 
VIABILITY IN ENDANGERED SPECIES MANAGEMENT 

STEVEN R. BEISSINGER,' Department of Environmental Sciences, Policy & Management, 151 Hilgard Hall 3110, University 
of California at Berkeley, Berkeley, CA 94720, USA 

M. IAN WESTPHAL, Department of Environmental Sciences, Policy & Management, 151 Hilgard Hall 3110, University of 
California at Berkeley, Berkeley, CA 94720, USA 

Abstract: We examine why demographic models should be used cautiously in Population Viability Analysis 
(PVA) with endangered species. We review the structure, data requirements, and outputs of analytical, deter- 
ministic single-population, stochastic single-population, metapopulation, and spatially explicit models. We be- 
lieve predictions from quantitative models for endangered species are unreliable due to poor quality of de- 

mographic data used in most applications, difficulties in estimating variance in demographic rates, and lack of 
information on dispersal (distances, ages, mortality, movement patterns). Unreliable estimates also arise because 
stochastic models are difficult to validate, environmental trends and periodic fluctuations are rarely considered, 
the form of density dependence is frequently unknown but greatly affects model outcomes, and alternative 
model structures can result in very different predicted effects of management regimes. We suggest that PVA 
(1) evaluate relative rather than absolute rates of extinction, (2) emphasize short-time periods for making 
projections, (3) start with simple models and choose an approach that data can support, (4) use models cau- 

tiously to diagnose causes of decline and examine potential routes to recovery, (5) evaluate cumulative ending 
functions and alternative reference points rather than extinction rates, (6) examine all feasible scenarios, and 
(7) mix genetic and demographic currencies sparingly. Links between recovery options and PVA models should 
be established by conducting field tests of model assumptions and field validation of secondary model predic- 
tions. 

JOURNAL OF WILDLIFE MANAGEMENT 62(3):821-841 

Key words: endangered species, extinction, metapopulation, population modeling, population viability, pop- 
ulation viability analysis, spatially explicit model, viability. 

Demographic models are commonly used to 
make decisions for managing wild populations 
of threatened or endangered (hereafter, "en- 

dangered") species. Often these applications are 
called Population Viability Analysis or PVA. 

Population Viability Analysis and the small-pop- 
ulation paradigm form cornerstones of modern 
conservation and wildlife biology (Caughley 
1994, Hedrick et al. 1996) and are partly re- 

sponsible for conservation biology's emergence 
as a credible science. 

There are many different concepts of what 

composes a PVA-from simple, deterministic 
matrix models for estimating population change 
to complex, spatially explicit individual-based 
models of landscape and population dynamics. 
The first applications of PVA were the stochastic 
models that Shaffer (1981, 1983) developed to 

investigate grizzly bear (Ursus arctos) manage- 

ment in Yellowstone National Park. Determin- 
istic demographic analyses had been used for 

nearly a decade in the management of endan- 

gered species (Miller and Botkin 1974). Shaf- 
fer's approach was a new direction in the use of 
models for conservation because he developed 
a stochastic population simulation that incor- 

porated chance events (demographic and envi- 
ronmental stochasticity) and produced extinc- 
tion probabilities. His model also estimated a 
minimum viable population (MVP) by varying 
the initial number of individuals to find the 
smallest population size with a 95% chance of 

remaining extant after the 100-year simulated 
time period (Shaffer and Samson 1985). Gilpin 
and Sould (1986) broadened the definition of 
PVA when they used PVA as a heuristic concept 
to examine the many forces that can affect the 

viability of a population, including genetic fac- 
tors. Although they designated the term "Pop- 
ulation Vulnerability Analysis" for this ap- 1 E-mail: beis@nature.berkeley.edu 
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proach, the term never became widely used. 
However, the idea of PVA as a process of risk 

analysis emerged, where hazards are identified, 
risks are considered, and a model is developed 
in the final step (Soule 1987a, Burgman et al. 
1993). Although risk analysis seems like an im- 

portant role for PVA, emphasis in this process 
is often aimed at model development and out- 
comes, rather than identification of limiting fac- 
tors that need to be reversed for a species to 
recover (Caughley 1994, Caughley and Gunn 
1996). 

In this paper, we evaluate use of demograph- 
ic models for managing endangered species. We 
first review the kinds of models used most of- 
ten, then examine factors that affect validity and 

accuracy of model outcomes, and conclude by 
suggesting how PVA could be used more wisely. 
The advent of easy-to-use computer software 

programs (Lindenmayer et al. 1995) has greatly 
contributed to the proliferation of PVA models, 
many of which were published since the last 

thorough review of PVA (Boyce 1992). This pa- 
per builds on Boyce's (1992) analysis by em- 

phasizing the structure, function, use, and in- 

terpretation of demographic PVA applications. 
We do not discuss genetic applications of PVA 

(e.g., estimates of effective population size or 

pedigree analyses). Although genetic models 
have at times been important for managing en- 

dangered species in the wild (e.g., Hedrick and 
Miller 1992, Haig et al. 1993), their application 
has been limited because extinction is usually 
more affected by demographic than genetic fac- 
tors (Lande 1988, Boyce 1992), and the curren- 
cies of genetics are not easily translated into ex- 
tinction rates (e.g., loss of heterozygosity and 

expression of deleterious recessive alleles). 

TYPES OF DEMOGRAPHIC MODELS 
USED IN PVA 

In this section, we briefly review 5 types of 

demographic models that have contributed to 

development and use of PVA. For each model 

type, we describe its structure and outputs, re- 
view the data required for parameterization, 
provide examples of applications, and summa- 
rize specific assumptions and limitations. Dis- 
cussion of model accuracy, precision, and vali- 
dation is presented in the next section. 

Analytical Models 
Analytical models can elucidate important 

principles concerning the process of extinction 

and have been used to test model assumptions 
and determine sensitivity of model parameters. 
Analytical models are often used to examine 
system behavior rather than to make quantita- 
tive predictions. The simplified, impressionistic 
nature of some general analytical models, de- 
void of the complexity of simulation models, can 

clarify critical aspects of system behavior. 
General theoretical models have been used 

to gain greater understanding of the effects of 

stochasticity on extinction. Although most ex- 
tinctions are a function of steady population de- 
cline due to deterministic causes rather than 
chance events (Caughley 1994), a species' final 
denouement may be caused by stochastic pro- 
cesses. Early models based solely on demo- 

graphic stochasticity concluded that population 
persistence increased to the power of the max- 
imum population size (e.g., Richter-Dyn and 
Goel 1972). However, incorporating variance in 

population growth rates, due to random envi- 
ronmental fluctuations or environmental sto- 

chasticity, showed that times to extinction in- 
creased linearly with population size for small 

populations, but the rate of increase declines as 

populations grow large (Goodman 1987, Shaffer 
1987). Even populations with long-term positive 
growth rates are susceptible to extinction from 
environmental variation and catastrophes. Nev- 
ertheless, analytical models have shown that a 

population of modest size can persist for a long 
time if the long-term growth rate of the popu- 
lation is substantially positive, even in the pres- 
ence of environmental stochasticity and catas- 

trophes (Lande 1993). Such models also have 
shown that distribution of times to extinction is 
often more important to evaluate than mean 
time to extinction (Ludwig 1996a). 

General theoretical treatments also have 
been important for understanding the effects of 

spatial subdivision on populations. Levins 
(1969, 1970) provided the first analytical treat- 
ment of metapopulations ("a population of pop- 
ulations") by developing a patch-occupancy 
model to predict the proportion of occupied 
patches based on extinction and colonization 
rates. While his model made many unrealistic 

assumptions, such as assuming that population 
size of patches is either zero or at carrying ca- 
pacity, that all patches are equally likely to be 
colonized, and that patches have the same size 
and extinction rate (see Hanski 1991), it provid- 
ed an important foundation for incorporating 
spatial structure into population dynamics. For 
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A. Prebreeding Life Cycle 
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Fig. 1. Differences in the life-cycle diagram and parameterization of the deterministic single-population matrix model following 
a prebreeding (A) or postbreeding (B) flow of events for a species with 4 age classes (0 or juveniles, and 1, 2, and 

-3-yr-olds). Individuals of each age class survive with a probability of P, but only adults 
-3 

years old reproduce with a fecundity of m. No 
juveniles occur in the prebreeding life cycle or matrix, because censuses are conducted just prior to the breeding period. Thus, 
surviving young have already become 1-year-olds at a probability of Po, which does not appear in the life-cycle diagram but is 
found in the matrix The postbreeding life cycle has an extra node and matrix row for juveniles because censuses are conducted 
immediately after the breeding season. The first row of the postbreeding matrix is different because only a portion of the 
individuals will survive to the next breeding season, increase in age by 1 year, and reproduce. The basic matrix calculations are 
illustrated. 

example, variations of Levins' metapopulation 
model have been useful for examining the con- 

sequences of habitat destruction, corridors, and 
disease (Hess 1996a,b). 

While analytical models have made important 
contributions to developing general principles 
of extinction, they have limited utility for mak- 

ing management decisions. Endangered species 
are generally characterized by small population 
sizes, and deterministic analytical models of 
time to extinction become ineffective due to ef- 
fects of demographic, environmental, and cat- 

astrophic stochasticity (Boyce 1992). Diffusion 

theory has been used to develop equations to 
estimate extinction probabilites resulting from 

stochasticity (Lande and Orzack 1988, Lande 
1993, Foley 1994), but results are inaccurate for 
small populations or populations that fluctuate 

greatly in size within a single generation (Lud- 
wig 1996a). 

Deterministic Single-Population Models 
Deterministic demographic models of single 

populations are among the simplest analyses, 
formulated as a set of difference equations. 
Here we treat the frequently employed matrix 

formulation (Fig. 1), although our discussion 

generally applies to other forms. Matrix models 
have a long history of use in ecology (Caswell 
1989) and natural resource management (Getz 
and Haight 1989) but have only recently be- 
come established as a tool for managing endan- 

gered species (Crouse et al. 1987, Doak et al. 
1994, Silvertown et al. 1996). 

Among the different demographic PVA ap- 
proaches, deterministic single-population mod- 
els demand the least amount of data (Table 1). 
They require (1) an understanding of age, stage, 
or social structure to determine classes for anal- 

ysis; (2) age or stage of first reproduction; and 
(3) estimates of reproductive success and sur- 

vivorship for different ages or stages. The num- 
ber of columns and rows of the matrix is deter- 
mined by the number of age or stage classes. 

Ages are often collapsed into stage classes be- 
cause field studies are seldom long enough to 
measure age-specific rates for long-lived organ- 
isms, and rates may become nearly constant be- 

yond a certain age. Stages also are more con- 
venient for modeling many fishes, invertebrates, 
and plants, because growth is indeterminant 
and demographic rates are better related with 
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Table 1. Data required for the dominant types of demographic models used in Population Viability Analysis: deterministic single- 
population (DSP), stochastic single-population (SSP), metapopulation (Meta), and spatially explicit (Space). An "x" indicates 
data are estimated for the population as a whole, and a "P" indicates data are estimated on a per patch basis. 

Data type Data needs DSP SSP Meta Space 

Demographic Age or stage structure x x x x 
Age of first breeding x x x x 
Mean fecundity for each age or stage x x P P 
Mean survival for each age or stage x x P P 
Variance in fecundity x x x 
Variance in survival x x x 
Carrying capacity and density dependence x P P 
Variance in carrying capacity x x x 
Frequency and magnitude of catastrophes x x x 
Covariance in demographic rates x x x 
Spatial covariance in rates P P 

Landscape Patch types x x 
Distance between patches x x 
Area of patches x x 
Location of patches x 
Transitions among patch types x 
Matrix types x 

Dispersal Number dispersing P P 
Age class and timing of dispersal x x 
Density dependent or independent dispersal x x 
Dispersal-related mortality x x 
Number immigrating P P 
Movement rules x 

size or developmental stage than age. Most ma- 
trix models are constructed only for females be- 
cause male fecundity is often unknown, and 
rates are usually expressed on a per female ba- 
sis. The structure and values in the matrix de- 

pend on whether it is parameterized as a pre- 
breeding or postbreeding model (Fig. 1). The 2 

approaches differ primarily in the number of 
matrix rows and the calculation of realized fe- 

cundity in the first row of the matrix (Noon and 
Sauer 1992). 

Matrix analyses (Fig. 1) are easily performed 
with commercially available computer software 

(e.g., Matlab, Mathematica). Lambda or the 

geometric rate of increase is the dominant ei- 

genvalue of the matrix, the stable age distribu- 
tion is calculated from the right eigenvector, 
and reproductive value is derived from the left 

eigenvector (Caswell 1989, McDonald and Ca- 
swell 1993). Sensitivity can be analyzed in sev- 
eral ways (Caswell 1989), but elasticity is used 
most frequently and is the proportional change 
in lambda resulting from a proportional change 
in a matrix element (de Kroon et al. 1986). Elas- 

ticity values have the convenient property of 

summing to 1 and give a proportional contri- 
bution to the total sensitivity of lambda. How- 
ever, the first row of matrix elements is calcu- 
lated as a product of both survival and fecun- 

dity, so lower-level elasticities must be calculat- 
ed to partition elasticity among survival and 

fecundity (Caswell 1989:135; Wisdom and Mills 
1997). 

Use of deterministic matrix models in popu- 
lation management has grown rapidly since the 

development of elasticity. Matrix analyses have 
been used to estimate lambda for sea turtles 
(Cheloniidae) and to compare effects of 

changes in matrix elements resulting from man- 

agement options such as use of turtle excluder 
devices and egg protection (Crouse et al. 1987, 
Crowder et al. 1994, Grand and Beissinger 
1997). Matrix models have shown that desert 
tortoises (Gopherus agassizii) are most affected 

by changes in adult mortality (Doak et al. 1994) 
and have been used to produce rules-of-thumb 
for plant conservation (Silvertown et al. 1996). 
Applications with marbled murrelets (Brachy- 
ramphus marmoratus) compared stable age dis- 
tributions from matrix models to the ratio of 

juveniles to after-hatch-year birds to estimate 
the productivity needed to stabilize populations 
(Beissinger 1995a, Beissinger and Nur 1997). 

Deterministic single-population analyses as- 
sume demographic rates are constant or nearly 
so. This assumption is violated to some extent 
in all applications. For example, some ecosys- 
tems experience severe environmental changes 
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A. Life Cycle and Demography: 
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C. Projections: 
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YEAR 

D. Quasiextinction Functions: 
oz 

Svl 1 Options: 

HZ 
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U POPULATION SIZE (N) AT YEAR 100 

Fig. 2. A simplified example of the structure and outcomes from a stochastic single population Population Viability Analysis 
model: (A) The life-cycle diagram gives the model age or stage structure; (B) The simplified flow of events that structures the 
model. Rates for fecundity (breeding) and survival are randomly chosen anew for each time step from underlying distributions 
and are used in matrix calculations to project the population size at next census; (C) A population is projected over many years, 
and projections are repeated many times to simulate different possible population trajectories; and (D) Outcomes for various 
management options are determined, such as the quasiextinction function, extinction rate, or time to extinction. The quasiex- 
tinction function incorporates the population size from all projections at a specified time interval and is determined by calculating 
the cumulative probability for populations ending less than or equal to a particular size at the specified time interval. The extinction 
rate is where the function intersects the Y-axis. 

that can greatly affect demography and occur 
on relatively short cycles compared to genera- 
tion time (Beissinger 1986, Grant 1986, Beissin- 

ger 1995b). Concerns from violating this as- 

sumption depend on how much variation in de- 

mographic rates occurs from year-to-year (Wis- 
dom and Mills 1997). Furthermore, positive 
population growth rates can lead to a false sense 
of security because environmental variation and 

catastrophes greatly increase the chance of ex- 
tinction (Shaffer 1987, Lande 1993, Mangel and 
Tier 1994), and long-term population growth 
rates decline as variance in growth rate increas- 
es (Tuljapurkar 1989). To cope with this prob- 
lem, stochastic models are often employed. 

Stochastic Single-Population Models 
Stochastic demographic models of single 

populations are probably the most commonly 
used forms of PVA. Like deterministic single- 
population models, stochastic single-population 
models are structured around the life-cycle di- 

agram, and activities follow a prebreeding or 

postbreeding flow (Fig. 2A). These models use 
Monte Carlo methods to sample from under- 

lying distributions and project a population for 

50, 100, or more years into the future by varying 
vital rates or lambda for each time step or year 
(Fig. 2B). Unlike deterministic matrix analyses 
that produce a single population projection 
which changes at the rate of lambda, each run 
of a stochastic model follows a unique trajectory 
and yields a different ending population size be- 
cause demographic rates change randomly with 
each time step (Fig. 2C). Thus, stochastic sin- 

gle-population models yield probabilistic results 

(Fig. 2D). Models must be run 500-1,000 times 
to adequately sample combinations of parame- 
ter values and explore the full range of model 
outcomes so that results converge on a set of 
values for the ending population size (Harris et 
al. 1987, Burgman et al. 1993). 

Ending population sizes produced from sto- 
chastic single-population models may be sum- 
marized in several ways. The most common 
model result is the proportion of runs that end 
at zero ("extinction" rate) or at a small size such 
as 525 individuals ("quasiextinction"). No stan- 
dard time interval or extinction rate defines a 
viable population, but intervals of 50-200 years 
and extinction rates of <5% are commonly used 
to evaluate viability. Another result is to com- 
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pute the mean or median year of extinction for 

populations that went extinct ("time to extinc- 
tion"). The most complete descriptor of model 
results is to plot the cumulative probability 
function for ending population size, as it incor- 

porates all ending population sizes (Fig. 2D). 
This "quasiextinction" function (Ginsburg et al. 
1982) is a basic form of risk analysis: as func- 
tions shift from left to right on the graph (Fig. 
2D), risk to the population declines. The MVP 
can be found by determining the effects of 

changing the initial population size on the ex- 
tinction rate. Although MVPs were among the 
earliest applications of PVA (Samson et al. 1985, 
Shaffer and Samson 1985), use declined when 
the application proved both biologically and po- 
litically complex (Soule 1987b, Gilpin 1996a). 

Data requirements for stochastic single-pop- 
ulation models are at least twice as great as for 
deterministic models (Table 1). In addition to 

average demographic rates, stochastic models 

require estimates of variance in fecundity and 
survival for each age or stage class. Variation in 

demographic rates mimics the effects of envi- 
ronmental stochasticity. Stochastic models 
should also include carrying capacity and its 
variance, as well as frequency and effects of ca- 

tastrophes. Carrying capacity sets an upper limit 
on how large populations can grow, and models 
without such limits may overestimate popula- 
tion persistence (Ginsburg et al. 1990). Various 
functions of density dependence can be used to 
model the effects of approaching carrying ca- 

pacity, or a population ceiling size may be des- 

ignated that acts as a reflective boundary (Burg- 
man et al. 1993). Catastrophes are a form of 
environmental variation that may be distin- 

guished from environmental stochasticity by the 

magnitude of effects on demography. They re- 
sult in large population declines and greatly in- 
crease the chance of extinction (Mangel and 
Tier 1994), but they are not necessarily rare 
events (Beissinger 1986, 1995b). Additional fac- 
tors typically affecting very small populations 
can be included: (1) demographic stochasticity 
can be incorporated by tracking individuals and 

applying demographic rates via binomial distri- 
butions, and (2) inbreeding effects can be mod- 
eled by randomly assigning lethal recessive al- 
leles to a proportion of the individuals (Linden- 
mayer and Lacy 1995). 

To make management recommendations, sto- 
chastic single-population models have been 
used to estimate the likelihood of extinction for 

wild populations. For example, models predict- 
ed the eastern barred bandicoot (Perameles 
gunnii) had at least an 80% chance of extinction 
within 15 years (Lacy and Clark 1990), and that 

piping plovers (Charadrius melodus) would go 
extinct in the Great Plains within 80 years (Ryan 
et al. 1993). By examining population viability, 
models also have been used to evaluate the ne- 

cessity of removing animals from the wild for 
captive breeding (Lacy et al. 1989, Seal and 
Lacy 1989). 

Effects of different management options can 
be built into stochastic single-population mod- 
els, and in this regard they are most useful. For 

example, the effects of silvicultural practices on 
a threatened mammal were modeled by exam- 

ining how changes in carrying capacity affected 
likelihood of extinction (Lindemayer et al. 
1993). A variation of the stochastic modeling 
approach was developed to examine how eco- 
system management options, in the form of the 
interval between low water conditions, affected 

viability of snail kites (Rostrhamus sociabilis) in 
the Florida Everglades (Beissinger 1995b). In- 
stead of permitting demographic rates to fluc- 
tuate stochastically, they were partitioned 
among different environmental states (i.e., 
drought, lag, flood years), and the periodic se- 

quence of environmental states dictated values 
for vital rates. 

Stochastic single-population models do not 
consider spatial factors that affect extinction 
rates. Instead of composing a single population, 
individuals may often be found in subpopula- 
tions distributed among different locations in a 

landscape and connected by dispersal. Such 
models usually assume a closed population 
without immigration or emigration. This as- 

sumption is often unrealistic because these pro- 
cesses can have important effects on population 
dynamics (Stacy and Taper 1992). In addition, 
demography may vary spatially among different 
habitats or subpopulations (Pulliam 1988); thus, 
metapopulation and spatially explicit models 
were developed. 

Metapopulation Models 
Metapopulations are spatially structured into 

assemblages of local breeding populations (Fig. 
3B). Migration of individuals between patches 
affects local dynamics, including the possibility 
of reestablishing populations in a patch after lo- 
cal extinction (Hanski and Simberloff 1997). 
Spatial variation in colonization and extinction 
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Fig. 3. Demographic Population Viability Analysis models with various degrees of spatial explicitness (modified from Gilpin 1996b). (A) 
The landscape of interest includes 4 patches of forest (numbered 1-4) that are surrounded by a matrix of agricultural lands (shaded lighter 
gray) and dissected by a river (shaded white) that acts as a barrier to dispersal; (B) Metapopulation model for the landscape in A, showing 
linkages between patches by dispersal indicated by arrows. Each patch has its own population dynamics; (C) Cellular automata or grid 
model for the landscape in A, where the landscape is now represented by grid cells, each with their own population size, immigration and 
emigration rates, and mortality and survival rates based on the grid characteristics and the characteristics of surrounding grid cells. Short 
lines indicate influences of neighboring cells, and arrows show dispersal between patches; and (D) Individually based model, where the 
movement, mortality (indicated by an "X"), and reproduction of each animal is tracked across the landscape. Mortality and demographic 
rates may differ between the matrix and the patches, and within the patches based on distance from the edge. The river acts as a barrier 
to movement. 
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results in 4 types of metapopulation structures 
(Harrison 1991). We consider only demographic 
or structured models of metapopulations, the 
most prevalent application with endangered 
species, rather than incidence-function ap- 
proaches based on probability of patch occu- 

pancy (Hanski et al. 1995, 1996; Hanski and 
Simberloff 1997). 

Metapopulation structure is incorporated 
into demographic models via use of dispersing 
individuals to link habitat patches (Fig. 3B). 
Such models are multipatch versions of the sto- 
chastic single-population models. These models 

typically incorporate either patch-specific de- 

mographic rates (including fecundity and sur- 

vivorship) or patch-specific estimates for lamb- 
da, and dispersal rules that often are based on 

patch size and interpatch distances. Patch qual- 
ity can be represented by varying carrying ca- 

pacity or reproductive output among patches. 
For example, Lindenmayer and Possingham 
(1995) used indices of habitat quality to vary 
maximum number of breeding females in each 

patch. Metapopulation models usually include 

demographic and environmental stochasticity 
and catastrophes, as in stochastic single-popu- 
lation models, with the added dimension that 
an understanding of covariation of rates be- 
tween patches may be of salient importance 
(Harrison and Quinn 1989, Sutcliffe et al. 
1997). Model outputs can be expressed as end- 

ing metapopulation sizes, the likelihood or the 
time to extinction for the whole metapopula- 
tion, the percentage of patches, or the mini- 
mum number of patches or area required for 

metapopulation persistence (Hanski et al. 
1996). 

Metapopulation models can be formulated to 

investigate how metapopulation persistence is 
affected by number of patches or subpopula- 
tions (Goldingway and Possingham 1995, Lin- 

demayer and Lacy 1995), size of habitat patches 
(Beier 1996), removal of critical habitat patches 
(Gibbs 1993), role of succession and distur- 
bances (Menges 1990), and immigration rate 

(Stacey and Taper 1992, Beier 1996). Moreover, 
metapopulation models can be used in a sensi- 

tivity analysis to determine which parameters 
are vital and need further quantification. 

The advantage of metapopulation models 
over single-population stochastic models is they 
partially incorporate spatial realism. Thus, the 
effects of landscape change can be modeled, in- 
cluding effects of corridors, patch-specific hab- 

itat destruction, quality alterations, and changes 
in interpatch distances. However, dispersal 
rules and mortality, which are integral to inves- 

tigating metapopulation persistence, are usually 
specious because they are based only on dis- 
tances between patches and do not incorporate 
matrix characteristics or behavioral rules (Fig. 
3B). Moreover, these models do not explicitly 
consider potentially important effects of the 

surrounding matrix on demography within 

patches. When effects of matrix heterogeneity 
become crucial in predicting viability of a spe- 
cies, modeling may require spatially explicit 
landscape data. 

Spatially Explicit Models 
Spatially explicit models have been increas- 

ingly used in conservation as awareness of land- 

scape processes has expanded and tools for an- 

alyzing landscape-scale phenomena have devel- 

oped (e.g., Geographic Information Systems; 
GIS). The spatial distribution of resources can 
affect species persistence and coexistence (Lev- 
in 1992). Spatially explicit models specify loca- 
tion of the desired unit (e.g., individuals or pop- 
ulations) within a heterogeneous landscape and 
define spatial relations between habitat patches 
and the matrix (Dunning et al. 1995). Metapop- 
ulation models do not include matrix character- 
istics, and hence are not completely spatially ex- 

plicit. 
The major types of spatially explicit demo- 

graphic models are the grid-based or cellular 
automata approach and the individual-based 
models (Dunning et al. 1995, Gilpin 1996b). In 

grid-based models, cells are squares of the same 
size, and their states (i.e., population size or 
habitat type) are followed through time (Fig. 
3C). Cells are influenced by inputs and outputs 
from neighboring cells (Gilpin 1996b). Grid- 
based models are most appropriate for abun- 
dant organisms, such as plants, insects, or ro- 
dents, where monitoring the movement and 
fate of each individual may be intractable. 

Patch-specific reproduction and mortality rates 
are measured by population growth rates, and 
movement between patches is determined by 
immigration and emigration rates (Dunning et 
al. 1995). In individually based models (IBMs), 
the location of each individual across the land- 

scape is monitored, and fitness characteristics 
are assigned based on the patches they occupy 
(Fig. 3D). Thus, each individual inscribes a tra- 
jectory over the landscape during the course of 
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its life. In IBMs with an annual time step, in- 
dividuals can experience a cycle of breeding, 
dispersal, and mortality; daily time steps can be 
used to incorporate predator avoidance, forag- 
ing, and growth (Dunning et al. 1995). 

Movement rules that explicitly incorporate an 
animal's perception of the landscape act as im- 

portant components of spatially explicit models. 
For example, Turner et al. (1993) developed 3 
alternative movement rules for foraging ungu- 
lates in winter in Yellowstone National Park. 
One rule specified a 1 grid-cell maximum move- 
ment per time step in the direction that con- 
tains the greatest number of resource sites with- 
in the search radius, and another rule allowed 
an ungulate to move among sites until it obtains 
maximum forage intake or reaches maximum 

daily distance, while a third rule allowed the 
animal to move to the nearest unoccupied re- 
source site in the direction that has the greatest 
number of resource sites. Permeability can be 

assigned to habitat patches, based on habitat 

quality (Boone and Hunter 1996). 
Spatially explicit models provide a technique 

for studying ecological processes that operate 
from local to landscape to global scales. There- 
fore, they can potentially predict population and 

community changes in response to land-use 

changes, climatic alterations, or various man- 

agement strategies (Turner et al. 1995). Spa- 
tially explicit models have been used to design 
reserves (Price and Gilpin 1996), simulate re- 

sponses to regional management practices 
(Boone and Hunter 1996), evaluate transloca- 
tion options (Akgakaya et al. 1995), and simu- 
late potential effects of forest management pol- 
icies (McKelvey et al. 1993, Lamberson et al. 
1994, Liu et al. 1995). 

However, spatially explicit models have im- 
mense data requirements (Table 1), which can 
make development an onerous process (Dun- 
ning et al. 1995, Kareiva et al. 1997). The time 
and resources needed for their construction of- 
ten restrict their application to species where 

management decisions have important econom- 
ic implications. Although understanding dis- 

persal movement is usually problematic, few 
habitat patches are expected to remain undis- 
covered if the area being modeled is sufficiently 
small, regardless of rules chosen. Likewise, dis- 
persal details will be unimportant where high- 
quality habitat patches tend to be temporally 
static, because all patches will eventually be col- 
onized. In such cases, the use of spatially ex- 

plicit models may be superfluous (Dunning et 
al. 1995). 

WHY DEMOGRAPHIC PVA MODELS 
SHOULD BE USED WITH CAUTION 

Demographic PVA models are used to pre- 
dict short- or long-term rates of population de- 
cline or growth and likelihood of extinction de- 
cades or centuries in the future. In this section, 
we examine how inputs, assumptions, and struc- 
ture of demographic PVA models affect their 

ability to predict fate of populations with ac- 

curacy and precision. 
The accuracy and precision of PVA models 

can be highly affected by a number of factors. 
Some factors are confined to specific model 

types, whereas others affect the outcomes of all 

demographic models. Below we discuss 4 dom- 
inant causes of errors that result in uncertainty 
in the outcomes predicted by PVA models: (1) 
poor data, (2) difficulties in parameter estima- 
tion, (3) weak ability to validate models, and (4) 
effects of alternate model structures. 

Poor Data and Difficulties in Parameter 
Estimation 

Although results from demographic PVA 
models obviously are affected by estimates of 

demographic rates used, the poor quality of 
data used in most applications with endangered 
species is frequently overlooked. Rarely have 
detailed field studies with adequate sample 
sizes been used for developing mean estimates 
of vital rates, and causes and timing of mortality 
are hardly ever known. Survival is often the 
most difficult vital rate to measure precisely, be- 
cause it must be distinguished from the prob- 
ability of resighting (Nichols 1992). Although 
statistical techniques have been developed to 

yield accurate estimators of survival and test for 
differences among ages or stages based on large 
samples of marked individuals (Lebreton et al. 
1992), they require a minimum of 3 years of 

study to estimate probability of resighting and 

survivorship for a single year. More years of 

study may be required to develop precise esti- 
mators when the probability of resighting is low. 
Unfortunately, lack of good survival data can 
complicate estimation of lamba and extinction 
rates, because elasticity and sensitivity analyses 
suggest population change in long-lived verte- 
brates usually is most affected by changes in 
adult survivorship (Boyce 1992). Even the pa- 
rameterization of a deterministic single-popu- 
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lation model, which requires the least amount 
of data compared to other PVA approaches (Ta- 
ble 1), is not a trivial matter. 

Perhaps no single part of a PVA model needs 
more justification than the choice of average vi- 
tal rates. When data on survival and reproduc- 
tion are unavailable, guesses of mean rates fre- 

quently are made using biological intuition or 
information from a similar species. A more 

thorough approach is to use life-history theory 
(e.g., allometry) to justify possible choices (Beis- 
singer and Nur 1997). Nevertheless, exceptions 
to life-history theory commonly occur. Substi- 

tuting data from other species or populations is 

likely to be effective only if uncertainty in rates 
is fully explored. Sometimes so little is known 
about demography, and the range of potential 
vital rates is so large, that model outcomes will 

vary from complete extinction to no extinction 
for the same management regimes, depending 
upon the mean rates chosen. Such was the case 
when metapopulation and spatially explicit 
models were recently developed as part of the 
Pacific Lumber Company Headwaters Forest 
Habitat Conservation Plan for the marbled 
murrelet. There are no field measures of sur- 
vival, age of first breeding, population density 
and structure, or movements for this species 
(Beissinger 1995a, Beissinger and Nur 1997). In 
our opinion, it is a waste of resources to develop 
stochastic single-population, metapopulation, 
and spatially explicit PVA models when both de- 

mography and dispersal are so poorly known. 
To mimic effects of environmental variation, 

stochastic single-population, metapopulation, 
and spatially explicit models require estimates 
for variance in vital rates, which causes the dif- 
ferences among model runs. To obtain good es- 
timates for variance of vital rates, demographic 
measurements must be made over many years 
to sample the range of environmental variation. 
Rare events, such as 1-in-50 or 100-year 
droughts, floods, fires, or storms likely have 

large effects on variance estimates and popula- 
tion viability. Long-term datasets have shown 
that variance in population size does not begin 
to asymptote until 28-20 years (Pimm and 
Redfearn 1988, Pimm 1991, Arino and Pimm 
1995). Accurate estimates of variance in vital 
rates probably require at least 1-2 generations 
of study, which could easily exceed 10-20 years 
for long-lived vertebrates. Use of data from 
short-term studies will usually underestimate 
the variance in vital rates. 

The effect of short study periods for estimat- 

ing variance in vital rates may be offset because 
estimates of variance derived from field studies 

implicitly include sampling error, which results 
in an overestimate of variance. Rarely has the 

temporal variance in vital rates been decom- 

posed into sampling variation and annual (en- 
vironmental) variation, which is what interests 
wildlife managers and conservation biologists. 
Sampling variance should be discarded because 
it is caused by errors in parameter estimation 
rather than a biological process affecting pop- 
ulation trajectories (Link and Nichols 1994). 
Studies of semipalmated sandpipers (Calidris 
pusilla) found sampling error contributed near- 

ly as much to total variance in annual survivor- 

ship as did temporal variation (Hitchcock and 
Gratto-Trevor 1997). 

Metapopulation and spatially explicit models 
are distinguished from other PVA models by in- 

corporating dispersal processes. Unfortunately, 
our understanding of dispersal is poor for most 

species. Consequently, dispersal rules are often 
coarse caricatures of biological reality due to 

difficulty of empirically determining dispersal 
distances, age of dispersers, and mortality dur- 

ing dispersal. Biologists often do not know 
whether individuals disperse only when habitat 

patches have reached saturation (density depen- 
dent), or whether they will always disperse upon 
reaching a particular age (density independent). 
Dispersers in models can be characterized as a 
fixed proportion of the population (Hanski and 
Thomas 1994), as an age-independent, varying 
fraction of the population (Lindemayer and 

Lacy 1995), or as a specific age class whose rate 
is constant (Lamberson et al. 1994, Beier 1996) 
or density dependent (Lindemayer and Pos- 

singham 1995). Likewise, dispersal mortality 
and distance can be modeled as a diffusion 
function with no specific risk attached to mor- 

tality (Southgate and Possingham 1995), as a 
random walk process with mortality as an ex- 

ponential decay function (Lamberson et al. 
1994), or as a constant number that moves to 

neighboring patches with no additional dispers- 
al mortality (Beier 1996). Rarely is there infor- 
mation on what types of landscape features act 
as barriers, or whether a species will use corri- 
dors (e.g., Haas 1995, Desrochers and Hannon 
1997). How many patches will be searched and 
what level of mortality is associated with dis- 
persal is unlikely to be known (Kareiva et al. 
1997). In most models, the flow of individuals 
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between patches is assumed a stochastic pro- 
cess, but presence of conspecifics can attract 

dispersers (Smith and Peacock 1990). 
Because of the paucity of knowledge, errors 

in estimating dispersal mortality and distances 

may be huge. Analysis of error propagation in- 
dicates prediction errors are most exacerbated 
for species with low success in finding suitable 
habitat, precisely the situation for many endan- 

gered species in fragmented landscapes (Kar- 
eiva et al. 1997). Even under the best circum- 
stances, spatially explicit models may not pre- 
dict, with certainty, the number of individuals 
in a landscape (Dunning et al. 1995). 

Another source of inaccuracy in spatially ex- 

plicit models occurs from errors in classifying 
landscapes. The polished nature of GIS maps 
provides a misleading impression of infallibility. 
Openshaw (1989) lists sources of spatial data- 
base errors due to (1) inaccurate positioning of 

objects, (2) incorrect attributes associated with 

objects and representations (i.e., referencing 
area objects as points), (3) assuming spatial ho- 

mogeneity within each map unit for continuous 

phenomena (i.e., vegetation, soils) and deline- 

ating them with sharp boundaries (choloropeth 
maps), (4) GIS operations on spatial data (e.g., 
transformation and interpolation) and effects of 

generalization operations (i.e., aggregation), and 
(5) temporal changes in data. Errors can be ex- 

pected to propagate in a highly complex and 
variable fashion, depending on the number of 
data layers, source and scale of the data, reso- 
lution needed, and degree of heterogeneity of 
the landscape. Nevertheless, for spatially explic- 
it models, errors in classifying and mapping 
habitat patches may be much less important 
than errors in our understanding of dispersal 
processes (Ruckelshaus et al. 1997). 

Problems with Model Validation and 
Structure 

While models can be useful for delineating 
relations among parameters and gaining insight 
into system behavior, it is unwise to have con- 
fidence in quantitative predictions from models 
that are not validated or confirmed (sensu Or- 
eskes et al. 1994) to determine their accuracy 
(Caswell 1976, Bart 1995, Aber 1997). The pri- 
mary prediction from most PVA models, the 
probability of extinction, is very difficult to val- 
idate because these models incorporate sto- 
chastic processes. Stochastic models predict the 
outcome of hundreds of populations from 50 to 

?100 years into the future. We can not know 
which of the population traces (Fig. 2C) to 

compare to our unreplicated, real-world popu- 
lation, even if we had a long population history 
for comparison. Validation would require track- 

ing scores of replicate populations that experi- 
enced similar conditions and comparing pre- 
dicted to observed frequencies of extinction, 
something that is far better suited to the labo- 

ratory than to the field. Comparing the expect- 
ed population trajectory based on average de- 

mographic rates with census data gathered in- 

dependently provides a way of validating deter- 
ministic models or models with deterministic 
skeletons (Bart 1995, Beissinger 1995b, Higgins 
et al. 1997, Hitchcock and Gratto-Trevor 1997). 
For stochastic models, comparing the average 
population projection to a time series of historic 

population trends provides a way to examine 
how well the model captures the dynamics of 
the system. Although this approach has been 
used to test PVA predictions (Brook et al. 1997), 
it does not verify the value of stochasticity used 
in the model, which is the cause of differences 

among replicate model runs. Usually the best 
that can be done is to test model assumptions 
or secondary predictions such as estimates for 
means and variances of vital rates, distribution 
of individuals on landscapes, or movement 
rules. Confirmation of secondary predictions is 

rarely done for PVAs, which violates a basic 

principle for use of models in decision-making 
(Bart 1995). 

Most stochastic single-population, metapo- 
pulation, and spatially explicit models project 
populations for 50, 100, or more years into the 
future, assuming present conditions reflect fu- 
ture conditions. Rarely have such models incor- 

porated changes in environmental or demo- 

graphic trajectories, such as habitat loss or res- 
toration (e.g., forest regrowth) or changes in bi- 
otic interactions. For example, viability models 

proposed for the Mariana crow (Corous kubar- 

yi) on Guam, based on current demographic 
rates, would become obsolete as soon as the 
main limiting factor responsible for the crow's 
decline, the brown tree snake (Boiga irregular- 
is), is controlled (National Research Council 
1997). Similarly, PVA models for tropical fig 
wasps (Agaonidae and Agaoninae) showed their 
viability was sensitive to changes in the popu- 
lation biology of their mutualist figs (Anstett et 
al. 1997). 

The form that density dependence and car- 
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rying capacity have in models can dramatically 
affect extinction probabilities, yet little is known 
about effects of density on demography for 

many endangered species (e.g., Brook et al. 
1997). First, stochastic variations in vital rates 
result in normally distributed population sizes 
for density-dependent models and lognormally 
distributed population sizes for exponential 
growth models (Dennis et al. 1991, Nations and 

Boyce 1997). Although assuming unbridled 

growth for endangered species constrained by 
lack of habitat is unrealistic, this assumption 
may be a reasonable simplification. Ginzburg et 
al. (1990) concluded extinction risks decrease 
when weak density dependence is incorporated, 
whereas risks increase as density dependence 
becomes stronger. For functions that do not al- 
low their trajectories to overshoot carrying ca- 

pacity, such as the Beverton and Holt function, 
density dependence decreases the likelihood of 
extinction. Thus, models without density depen- 
dence will underestimate the likelihood of ex- 
tinction. Second, in the Beverton and Holt, 
Ricker, and Hassell functions, as opposed to the 

generalized Beverton and Holt or the general- 
ized Ricker, effects of density occur at increas- 

ingly higher rates as population size declines to- 
ward zero (Getz 1996). If these functions are 

incorporated into viability models for endan- 

gered species, where population sizes are often 
well below idealized carrying capacity, conser- 
vative estimates of population growth will re- 
sult. Finally, models that do not incorporate Al- 
lee effects, which result in decreased fecundity 
or survival due to underpopulation, will under- 
estimate extinction rates. Because detecting 
density dependence or Allee effects from field 
studies is very difficult, it seems prudent to eval- 
uate the likelihood of simulated populations 
ending at a small size (e.g., 25-50) rather than 
extinction. 

Our understanding of environmental fluctu- 
ations and the occurrence of catastrophe is in 
its infancy. Most stochastic single-population, 
metapopulation, and spatially explicit models 
assume environments, and hence populations, 
fluctuate stochastically. Physical forces that 

strongly affect demography, (i.e., droughts, 
floods) can occur on relatively short intervals 
(e.g., 3-7 yr) and in predictable cycles (Beissin- 
ger 1986). Studies of populations over decades 
(Pimm 1991) or environmental variations over 
centuries have sometimes uncovered predict- 
ability in the form of long chaotic cycles with 

periods of generations or decades in length 
(Laird et al. 1996). Analyses of environmental 

predictability (Colwell 1974, Steams 1981, Beis- 

singer and Gibbs 1993) should be undertaken, 
rather than simply assuming that environmental 
fluctuations are stochastic. Results could be 
used to determine if population models should 
allow demography to vary completely stochas- 

tically or be constructed with deterministic ker- 
nels based on periodic cycles (Beissinger 1995b, 
Higgins et al. 1997, Leirs et al. 1997). 

Finally, several aspects of model structure 
can have important effects on predicted rates of 
extinction. Many vertebrates have complex so- 
cial systems that may include subadults yet to 
reach age of first breeding, nonbreeding adults 
old enough to breed (e.g., helpers or floaters), 
or senescent adults. An understanding of social 
structure, in the form of age and stage struc- 
ture, can have critical effects on model out- 
comes (McDonald and Caswell 1993, Harcourt 
1995). Furthermore, Pascual et al. (1997) 
showed that stochastic single-population models 

varying from unstructured to complex age or 

stage structures can reproduce the same popu- 
lation dynamics but yield different predicted ef- 
fects of management (harvesting) regimes. 
Searching for the best model by comparing fit 
with historic population numbers or demo- 

graphic parameters proved fruitless. Finally, dif- 
ferent computer programs can result in differ- 
ent estimates of population viability from the 
same dataset (Mills et al. 1996). Variation in 
outcomes was most affected by differences in 
how models treated density dependence. 

A STRATEGY FOR USING 
DEMOGRAPHIC PVA MODELS 

The previous section raises several important 
concerns about accuracy and interpretation of 
results from demographic models of PVA. De- 

mographic data are often inadequate, impre- 
cise, and based on studies too limited in dura- 
tion to properly estimate variance in vital rates. 
Most PVA models cannot be validated, projec- 
tions usually do not incorporate future changes 
in habitat quality or quantity, and differences in 
model structure can have strong effects on 
management recommendations resulting from 
model output. Even when data are adequate, 
PVA models can result in large errors in esti- 
mating the rate of extinction (Taylor 1995). 
Taken together, these concerns strongly suggest 
that one should place very limited confidence 
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Table 2. Uses of demographic models of population viability. 
Objectives refer to goals of the model. Decisions are made by 
interpreting model outputs either in an absolute fashion, based 
directly on the model outcome, or in a relative fashion, by com- 
paring outcomes among model runs. 

Interpretation of 
Model objective model output 

Estimate likelihood of extinction Absolute 
Assess risks and benefits of manage- 

ment options Relative 
Develop criteria for recovery Absolute 
Classify species' vulnerability (IUCN)a Absolute 
Estimate population trends Absolute 
Evaluate research priorities Relative 
Determine size of reserves Absolute 

S 
IUCN = International Union for the Conservation of Nature and 

Natural Resources. 

in the extinction estimates generated by these 
models. 

If demographic PVA models are currently in- 

capable of producing accurate estimates of the 
likelihood of extinction, what should be their 
role in making management decisions? We be- 
lieve there are valuable insights that can be 

gained by use of these models in certain con- 
texts, whereas application in other situations 

may misdirect efforts. Because standards for the 

application of PVA models are presently lacking, 
we present some suggestions below for improv- 
ing future implementation of PVA. 

Evaluate Relative Rather than Absolute 
Rates of Extinction 

An important difference among the major 
uses of demographic PVA models (Table 2) is 
how model predictions are interpreted. Model 

output (e.g., probability of extinction) can be 
used in an absolute fashion by taking the prob- 
abilities of extinction at face value to make de- 
cisions. For example, when a PVA indicates an 
inviable population and a species is classified as 

endangered or captive breeding is recommend- 
ed, model predictions are used in an absolute 
fashion. Alternatively, results from PVA models 
can be used in a relative fashion by comparing 
outcomes among model alternatives. Some have 
called this dichotomy "quantitative and quali- 
tative predictions" (Ralls and Taylor 1997), but 
we feel it is more useful to recognize differ- 
ences in interpretation of model outcomes im- 

plied by uses of PVA (Table 2). 
In our opinion, the optimal use of PVA is to 

evaluate relative differences among model out- 
comes. Models are best used to compare the 

outcomes for different scenarios such as 

changes in vital rates and habitat quantity or 

quality resulting from management decisions. 
Such comparisons should concentrate on how 
well potential management actions perform rel- 
ative to the baseline of current conditions. Ex- 

amples include comparison of effects of habitat 
loss and poaching on elephant (Loxodonta af- 
ricana) viability (Armbruster and Lande 1993), 
and timber harvesting strategies on the viability 
of threatened bird and mammal populations 
(Liu et al. 1995, Lindenmayer and Possingham 
1996). 

We generally recommend against formulating 
policies or decisions based on the interpretation 
of absolute values of extinction from PVA mod- 
els. For example, recommendations to imple- 
ment captive breeding have been offered when 
PVA models predict a moderate likelihood of 
extinction. Such recommendations base man- 

agement decisions on the premise that a partic- 
ular model accurately predicts likelihood of ex- 
tinction. The advisability of implementing cap- 
tive breeding needs better justification than 

projected rates of extinction, because captive 
breeding is expensive, often unsuccessful, can 
occur at the near-term expense of wild popu- 
lations, and is only 1 of many approaches to 
reverse population declines (Snyder et al. 1996). 
If PVA models are used to evaluate advisability 
of implementing captive breeding, they should 

compare the relative rates of extinction for the 
wild population from various in situ manage- 
ment options with ex situ options, based on the 
likelihood that (1) breeding will proceed suc- 

cessfully in captivity; (2) captive-reared animals 
can be successfully reintroduced into the wild 
to create a self-sustaining, viable population; 
and (3) captive-reared individuals will not intro- 
duce diseases into the wild population. To the 
best of our knowledge, a comprehensive PVA 

comparing these options has not been conduct- 
ed, although data may exist for doing so in some 
cases (Bustamante 1996). 

Absolute rates from PVA models are incor- 

porated in some of the criteria for classifying 
threatened species recently developed by the 
International Union for the Conservation of Na- 
ture and Natural Resources (1994). Based on 
modifications of the scheme proposed by Mace 
and Lande (1991), criteria included classifying 
species based on the likelihood of extinction de- 
rived from PVA models. Given the lack of ac- 

curacy (Taylor 1995) and confidence in predict- 

This content downloaded from 152.18.103.175 on Wed, 09 Sep 2015 19:41:05 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


834 POPULATION VIABILITY ANALYSIS * Beissinger and Westphal J. Wildl. Manage. 62(3):1998 

ed rates of extinction, we suggest this criterion 
should be dropped because the classification 
scheme includes many other useful criteria. 

Use Short-Time Periods for Making 
Projections 

While we have some confidence in today's 
weather predictions and pay attention to fore- 
casts several days ahead, we have little faith in 

predictions made months or years in advance. 
However, models that forecast weather are far 
more sophisticated and have been well tested 
and validated compared to demographic models 
used in PVA. 

Many PVA models make long-term predic- 
tions of population size for 

-100 
years into the 

future, based on current, and sometimes histor- 
ic, demographic rates and environmental con- 
ditions. Such models propagate errors with each 
time step. An alternative approach would be to 
use shorter time intervals (i.e., 10, 25, or 50 yr) 
to minimize error propagation and to evaluate 
conservative probabilities of extinction (e.g., 1- 
5%). There is no particular justification for fix- 

ing a reference point at a 95% level of popu- 
lation persistence over 100-200 years. Never- 
theless, evaluating short-time horizons cannot 
address questions that require long-term esti- 
mates of viability, such as determining the ad- 

equacy of current systems of parks and reserves 
(Table 2). When needed, long-term projections 
should be viewed as extrapolations of short- 
term trends for comparing the relative merits of 

policy options, and not as predictions of viabil- 

ity. 

Start with Simple Models and Choose an 
Approach that Data can Support 

The use of stochastic population models in- 
creased frequently after biologists realized that 

populations could go extinct when the long- 
term rate of population growth (i.e., lambda) 
was positive, due to effects of environmental 

stochasticity and catastrophes (Shaffer 1981, 
Goodman 1987). Although these forms of sto- 

chasticity are important and stochastic models 
can yield important insights, the fixation on sto- 
chasticity has drawn attention away from the 
crucial effects deterministic factors have on 
lambda and model outcomes (Caughley 1994). 
The overall trajectory of an endangered popu- 
lation often has an overwhelming effect on PVA 
model outcomes (for examples see Lacy and 

Clark 1990, Doak et al. 1994, and Beissinger 
1995b). 

Much can be learned from a deterministic 

analyses before one develops a stochastic single- 
population, metapopulation, or spatially explicit 
model. Analysis of deterministic matrix models 
can indicate if strong population trends exist, 
and sensitivity or elasticity analysis can deter- 
mine what vital rates have the greatest effects 
on lambda. Although influences of factors may 
change as model complexity increases, deter- 
ministic models may give some insight into how 
we can expect more complex PVAs to perform. 

Parsimony should be a goal in model build- 

ing, but managing real populations often re- 

quires answers to particular scenarios that are 

complex, such as the effect of a proposed Hab- 
itat Conservation Plan on viability of an endan- 

gered species. In such cases, it is tempting to 

develop complex, spatially explicit models to es- 
timate likelihood of extinction, if only they did 
not go so far beyond available data. Unfortu- 

nately, such models can require data we may be 

very unlikely to obtain, such as the probability 
of mortality during dispersal or details of patch 
searching behavior, which may have a huge 
bearing on model outcomes (Kareiva et al. 
1997, Ruckelhaus et al. 1997). Policy makers 
need to understand the limits of our craft to 
answer such questions. We can develop esti- 
mators of population health based on measur- 
able quantities such as amount and distribution 
of suitable habitat, instead of producing pseu- 
doscientific estimates of extinction. Other, less 

data-hungry approaches may also be useful to 

guide management decisions, such as presence- 
absence models (Kareiva et al. 1997), incidence 
functions (Hanski et al. 1995), or adoption of 

principles to guide endangered species recovery 
(S. R. Beissinger et al. unpublished data). Mod- 
els of fantasy have an important place in devel- 

oping theory, but less so in the practice of con- 
servation. 

Use Models Cautiously to Diagnose 
Causes of Decline and Potential for 
Recovery 

Models have been used to diagnose causes of 
a population decline (Crouse et al. 1987, Doak 
et al. 1994, Wisdom and Mills 1997) but need 
to be interpreted very cautiously. Sensitivity 
analyses, such as elasticity, indicate which vital 
rates or stages most affect model outcomes and 
require more study or better parameter esti- 
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mation. Recommendations based on elasticity 
analyses assume it is logistically and biologically 
feasible to increase those vital rates. For several 
reasons, however, elasticity or sensitivity values 
do not indicate what factors are causing popu- 
lations to decline. First, elasticity estimates are 
not value free, but depend on the vital rates 
used (Caswell 1996). If a demographic rate is 

depressed due to effects of a limiting factor, its 
matrix element(s) will have a smaller elasticity 
value. Hence, it does not follow that factors or 

stages associated with this element are less im- 

portant for management than other elements. 
For example, elasticities for the Mariana crow 
on Guam indicate an overwhelming importance 
of adult survivorship on lambda, because suc- 
cessful reproduction has rarely occurred during 
the past decade due to predation by the brown 
tree snake (National Research Council 1997; S. 
R. Beissinger unpublished data). Recovery 
strategies focused only on adult survivorship 
would miss the main reason for decline: poor 
reproduction due to snake predation on eggs 
and nestlings. Second, elasticity indicates which 
element to change to obtain the quickest route 
to population recovery, but not which element 
is causing the decline. Similarly, recovery will 

require more time in populations that are de- 

clining due to limiting factors operating on el- 
ements with low elasticities than with high elas- 
ticities. From elasticities, one can identify the 

potential management strategy that leads to the 
fastest population recovery, but one cannot con- 
clude which factors limit population growth. 

Determining the factors that limit population 
growth requires comparative and experimental 
approaches (Caughley 1994, Caughley and 
Gunn 1996, Peterson and Silvy 1996). Never- 
theless, models can indicate levels of recruit- 
ment or survival needed to recover populations 
(Beissinger 1995a, Grand and Beissinger 1997), 
and model trajectories can be compared to real 

trajectories to examine hypotheses about limit- 

ing factors (Hitchcock and Gratto-Trevor 1997). 

Evaluate Cumulative Ending Functions 
and Alternative Reference Points Rather 
than Extinction Rates 

Stochastic single-population, metapopulation, 
and spatially explicit models result in several 
possible currencies, such as time to extinction, 
probability of extinction, and ending population 
size. These estimators of viability depend upon 
the time frame analyzed. Fixing a reference 

point of extinction for ending population size is 

arbitrary because the probability of extinction 

may rise quickly as the time horizon is length- 
ened. Furthermore, average time to extinction 
and ending population size can be misleading 
indicators because their distributions are highly 
skewed (Ludwig 1996a). Thus, it is most appro- 
priate to examine the whole distribution of end- 

ing population sizes and times to extinction. Cu- 
mulative probability functions of ending popu- 
lation size (Fig. 2D) and tails of the distribu- 
tions are valuable indices. Rather than 

evaluating extinction rates, it may be more use- 
ful to examine the likelihood of a population 
reaching the point where recovery requires the 

implementation of expensive options with low 
success rates such as captive breeding (Snyder 
et al. 1996). For example, such a limit might be 
set at 75-100 individuals in the wild for a slowly 
declining population of a long-lived vertebrate. 

Examine all Feasible Models, Options, 
and Rates 

Because of uncertainty in demographic rates 
and effects of model structure on PVA out- 
comes (Pascual et al. 1997), it is wise to use 

multiple models and examine a variety of rates 
and options when conducting PVAs. Although 
potential scenarios can be almost endless (Lud- 
wig 1996b), the problem can often be bounded 
with high and low scenarios. Rather than trying 
to produce a single best model, it can be im- 

portant to examine how different model struc- 
tures affect outcomes and management rec- 
ommendations by incorporating several models 
into PVAs (Groom and Pascual 1998). 

Sparingly Mix Genetic and Demographic 
Currencies 

Genetic effects can be incorporated into sto- 
chastic single-population, metapopulation, and 

spatially explicit models by randomly assigning 
lethal recessive alleles to a portion of the pop- 
ulation (e.g., Lindenmayer and Lacy 1995). Lit- 
tle is actually known about the genetic loads in 
nature, and rarely will data be available for en- 

dangered species. Recent results suggest the ac- 
cumulation of mildly deleterious mutations 
seems unlikely to pose a significant threat to 
sexually reproducing vertebrate populations 
over 45-50 generations (Gilligan et al. 1997). 
Inbreeding is likely the strongest genetic effect 
and primarily affects viability of populations 
with <50-100 breeding individuals (Shaffer 
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1987, Lande 1993), unless they are highly sub- 
divided (McCarthy et al. 1995). Given the lack 
of information on the number of lethal equiv- 
alents in most populations, it may be useful to 

simplify model structure to concentrate on 
measurable demographic parameters and to 
evaluate quasiextinction rather than extinction 
rates. 

HOW SHOULD PVA MODELS BE 
INCORPORATED INTO ENDANGERED 
SPECIES MANAGEMENT? 

Use of demographic PVA models has expand- 
ed greatly in the past decade (Groom and Pas- 
cual 1998), and there is no indication they will 

go extinct in the near future (Ralls and Taylor 
1997). Models are constructions of knowledge 
and caricatures of reality. By formulating them, 
a system or problem can be illuminated in a 
different light. Thus, the heuristic aspects of 

modeling, rather than the model results, are of- 
ten the most fruitful (Starfield 1997). When 
used wisely to formulate and examine recovery 
approaches by comparing relative outcomes of 
the models (Table 2), PVAs assume the kind of 
heuristic role in which models can potentially 
perform well. 

Unfortunately, models can also lead us wildly 
astray when they do not incorporate important 
influences, are unwittingly built on erroneous 

relations, or unintentionally use incorrect pa- 
rameters (Emlen 1989). For example, use of 

poor data resulted in recommendations from a 
model (Nichols et al. 1980) based on erroneous 
conclusions that the Florida snail kite was a 

highly "k-selected" species with a low repro- 
ductive potential and incapable of rapid popu- 
lation increases or declines, when in fact mul- 

tiple brooding, an early age of first breeding, 
and rapid population change characterize the 

demography of this "r-selected" raptor (Snyder 
et al. 1989, Beissinger 1995b). 

The critical question is when are endangered 
species recovery programs likely to benefit from 
the insights of a PVA model, and when are they 
likely to be lead astray? Even a crude model is 
often suggested as better than not using a mod- 

el, but this suggestion is not necessarily true 
(Emlen 1989). Some researchers suggest mod- 
els are needed to identify data required for 
management, but these data are usually well 
known (Table 1). Models also are not needed to 
bring researchers together to share and examine 
data. 

In our opinion, whether to develop a model 
and implement its recommendations depends 
on the quality of data and our understanding of 
the system. Doing a credible PVA requires good 
demography and good ecological modeling. The 
advent of canned software programs makes it 
too easy to construct a model that can be passed 
off as a PVA. Even when little demographic 
data exist (e.g., the marbled murrelet), someone 
will construct complex PVA models that are 

composed of many times more variables para- 
meterized with educated guesses than with data 
from field measurements. The uncertainty as- 
sociated with such models is so large that results 

usually yield no useful or credible guidelines for 

management. Application of PVA in those situ- 
ations does little to boost its credibility. When 
most demographic data are lacking, we agree 
with Reed et al. (1998) that alternatives to PVA 
should be considered or priority given to accu- 

mulating data, before serious resources are 
committed to developing a complex PVA model. 

As of January 1997, there were nearly 1,700 
species on the U.S. endangered species list. 
Given the data requirements (Table 2), it is an 
unusual endangered species for which enough 
information is known to allow the legitimate use 
of stochastic single-population, metapopulation, 
and spatially explicit models. The problem is ex- 
acerbated for newly listed species, which usually 
have not received in-depth studies. For them, 
PVA cannot represent anything more than an 

exploratory exercise on a theoretical organism. 
Suggestions to streamline the Recovery Plans 

by mandating PVAs for each endangered spe- 
cies would only institutionalize wasteful practic- 
es. 

While models are among the few tools that 
we have to predict the future, demographic 
PVAs are not currently capable of forecasting 
when species will go extinct, and perhaps they 
may never be able to fully achieve this goal. 
What demographic PVAs can highlight is the 

uncertainty behind decision-making in terms of 
how little we often know about population pro- 
cesses of paramount conservation importance, 
or how ignorant we are about which manage- 
ment strategies will work best. Uncertainty is 
inherent in decision-making but is not an excuse 
for not making decisions. Population Viability 
Analysis models can be helpful in this regard 
because they can be used to screen hypotheses 
for causes of decline, evaluate relative differ- 
ences among potential management options, 
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and make explicit the relations among various 
factors. New PVA approaches (Boyce et al. 
1994) are being developed that more directly 
relate occupancy and demography to habitat 

modeling using resource-selection functions 
based on landscape-scale variables (Manly et al. 
1993). But PVA models cannot be substituted 
for field studies and experiments to determine 

limiting factors that need to be reversed, or to 
test management options. 

Needed are direct links between field recov- 

ery options and demographic PVA models. 
Links may be partly accomplished by conduct- 

ing field tests of model assumptions and by val- 

idating secondary model predictions. These ac- 
tivities are rarely undertaken after a PVA model 
has been developed, but they should be re- 

quired before model results are taken seriously. 
Population Viability Analysis models were suc- 
cessful in determining resource management 
decisions for spotted owls (Strix occidentalis) 
and grizzly bears because models were followed 

by comprehensive field studies and were re- 
viewed and revisited time after time in a pro- 
cess similar to adaptive management (Boyce 
1993). These models were a step rather than an 

end-point in the recovery process. Ideally, funds 
to implement strategic field studies and validate 

secondary model predictions should be com- 
mitted by the time a PVA workshop is held or 
a model is developed. If such an approach were 

implemented, it would result in the kinds of 

knowledge that would promote species recov- 
ery, improve our understanding of critical pop- 
ulation processes, and increase the predictive 
capabilities of future PVA models. 
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