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ARTICLE

ABSTRACT 
We sought to test a hypothesis that systemic blind spots in active learning are a barrier 
both for instructors—who cannot see what every student is actually thinking on each con-
cept in each class—and for students—who often cannot tell precisely whether their think-
ing is right or wrong, let alone exactly how to fix it. We tested a strategy for eliminating 
these blind spots by having students answer open-ended, conceptual problems using a 
Web-based platform, and measured the effects on student attrition, engagement, and per-
formance. In 4 years of testing both in class and using an online platform, this approach 
revealed (and provided specific resolution lessons for) more than 200 distinct conceptual 
errors, dramatically increased average student engagement, and reduced student attrition 
by approximately fourfold compared with the original lecture course format (down from 
48.3% to 11.4%), especially for women undergraduates (down from 73.1% to 7.4%). Median 
exam scores increased from 53% to 72–80%, and the bottom half of students boosted their 
scores to the range in which the top half had scored before the pedagogical switch. By 
contrast, in our control year with the same active-learning content (but without this “zero 
blind spots” approach), these gains were not observed.

INTRODUCTION
Increasing and diversifying the number of college graduates successfully completing 
their degrees in science, technology, engineering, and mathematics (STEM) is a 
national priority (President’s Council of Advisors on Science and Technology, 2012). 
This workforce challenge is relevant both within STEM majors such as computer 
science, in which women and minorities are underrepresented (National Research 
Council [NRC], 2011; National Academies of Sciences, Engineering, and Medicine, 
2016), and for “cross-training” between STEM fields (e.g., science majors need to 
learn computational skills in areas such as bioinformatics; Zatz, 2002; Ranganathan, 
2005; Donovan, 2008; Lewitter and Bourne, 2011). STEM education ideally needs to 
reach students both from diverse backgrounds and also across disciplinary boundaries 
(Schneider et al., 2010).

One major challenge to achieving this goal is the difficulty of teaching concep-
tual understanding and reasoning (as opposed to other skills such as memory and 
trained procedures; Mazur, 1997). Real-world problem solving requires students 
to do more than simply recapitulate exercises done in class. Instead, they must 
think for themselves about how to use the concepts correctly in novel situations. 
In real life, they will likely find themselves working on quite different applications 
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in which robust knowledge transfer (Halpern, 1998; van 
Gelder, 2005) is the key to success. Unfortunately, teaching 
students this skill set is easier said than done. Core concepts 
are often a critical barrier to entry for students (Loertscher 
et al., 2014), especially when they go outside a given stu-
dent’s field and “comfort zone” (e.g., when biology students 
in a bioinformatics course struggle with statistics concepts). 
These barriers can cause both student attrition (failure to 
complete a course) and poor conceptual understanding 
despite completion of a course. In particular, study after 
study has shown that conventional lecture courses typically 
leave students with serious misconceptions on about half the 
core concepts in a course (Hestenes et al., 1992; Crouch and 
Mazur, 2001; Smith et al., 2008; Shi et al., 2010).

Active learning has emerged as an important teaching 
approach that can address these barriers to student learning. It 
focuses on moving students from passively receiving and replicat-
ing instruction to actively using, testing, and formulating what 
they are learning for themselves (NRC, 2012; Freeman et al., 
2014). Shifting college teaching to this student-centered format 
can lead to large increases in student learning (Crouch and 
Mazur, 2001; Knight and Wood, 2005; Michael, 2006), although 
this is by no means an automatic recipe for success (Andrews 
et al., 2011). Many studies have reported that active-learning 
approaches boost student engagement, improve conceptual 
understanding, reduce the achievement gap for underrepre-
sented groups in STEM, and increase persistence in STEM majors 
(Walczyk and Ramsey, 2003; Deslauriers et al., 2011; Haak et al., 
2011; Gasiewski et al., 2012; Watkins and Mazur, 2013; Freeman 
et al., 2014). However, despite the evidence of the benefits of 
active learning, and national recommendations that it should be 
the norm in college classrooms (Kober, 2015), barriers persist to 
changing teaching practices and achieving large-scale improve-
ments in STEM education. For instance, many research-focused 
faculty cite having insufficient time, incentives, or support to 
engage in instructional development (Dionisio and Dahlquist, 
2008; Fairweather, 2008; Buttigieg, 2010; Austin, 2011; Hender-
son et al., 2011). Even motivated instructors who overcome these 
barriers and try to implement reforms often fail to sustain them 
over time (Ebert-May et al., 2011; Kober, 2015). It therefore may 
be useful to ask what makes it so hard for faculty to implement 
active learning successfully and sustainably.

One possible answer is that active learning is in a sense an 
empty container, in that it does not become truly effective 
unless filled by the instructor with exercises that zero in on pre-
cisely the conceptual obstacles that students need to overcome 
(Andrews et al., 2011). We will refer to such obstacles generi-
cally as misconceptions, or scientifically inaccurate ideas about 
a concept (Andrews et al., 2012). As this study will demon-
strate, we can detect student misconceptions as any erroneous 
application of a concept during problem solving. Many studies 
have shown that the average student has misconceptions on 
about half the concepts in a STEM course, and different stu-
dents may have different misconceptions on the same concept 
(Hestenes et al., 1992; Crouch and Mazur, 2001). Figuring out 
how to identify these conceptual obstacles, let alone enabling 
students to overcome them, is a difficult empirical problem that 
many instructors are not trained to address, nor are they neces-
sarily equipped technologically to do so for every individual 
student in a large class.

In practice, both instructors and students suffer serious blind 
spots, which we will define as anything that blocks an individual 
from identifying a necessary next step for successful learning. For 
example, instructors typically cannot see what every student is 
actually thinking on each concept in each class, and hence may 
not identify specific misconceptions that block many students. 
Such blind spots make it hard for instructors to know precisely 
what instructional materials students actually need and place an 
excessive burden on instructor experience, insight, and trial and 
error. Similarly, students often cannot tell whether their thinking 
is right or wrong, let alone exactly how to fix it. Whereas the 
same “right answer” can be broadcast to every student (one-way 
communication), different students will have different miscon-
ceptions to identify and address, and that requires two-way 
communication (Smith et al., 2009). Unless a course provides a 
reliable way for all students to accomplish that while they are still 
working on solving the problem, student engagement is not 
merely blocked but drained of incentive—because it does not 
provide a pathway forward for the student (Posner et al., 1982; 
Leonard et al., 2014). Thus, blind spots can impede student 
engagement, by blocking the two-way communication necessary 
for figuring out what the individual student needs to do next.

How significant an obstacle do such blind spots pose to 
instructors? The well-established field of concept inventories 
provides several insights. Concept inventories are multi-
ple-choice tests for assessing conceptual understanding of a 
specific topic and are widely considered the “gold standard” for 
measuring conceptual learning gains (Garvin-Doxas et al., 
2007; D’Avanzo, 2008; Smith and Tanner, 2010; Campbell and 
Nehm, 2013). When developing these assessment instruments, 
researchers do seek to identify common student misconceptions 
within a topic, because these are essential for designing plausi-
ble wrong answers in multiple-choice questions. Unfortunately, 
this adds greatly to the cost and effort of developing a concept 
inventory for a given topic, commonly a multiyear and poten-
tially expensive process (D’Avanzo, 2008; Adams and Wieman, 
2011). This highlights several problems. First, such an effort is 
beyond the resources of a typical instructor seeking to adopt 
active learning. Second, the formulation of concept inventories 
as multiple-choice questions is not designed to discover novel 
misconceptions, but only to survey known misconceptions. 
Third, if no concept inventory exists for a topic, how is an 
instructor supposed to discover, de novo, the specific miscon-
ceptions that block student learning?

These considerations suggest that instructors using active 
learning need efficient and scalable ways of solving blind spots 
in their courses, and that students’ wrong answers may provide 
a more important learning opportunity than their right 
answers—because wrong answers expose important student 
misconceptions that instructors must address (NRC, 2005; 
Klymkowsky and Garvin-Doxas, 2008; Ambrose et al., 2010). 
We have sought to test these ideas by implementing a data-
driven, Web-based error-discovery learning cycle both in class 
and online (Courselets.org, which is a free, open-source plat-
form for STEM instructors to share and reuse active-learning 
exercises), consisting of the following stages (Figure 1; Supple-
mental Video):

Stage 1. Real-world “target problems” (instructor asks 
question): To efficiently identify misconceptions with the 
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FIGURE 1.  Stages of the error-discovery learning process. Students 
answer challenge problems by writing text on their laptops or 
smartphones and then briefly discuss their answers in pairs, before 
assessing their individual answers against the correct answer and 
against known conceptual errors that have been previously 
observed on that question (see the text for more details). Optional 
stages that can be performed outside class (online) are highlighted 
in yellow.

biggest impact on real-world performance, we followed two 
“sampling principles” for selecting problems to use as 
active-learning exercises. First, the instructor sampled real-
world problems that were representative of the course’s con-
ceptual learning objectives (“after this course, students 
should be able to solve target problem X”). Second, to mea-
sure students’ ability to transfer their learning to novel situa-
tions (as in real-world problem solving), target problems 
had to be problem types or situations not previously covered 
in the course. Students should not be able to solve a target 
problem via a previously trained procedure, but only by orig-
inal thinking about the concept’s implications in a novel 
situation.
Stage 2. Open-response concept testing (ORCT; students 
submit answer): Instead of giving students multiple-choice 
answers to choose from, the instructor challenged each stu-
dent to articulate his or her own solution to the target prob-
lem and to briefly explain the thinking that led to this 
answer. Students wrote their answers in class on their lap-
tops or smartphones, and the instructor was able to see stu-
dent responses in real time and later mine them from a 
database in a variety of ways. By running an ORCT exercise 
(∼10 minutes) immediately after introducing a new concept, 
the instructor could see what every student was actually 
thinking about how to use each concept.
Stages 3–5. Self-assessment and peer instruction (stu-
dents discuss in pairs; instructor discusses answer; stu-
dents self-assess): Students also performed a number of 
self-assessment and peer instruction steps comparing their 

own thinking against that of their peers and the expert 
answer. This design gives students constant exercise and 
feedback on the metacognitive skills of articulating, reflect-
ing, comparing, and critiquing conceptual arguments, high-
lighting the importance of these skills for real-world problem 
solving. Students directly experience that transferring a con-
cept to solve real-world problems always requires such 
“reflective thinking” (NRC, 2000).
Stage 6. Error identification (known error?): Students 
who made errors were automatically asked by the system 
whether their errors matched any of the known misconcep-
tions in the database, with the aim of helping each student 
identify his or her specific misconception(s) within 1 minute 
of his or her initial answer. The known misconceptions for a 
given target problem are presented to students as first-per-
son, single-sentence statements so they can easily recognize 
whether that was what they were thinking (e.g., “I thought 
that p-values can be multiplied if they are independent”). In 
Courselets, these data give the instructor an immediate pri-
oritization of the specific misconceptions that blocked the 
largest numbers of students.
Stage 7. Error discovery (instructor categorizes error): 
Random samples of “novel” student errors (i.e., student 
self-assessments that reported their answers as both incor-
rect and not fitting any existing misconception) were peri-
odically analyzed by the instructor to discover new 
misconceptions, which were categorized and added to the 
database. We recommend analyzing an initial sample as 
soon as 10% of students have answered a question, because 
this is sufficient to identify four to five distinct misconcep-
tions covering on average 80–90% of all student errors (see 
Supplemental Figure 1). When an instructor submits four to 
five such error models to Courselets within 2 hours of the 
first 10% of students completing the question, the majority 
of these students’ misconceptions are directly addressed in 
that rapid timeframe, and all subsequent students answer-
ing the question will receive these error identifications 
immediately (as soon as they submit their answers). While 
such “immediate resolution” is the ideal, and is both 
practical and scalable, a slower error-discovery process (2–5 
days) can still produce large benefits (e.g., see the data in 
this study for 2011).
Stage 8. Error resolution: For each such error, the system 
immediately directed the student to specific “error-resolu-
tion” lessons showing precisely why it is wrong, and how to 
address it, as exercises with multiple forms of evidence lead 
students to test and reorganize their thinking (Posner et al., 
1982; Leonard et al., 2014). The system then assessed 
whether further help was needed. In Courselets, these data 
give the instructor a prioritization of the specific misconcep-
tions that still confuse the most students—that is, where 
students need additional error-resolution lessons to help 
them overcome a misconception.

We refer to this cycle as error-discovery learning (EDL) 
because it focuses the bulk of each student’s learning effort on 
discovering and resolving his or her specific conceptual errors 
(Figure 1). Note that, at present, Courselets enables students to 
do all EDL stages both online or in class, except for stage 3 (in 
class only) and stages 7 and 8 (online only).
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For this study, we evaluated the impact of EDL on student 
learning and retention in an elective, upper-division bioinfor-
matics course over a period of 4 years (2011–2015) compared 
with its previous baseline, in which the course was taught with-
out EDL (2003–2009). This is a course on probabilistic model-
ing theory and algorithms with bioinformatics applications. It is 
offered to both undergraduate and graduate students, with the 
latter completing more challenging assignments and exams. For 
historical reasons, this course is offered through several depart-
ments (under multiple “cross-listings”; see Supplemental Table 
1). The course has moderate enrollment, averaging 66 students 
during 2011–2015, split approximately equally into undergrad-
uate and graduate students.

As summarized in Table 1, the course was taught using con-
ventional lectures from 2001 to 2008, and then switched to a 
Socratic format (Prince and Felder, 2006) by asking students 
questions, first verbally (2009) and later (2011–2015) by hav-
ing students type text answers explaining their thinking through 
their laptops or smartphones. The same instructor (C.J.L.) 
taught the course over its entire history. Overall, from 2001 to 
2015, the course became more rigorous, mathematical, and 
computationally challenging. During the period most relevant to 
this study (2008–2015), however, the course content remained 
constant (with the exception that one subtopic was added), and 
the cognitive demand of exams was consistent from year to year 
(for undergraduates, the main focus of this study).

METHODS
This study used data from more than 10 years of the bioinfor-
matics course to examine the effectiveness of EDL on student 
academic performance, engagement, and attrition. This course 
is cross-listed in several departments (chemistry, human genet-
ics, bioinformatics, and computer science; see Supplemental 
Table 1) and enrollment is available for both undergraduate 
and graduate students. Beginning in 2011, separate assign-
ments and exams were given to the two groups. Data sources 

used in this study include student course records, the registrar’s 
database, instructor communications and records, classroom 
observations, recorded lectures, and course exams. Throughout 
2008–2015, the class was recorded on video, all course material 
changes were tracked by a distributed version-control system 
(Git), and student EDL response data were stored in databases 
(Sqlite3 2011-3; PostgreSQL 2015). All human subject proto-
cols in this study were reviewed and approved by the University 
of California, Los Angeles (UCLA), Institutional Review Board 
(IRB #14-001129).

Classroom Activities Analysis
The instructor (C.J.L.) provided lecture recordings for five years: 
2008, 2009, 2011, 2012, and 2013. The Classroom Observation 
Protocol for Undergraduate STEM (COPUS) developed by Smith 
et al. (2013) was used to document time use in the classroom. 
The original protocol was designed to document student and 
instructor activities such as lecturing, listening, asking and 
answering questions, group activities, and the use of student 
response systems (e.g., clickers) with follow-up discussion (Lund 
et al., 2015). The protocol was modified to include EDL activities 
in place of clicker activities. Recorded lectures consisted of the 
instructor’s voice, PowerPoint slides, digital images of overhead 
transparencies, and computer screen captures, as opposed to a 
full view of the classroom, and therefore the protocol was modi-
fied to focus on only those instructor activities that could be 
accurately characterized by COPUS within the limits imposed by 
the audio and video recordings. Interrater reliability (Cohen’s 
kappa = 0.82) was measured using lecture recordings from 2013.

For establishment of a representative sample of course activ-
ities before, during, and after the transition to EDL (Landis and 
Koch, 1977; Smith et al., 2013), three recorded class sessions 
corresponding to weeks 3, 6, and 10 from 2008, 2009, 2011, 
and 2013 were each coded by three independent observers 
(B.T.-L., C.S., M.S.). Descriptive statistics were used to illustrate 
the range of activities taking place at 2-minute intervals during 

TABLE 1.  History of significant changes in course format

Year Major changes in course format

Conventional lecture (pre-EDL)

2001 Offered as standard lecture course (Chem 160/260)

2007 Cross-listed in computer science (CS 121/221); statistics and programming prerequisites 
added

Transition to active learning, stage 1 (pre-EDL)

2009 Switched pedagogy to Socratic format, posing questions and soliciting student answers 
verbally; switched from “grading on the curve” to grading on the historical curve (see 
Discussion); increased class time from 2 to 4 hours per week

2010 Course not offered

Transition to active learning, stage 2 (EDL)

2011 Switched to using in-class question system (Socraticqs) that enabled each student to 
answer target problems by typing text on a laptop or smartphone; began clustering 
distinct conceptual errors made by students for each question

2012 Identification of conceptual errors incorporated into EDL self-assessment process
2014 Course not offered

Transition to active learning, stage 3 (EDL)

2015 Switched course to online e-learning platform (Courselets.org)
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each class session. During Fall term 2015, the COPUS protocol 
was applied to live observations of classroom sessions. For con-
sistency, observations were conducted during weeks 3, 6, and 10 
for a total of six observations by three independent observers.

Attrition Rate Analysis
Course attrition rates, defined as the proportion of students that 
either drop or withdraw from a course or who do not earn a 
passing grade, were measured from 2003 to 2015 using course 
data from the registrar and the instructor (C.J.L.). Final enroll-
ments for each year from 2003 to 2015 were obtained from the 
registrar. Week 1 enrollment data were drawn from a variety 
of sources, because the registrar did not begin retaining week 1 
enrollments until 2010. For 2003, the data were derived from 
the instructor’s printed week 1 roster. From 2004 to 2009, data 
were obtained from email records of week 1 enrollment counts, 
and permission to enroll (PTE) requests from students seeking 
to enroll in the course. Attrition rates obtained from PTE 
requests track with attrition rates from complete week 1 rosters 
and/or registrar data for years 2003 and 2011–2015, thus vali-
dating PTE requests as a measure of attrition rates. Week 1 
enrollments from 2011 to 2015 were obtained directly from the 
registrar. Fisher’s exact test is the standard statistical test for 
whether the frequency of a Boolean event (e.g., drop vs. com-
plete a course) is the same in two samples. To test the null 
hypothesis of no change in attrition rate, we used the one-tailed 
Fisher’s exact test, computed from the hypergeometric distribu-
tion using the scipy.stats software package. As a validation of 
our week 1–10 attrition results, we also obtained registrar 
enrollment data from the end of week 3 for the entire period 
(2003–2015). These data independently demonstrate the sta-
tistical significance of attrition reductions during this period 
(see Tables 2 and 3).

Registrar data were used to obtain student demographic 
information, including race/ethnicity, gender, Scholastic Apti-
tude Test (SAT) scores, and high school grade point average to 
consider any differences in enrollment patterns attributed to 
particular background characteristics. A subset of graduate 

students were excluded from the attrition rate analysis if Bioin-
formatics 260A was a required course for their degree pro-
grams, because these students were not allowed to drop the 
course. Data for 2010 and 2014 were not included, because the 
instructor was on sabbatical during those two terms. Descrip-
tive statistics were used to examine the percentage of students 
who dropped the course during the first 3 weeks of the quarter 
as well as the overall course completion rate.

Learning Outcomes Assessment
Students’ academic performance was examined before, during, 
and after the implementation of EDL. Throughout 2008–2015, 
the exam questions followed a consistent open-response format 
(like that of in-class ORCT questions). Midterm and final exam 
scores were collected from the instructor for available years 
between 2008 and 2015, and mean exam scores were calcu-
lated to look for changes in student performance across years. 
Graduate students enrolled in Bioinformatics 260A were 
excluded from this analysis. To check for differences in aca-
demic experiences before college, we used one-way analysis of 
variance with Bonferroni post hoc criterion for significance 
(Mitchell and Jolley, 2012), and no significant differences were 
found in SAT math and verbal scores for undergraduate stu-
dents from 2008 to 2015.

To account for potential differences in rigor associated with 
exams, an external content evaluator, who had an advanced 
degree in computer science and had previously served as a 
graduate student teaching assistant for the bioinformatics 
course, categorized each exam question using Bloom’s taxon-
omy (Anderson et al., 2001; Semsar and Casagrand, 2017). 
This cognitive framework is composed of six levels of concep-
tual knowledge, with each level corresponding to various intel-
lectual operations that a student can be asked to perform. The 
three lower levels (remember, understand, and apply) are 
grouped together as lower-order cognitive skills (LOCS) and 
the three higher levels (analyze, evaluate, and create) as 
higher-order cognitive skills (HOCS) (Zoller, 1993; Crowe et al., 
2008). We classified each exam question as demanding LOCS 

TABLE 2.  Statistical significance of attrition results for undergraduate versus graduate students

Comparison group Attrition (p)

1. Undergraduate, all weeks (1−10): 2003−2009 (pre-EDL) 48.3%
2011−2015 (EDL) 11.4% (2.8 × 10−11)
2011 (EDL) 0% (5.9 × 10−4)
2012 (EDL) 5.3% (1.9 × 10−7)
2013 (EDL) 14.9% (2.6 × 10−5)
2015 (EDL) 19.2% (4.6 × 10−3)

2. Undergraduate, weeks 4−10: 2003−2009 (pre-EDL) 20.3%
2011−2015 (EDL) 7.0% (2.1 × 10−3)

3. Graduate, all weeks (1−10): 2003−2009 (pre-EDL) 45.2%
2012−2015 (EDL) 28.2% (0.026)

4. Undergraduate, weeks 4−10: 2006−2009 (pre-EDL) 21.6%
2011−2015 (EDL) 7.0% (9.0 × 10−3)

5. Undergraduate + graduate, all weeks (1−10): 2008−2009 (pre-EDL) 50.0%
2011−2015 (EDL) 17.5% (1.9 × 10−3)

6. Undergraduate, weeks 4−10: 2008−2009 (pre-EDL) 15.6%
2011−2015 (EDL) 7.0% (0.125)
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versus HOCS following the framework described by Lemons 
and Lemons (2013), which also considers three additional 
dimensions of rigor: 1) the length of time required to complete 
a question (estimated to be at least twice as long as the content 
expert); 2) the degree of prior experience students had practic-
ing the skills or applying the concepts required to solve similar 
types of problems (evidenced by a review of lecture materials 
and other class assignments preceding the exams); and 3) the 
content expert’s rating of question difficulty, here in terms of 
whether it required students to perform genuine knowledge 
transfer (e.g., use a concept in a new context), versus using a 
concept in a context similar to their prior experience in the 
course, versus simple recall. This delineation was especially 
helpful in consistently differentiating questions spanning the 
two midlevels of Bloom’s taxonomy (apply and analyze), which 
represent the transition in the framework from lower- to high-
er-order intellectual operations. To measure cognitive demands 
of exam questions by year, we calculated the percentage of 
HOCS questions by combining tallies from a midterm and final 
exam across the 6-year study period (2008–2015). To validate 
this metric of exam rigor, we compared it with the standard 
difficulty index (P, percentage of students who answered the 
question correctly; Wood, 1960) on exam data from 2013, the 
only year for which we had exam scores broken down by indi-
vidual question part. We found that increasing cognitive rigor 
(%HOCS) strongly correlates with decreasing P index value, 
that is, fewer students answer correctly (Pearson correlation 
coefficient of −0.619).

RESULTS
Boosting Student Engagement
The course first switched away from a conventional lecture for-
mat in 2009, with the instructor posing questions and calling 
on individual students to answer verbally. Basic measures of 
student engagement in class increased considerably: COPUS 

scoring of classroom video recordings (see Methods) showed 
that the number of times students volunteered to answer ques-
tions increased from 0.2 per class (2008) to 21.3 per class 
(2009), and the number of questions that students asked the 
instructor increased from 4.0 per class (2008) to 11.0 per class 
(2009). However, no improvement in learning outcomes was 
apparent: mean undergraduate exam scores were 56.5% in 
2008 and 54.1% in 2009. In 2009 it appeared that only a small 
number of students, mostly graduate students, were answering 
most of the questions, with most undergraduates in the class 
answering few if any. Thus, the increase in apparent engage-
ment seems mainly to have increased the gap between the most 
engaged students versus the rest of the class.

A second stage of the transition to active learning began in 
2011, using a Web-based system in which all students were 
directed to individually answer each question in class by typing 
their answers in a Web browser on their laptops or smartphones. 
To do this, we developed an experimental in-class question sys-
tem Web server (Socraticqs) that allowed us to rapidly proto-
type and test open-response concept-testing protocols. That is, 
instead of posing closed-ended, multiple-choice questions, the 
instructor asked open-ended questions designed to elicit stu-
dent explanations of their thinking in their own words. In addi-
tion to training students to articulate, compare, and evaluate 
conceptual arguments, this process was intended to discover 
novel conceptual errors directly from student response data and 
then to provide each student with “error-resolution lessons” 
addressing their individual misconceptions via exercises with 
multiple forms of evidence. In 2011, the basic EDL cycle was 
implemented (Figure 1), with error-resolution lessons being 
presented by the instructor as slides in the next class session. In 
2012, the Web-based Socraticqs system was extended to auto-
matically ask students whether they made any of the previously 
identified conceptual errors, and error-resolution lessons were 
presented as online videos for students to view outside class 

TABLE 3.  Statistical significance of attrition results for female versus male students

Comparison group Attrition (p)

1. Undergraduate women, all weeks (1−10): 2003 (pre-EDL) 73.1%
2011−2015 (EDL) 7.4% (7.5 × 10−7)
2011 (EDL) 0% (0.033)
2012 (EDL) 0% (4.7 × 10−3)
2013 (EDL) 14.3% (4.8 × 10−4)
2015 (EDL) 0% (4.7 × 10−3)

2. Undergraduate men, all weeks (1−10): 2003 (pre-EDL) 38.6%
2011−2015 (EDL) 12.5% (6.2 × 10−4)

3. Graduate women, all weeks (1−10): 2003 (pre-EDL) 66.7%
2011−2015 (EDL) 20.0% (0.032)

4. Undergraduate + graduate women, weeks 4−10: 2003−2009 (pre-EDL) 32.0%
2011−2015 (EDL) 2.2% (9.0 × 10−5)

5. Undergraduate + graduate men, weeks 4−10: 2003−2009 (pre-EDL) 18.9%
2011−2015 (EDL) 10.1% (0.022)

6. Undergraduate men, weeks 4−10: 2003−2009 (pre-EDL) 20.3%
2011−2015 (EDL) 7.0% (2.1 × 10−3)

7. Undergraduate + graduate women, weeks 4−10: 2008−2009 (pre-EDL) 40.0%
2011−2015 (EDL) 2.2% (0.023)
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FIGURE 2.  Increasing student engagement in answering target 
problems in class. Cumulative distribution functions for the 
number of questions answered by each student in class, before 
(2008, 2009) and after (2011–2015) the switch to EDL, for 
undergraduates (UG, solid lines) and graduate students (G, dashed 
lines). Thus, a point (x,y) on the graph for a given year means that y 
percent of students answered x questions (or fewer) that year. For 
2008 and 2009, in the absence of individual counts for each 
student, we simply plotted the mean number of questions 
answered per student.

FIGURE 3.  COPUS analysis of class-time usage. The total fraction 
of instructor time spent on lecturing, answering questions, and so 
on, as defined specifically by COPUS before (2008, 2009) and after 
(2011, 2013, 2015) the switch to EDL.

(940 views total). For 2011–2013, students could access the 
EDL system only in the classroom as part of the instructor-led 
class discussion. Hence, during those years, all EDL stages were 
done in the classroom. In 2015, Socraticqs was replaced by a 
fully online platform (Courselets.org) that enabled students to 
do EDL exercises either strictly in class, or in class with online 
follow-ups (e.g., error-resolution lessons), or entirely online.

This second stage produced even bigger increases in student 
engagement (Figure 2). The mean number of target problems 
answered by each student during class increased from 14 in 
2009 (including graduate students; the mean for undergradu-
ates was likely much less) to more than 30 for undergraduates in 
2011, and approximately 60 for undergraduates in 2015 (a time 
effort equivalent to approximately 40% of the total course 
hours). Perhaps more importantly, in 2011–2015, this increase 
in class participation involved essentially all of the students. For 
instance, in the first year of EDL (2011), 90% of undergraduates 
answered more than both the estimated median in 2009 for 
undergraduate plus graduate students (seven target problems) 
and the mean in 2009 (14 target problems). This number 
approximately doubled over the study period; by 2015, 90% of 
undergraduates were answering 30 ORCT questions or more per 
student. It is useful to compare the number of questions 
answered by the least engaged students versus most engaged 
students. In 2009, it appeared that about a quarter of students 
answered no questions at all, while at the opposite end of the 
engagement spectrum, another quarter of students likely 
answered more than 20 questions per student. During the EDL 
period, this disparity diminished markedly. In 2011, the least 
engaged quartile answered 16 questions per student, while the 
most engaged quartile answered 53 questions per student, a 
ratio of 3.3. In subsequent EDL years, the disparity ratio was 

even lower: a ratio of 2.0 in 2012, 2.8 in 2013, and 2.5 in 2015. 
A second measure of disparity can be obtained by comparing the 
number of questions that each undergrad in the class answered 
and the number that each graduate student answered. In 2009 
and prior years, graduate students dominated the answering of 
questions in class, and undergraduates answered few questions. 
In 2011, that disparity greatly diminished, and largely disap-
peared in 2012–2015, with undergraduates each answering as 
many questions as the graduate students (see Figure 2).

We also observed an increase in the number of questions 
that students asked the instructor during class, from an average 
of 4.0 per class in 2008 and 11.0 per class in 2009, to 13.7 per 
class in 2011–2015. To obtain a complete picture of class time 
usage (Figure 3), we performed COPUS coding (Smith et al., 
2013) of classes as a retrospective study from 2008 to 2013 
(using video recordings) and a live classroom observation study 
in 2015. Overall, these data are consistent with a transition 
from a conventional lecture format to active learning. Specifi-
cally, whereas lecturing constituted 85% of class time in 2008, 
it dropped to 60% in 2009, and to around 33% of class time in 
2011–2015.

Impact on Learning Outcomes
To assess EDL’s impact on student performance, we compared 
undergraduate exam score trends with an external evaluator’s 
rating of the cognitive rigor of exams (Figure 4). Mean student 
scores increased markedly after the introduction of EDL (2011–
2015), even though exam cognitive rigor remained as high or 
higher than pre-EDL (2008–2009). Throughout 2008–2015, 
the instructor tried to maintain the same level of cognitive rigor 
on undergraduate exams to allow a direct comparison of exam 
scores as a measure of student learning across this time period. 
To directly measure cognitive rigor for each year’s exams, an 
external evaluator used Bloom’s taxonomy to classify all exam 
questions (Anderson et al., 2001; Lemons and Lemons, 2013; 
Semsar and Casagrand, 2017) as requiring either LOCS or 
HOCS (Zoller, 1993; Crowe et al., 2008). Combining tallies 
from the midterm and final exam yielded the percentage of 
HOCS questions for each year in the study period (2008–2015; 
Figure 4). The percentage classified as HOCS gradually 
increased from 54–57% of questions pre-EDL (2008–2009) to 
53–74% of questions during EDL (2011–2012 and 2015). 
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FIGURE 4.  Undergraduate exam cognitive rigor versus student 
performance. Independent assessment of exam cognitive rigor 
(%HOCS, rated as the percent of questions requiring HOCS in 
Bloom’s taxonomy) before (2008, 2009) and after (2011–2015) the 
switch to EDL, versus the mean undergraduate exam score each 
year.

FIGURE 5.  Undergraduate exam scores distributions. The 
percentage of students scoring above a given exam score before 
(2008, 2009) and after (2011–2015) the switch to EDL. Thus, a point 
(x,y) on the graph for a given year means that y percent of students 
obtained an exam score of x or higher that year.

FIGURE 6.  Rates of student attrition from the course. Total rates of 
attrition before (2003–2009) and after (2011–2015) the switch to 
EDL for undergraduates (A) and graduate students (B). Note that 
the large error bars in some years (e.g., undergraduates in 
2008–2009) are due to having attrition rate data from only a small 
sample of students in those years (PTE request data, etc.; see 
Methods).

Together, these data show that the level of cognitive rigor of the 
undergraduate exams was the same (or greater) during the EDL 
period compared with the pre-EDL period, providing a conser-
vative basis for interpreting any observed increases in exam 
performance as indicative of actual improvement in student 
learning outcomes. We wish to emphasize that we are by no 
means suggesting that EDL is the sole factor influencing these 
exam scores. For example, during the years 2011–2015 (all of 
which used EDL), increasing cognitive rigor (%HOCS) appears 
to correlate with decreasing exam scores in Figure 4.

Similar to the engagement data, the undergraduate exam 
score distributions for each year within the study period of 
2008–2015 (Figure 5) seem to show an even greater benefit of 

EDL for lower-scoring students than for top-scoring students. 
For example, the top exam score per year increased from around 
83% (pre-EDL) to around 90% (EDL), a ratio increase of 1.08. 
By contrast, the 10th-highest exam score per year increased 
from around 47% (pre-EDL) to around 80% in 2012–2015 
(EDL), a ratio increase of 1.70. Similarly, the bottom half of the 
exam scores per year increased from a mean of 42% (pre-EDL) 
to a mean of 65% (EDL), a ratio increase of 1.55. Roughly 
speaking, under EDL, the bottom half of the exam scores per 
year moved up into the range of the top half of the exam scores 
per year pre-EDL.

Impact on Student Attrition
Importantly, this shift in student performance on exams 
reflected not just an improvement in the learning outcomes of a 
fixed number of students, but also the retention of many stu-
dents who previously would have dropped out of the course. 
From 2001 to 2009, the course had consistently experienced a 
dropout rate of approximately 50% (typically during the first 
2 weeks, when the equations started). As shown in Figure 6, the 
attrition rate began to decrease, first among undergraduates in 
2011. During the 4 years of EDL data collection (2011–2015), 
the overall undergraduate attrition rate dropped to 11.4% 
(2011–2015), a statistically significant 4.2-fold reduction (p = 
2.8 × 10−11). We saw no evidence of reduced attrition in the 
first, non-EDL stage (2009) of the switch to active learning. The 
attrition rate in every year post-EDL (2011, 2012, 2013, 2015) 
was much lower than that in every year pre-EDL (2003, 2004, 



CBE—Life Sciences Education  •  17:ar40, Fall 2018	 17:ar40, 9

Error-Discovery Learning Boosts Outcomes

FIGURE 7.  Undergraduate evaluations of course workload. The 
mean and SD (error bars) of student-reported course workload 
before (2004–2006) and after (2011–2015) the switch to EDL.

FIGURE 8.  Increasing student engagement in self-assessment and 
detecting conceptual errors. The number of in-class questions for 
which students completed key steps such as independently 
formulating and articulating their own answers (problems 
answered, green line), assessing the correctness of their answers 
(self-assessments, blue line), and identifying conceptual errors 
(errors detected, red line), both before (2008, 2009) and after 
(2011–2015) the switch to EDL.

2005, 2006, 2008, 2009), and the reduction was statistically 
significant for each post-EDL year (Table 2). The reduction in 
attrition appeared to be greater for undergraduate women (9.9-
fold, from 73.1% pre-EDL to 7.4% post-EDL, p = 7.5 × 10−7; see 
Table 3) than for undergraduate men (3.1-fold, from 38.6% 
pre-EDL to 12.5% post-EDL, p = 6.2 × 10−4).

We observed a similar reduction in the attrition rate for 
graduate students, but it did not coincide with the transitional 
year when EDL was first introduced into the course (2011), 
instead becoming evident the following year (2012). The attri-
tion rate in each post-EDL year (2012, 2013, 2015) was lower 
than during five out of six of the pre-EDL years. And the overall 
reduction of 1.6-fold (28.2% post-EDL vs. 45.2% pre-EDL) was 
statistically significant (p = 0.0255). Again the reduction in the 
attrition rate for female graduate students (3.3-fold, from 67% 
pre-EDL to 20% post-EDL, p = 0.0322) appeared to be stronger 
than for male graduate students (1.23-fold, from 37.5% pre-
EDL to 30.4% post-EDL, p = 0.303). Although the reduction in 
attrition was observed for both female undergraduate students 
and female graduate students, this trend cannot be explained 
by increasing representation of women in the course. The frac-
tion of female students in initial course enrollment data was 
actually slightly lower post-EDL (22%) than pre-EDL (29%).

Assessing Internal Factors Driving Performance
These shifts in student performance and persistence raise 
important questions about what internal factors might have 
contributed to these outcomes. While many distinct (but not 
necessarily incompatible) explanations are possible, two basic 
hypotheses seem accessible to assessment within our data: 
1) increased engagement might simply drive students to work 
harder in the EDL course than in previous years (pre-EDL); 
2) EDL may help students learn more effectively by enabling 
them to quickly identify misconceptions that previously blocked 
them from using the concepts correctly (NRC, 2005; Ambrose 
et al., 2010). (We will discuss other possible explanations in the 
Discussion.)

To assess the impact of EDL on overall student effort, we 
compared student self-reports of course workload from anony-
mous course evaluations from 2004–2015. Although adequate 
data are not available for every year (due to changes in how the 
institution collected course evaluations during this period; see 
Methods), they do provide one indicator of whether course 
workload changed significantly with the introduction of EDL 
(Figure 7). The EDL period did not show a trend of increased 
workload; instead, the workload seemed to fluctuate from year 
to year within approximately the same range as in the pre-EDL 
years. This result is particularly striking in view of the 10-fold 
increase in student activity in the classroom (answering target 
problems; see Figure 2). Students apparently did not perceive 
EDL as adding substantially to their workload, perhaps because 
it takes place during class time and thus may not increase the 
total amount of time they spend working on the course. Because 
these data measure perceived workload only subjectively, 
strictly speaking, they cannot verify that students are not in fact 
putting more hours into the course. However, they provide no 
support for that hypothesis.

Next, we assessed to what degree EDL helped individual 
students identify and address misconceptions that were block-
ing them from solving problems. We assessed three separate 

elements of the EDL process: student errors in problem solving; 
discovery of specific misconceptions from student response 
data; and student resolution of misconceptions. Our data for 
2011–2015 show that, each year, the typical student revealed 
15–20 serious conceptual errors on the ORCT problems (Figure 
8) that blocked them from solving problems correctly about 
two-thirds of the time (i.e., the fraction of their self-assessments 
that reported errors). By contrast, in the absence of EDL (2009 
and before), these misconceptions simply were not detected in 
the course.

The high level of student participation in EDL, and technol-
ogy for automatic collection, viewing, and mining of student 
response data, enabled the instructor to easily see what every 
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student was actually thinking on each single concept. These 
data rapidly revealed many misconceptions in students’ think-
ing about basic concepts not previously known to the instructor, 
totaling 105 distinct types of misconceptions in the first year 
(2011). In subsequent years, these specific misconceptions 
recurred frequently, and the number of new misconceptions 
identified in each year declined: 80 in 2012, 17 in 2013, and 
20 in 2015. The instructor provided students with detailed 
explanations of each conceptual error they made, why it was 
wrong, and how to address it. These lessons were initially pro-
vided in class (2011), later through online videos (2012–2013), 
and most recently by the online e-learning platform (2015; 
Courselets.org). Providing ORCT exercises online (outside the 
classroom) appeared to engage students equally well. In 2015, 
each student initiated an average of 27 online ORCT exercises, 
of which they completed the self-evaluation and error-resolu-
tion steps in 95% of the online exercises they initiated.

To evaluate the reliability of student self-assessments, the 
instructor independently identified misconceptions in a random 
sample of 20 student self-assessed incorrect responses from 
2013. We then compared the student’s self-reported misconcep-
tion identifications with the instructor’s calls. In 19/20 cases, 
the students’ self-identified misconceptions were validated. 
In one case, the instructor classified the student answer as 
“correct” (i.e., no misconception found). This suggests that stu-
dents’ classifications of their misconceptions on Courselets is 
reasonably accurate (∼95%).

Finally, in 2015, we measured the extent to which each 
occurrence of a student error was resolved by these specific 
materials and the overall EDL process. We found that, in fully 
90% of cases, students reported that these materials resolved 
their specific confusion and that they needed no further assis-
tance. While these self-reported data give only a subjective 
measure, the students’ claim that EDL is reducing their concep-
tual errors is validated by the objective exam score data, which 
show an approximately twofold reduction in their error rate 
(from losing 47% of exam points due to errors 2008–2009, to 
losing only around 25% of exam points in 2011–2015; see 
Figure 4). Overall, these results indicate that EDL helped stu-
dents learn the concepts more effectively by addressing miscon-
ceptions that they previously might not have even identified.

DISCUSSION
These data appear to support the hypothesis that undiagnosed 
conceptual errors are a key factor in STEM education, in that 
direct intervention to identify and resolve each individual stu-
dent’s conceptual errors reduced attrition and increased exam 
scores in all 4 years of EDL instruction. Particularly suggestive 
in this connection are the results from 2009, when the course 
was first converted to a Socratic format, that is, teaching by 
posing challenge questions, which students answered verbally, 
without the EDL system. On the one hand, the 2009 COPUS 
class-time usage data and basic event counts (e.g., an average 
of 32 student questions and answers per class, filling 40% of 
class time) show a transformation to a more active, student-cen-
tered format. On the other hand, the 2009 exam scores and 
attrition rates show no resulting benefit. So why did the Socra-
tic method yield major benefits in 2011–2015 but not in 2009?

The main difference when comparing 2009 with subsequent 
EDL years (2011–2015) is the level of student engagement and 

the resulting systematic identification of individual students’ 
misconceptions. In 2009, a typical student only answered three 
in-class questions in the whole course, whereas in 2011–2015, 
this number increased to 30–60 questions per student. Three 
target problems are far too few to identify the number of con-
ceptual errors each student needs to address (an average of 20 
per student; see Figure 8). Solving this blind spot requires get-
ting all students to answer every target problem, and that is 
what the EDL process was largely able to achieve every year.

Indeed, one could say that the abstract goal of “solving blind 
spots” must always translate in practice to boosting student 
engagement. After all, the instructor cannot gain insight into 
how each student thinks about a concept without getting that 
student to use and articulate the concept. Equally well, the stu-
dent cannot fix a misconception without first engaging in a 
target problem-solving process that clearly exposes the miscon-
ception. Such exposure, in turn, leads students to practice 
metacognitive skills such as comparing, critiquing, and reflect-
ing on their own cognitive processes. In this way, students can 
genuinely change their conceptual thinking, because they are 
genuinely engaged (Posner et al., 1982; NRC, 2000; Leonard 
et al., 2014).

A second crucial factor is the immediacy with which miscon-
ceptions are identified and resolved, ideally while the students 
are still trying to figure out how to solve the problem, within 
60 seconds of their initial attempt. In our experience during this 
study, delay (e.g., the time that elapses between doing a home-
work problem and getting back the graded assignment) is 
harmful, because it breaks the learning cycle at a most fragile 
point. In place of a clear pathway forward, delay maroons stu-
dents in their existing blind spots, and disengages them from 
the instructor (and other students) who are barreling onward to 
more complex concepts. Thus, we would propose that a practi-
cal recipe for making EDL succeed (vs. fail) can best be summa-
rized as “zero blind spots + immediate resolution.” We must 
hasten to emphasize that, during this study, we were far from 
achieving either of these ideals! We regard this as good news, in 
that it implies further big improvements in learning outcomes 
may be possible.

The 2009 data also control for two other factors, namely 
switching from “grading on the curve” to grading on a fixed 
scaled based on historical grade distribution data (i.e., “grading 
on a historical curve”) and increasing total class time to 6 hours 
per week. Both changes began in 2009. The practice of grading 
on the curve is widely considered to promote competition 
between students and, consequently, to discourage cooperative 
learning (if any student helps others improve their scores, that 
will raise the overall class mean, reducing the generous stu-
dent’s own z-score relative to that mean; Covington, 1992; 
Hughes et al., 2014; Schinske and Tanner, 2014). This grading 
policy was replaced in 2009 by simply switching to a historical 
curve: letter grade cutoffs were fixed before each year based on 
the score distribution from the previous year, eliminating any 
possible penalty for students helping others. The instructor also 
actively encouraged students to help each other learn. How-
ever, no resulting improvement in student performance or attri-
tion is apparent in the 2009 data. This may imply that, in the 
presence of serious blind spots, student cooperation by itself 
may not be sufficient to drive large improvements in learning 
outcomes.
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It is important to bear in mind some limitations of our data, 
and possible alternative interpretations. First, because the regis-
trar did not retain week 1 enrollment data before 2010, we 
were forced to use the instructor’s records for week 1 data from 
2003 to 2009 (which were not complete for all cross-listings; 
see Supplemental Table 2). It should be noted that the attrition 
results from these week 1 data are validated by the official reg-
istrar week 4–10 enrollment data for 2003–2015. That is, the 
same trend of attrition decreases is observed and again is statis-
tically significant (see Table 2). Second, because we compared 
course outcomes in different years, it is difficult to definitely 
exclude the possibility of changes in incoming students’ level of 
preparation or achievement during the study period. As one 
basic test, we used SAT scores to check for such changes in 
incoming student qualifications and found no significant differ-
ences in SAT math and verbal scores for undergraduate stu-
dents in the course from 2008 to 2015.

A third explanation that must be considered is the possible 
effect of improved course organization; instructor preparation 
and experience; and elimination of disruptions such as defec-
tive, untested, or overly difficult course materials. Unfortu-
nately, this course transformation effort did not produce such 
ideal circumstances. It would probably be more accurate to say 
that the period 2011–2015 suffered the biggest disruptions in 
course materials and instructor preparation in the course’s 
history, due to radical changes in pedagogy, materials, and 
software platforms nearly every year. In 2011, the instructor 
converted the course to a 100% “flipped” format, necessitating 
the creation of all-new classroom materials; and all student 
activities were performed on an untested, experimental, in-class 
question system (Socraticqs). In 2012, the EDL process was 
overhauled to incorporate the identification of conceptual 
errors into the Socraticqs EDL cycle. And in 2015, the course 
switched to a new, untested, online e-learning platform for all 
class activities (Courselets.org). It is noteworthy that the only 
EDL year that did not suffer such major disruptions (2013) had 
low attrition for both undergraduates (15%) and graduate 
students (5%).

While the observed boost in engagement and immediate 
feedback on student misconceptions seems the most direct 
explanation for the improvement in student learning in 2011–
2015, there are other important factors that will be considered 
in future studies. In particular, it is interesting to consider what 
motivational and affective variables might play an important 
role in the EDL process (Posner et al., 1982). It is possible that 
EDL boosted students’ self-efficacy and self-confidence and 
helped them to stay in the course long enough to successfully 
complete their first high-stakes assessment (Rittmayer and 
Beier, 2008; Trujillo and Tanner, 2014). EDL might also foster 
students’ development of a growth mind-set and “grit,” defined 
as the ability to persevere when faced with an academic chal-
lenge (Hochanadel and Finamore, 2015). EDL is designed to 
teach students to value effort and focus on improvement and, 
perhaps more importantly, to see “error” (pushing their ideas to 
a definitive test that sheds new light) as a normal and highly 
positive learning skill. Above all, they learn every day to “make 
your mistakes your most powerful learning tool.” Further work 
is needed to investigate these questions.

Our results also raise interesting questions about what 
aspects of the EDL cycle contribute most to student learning 

gains. For example, how much does immediate resolution 
improve learning (as opposed to delaying error identification 
and resolution for a week, say), and how fast does resolution 
have to be to achieve most of these gains? What is the effect of 
different ways of phrasing and presenting misconceptions to 
students, and what tone or language is most effective? To what 
degree of consistency do different instructors identify the same 
spectrum of misconceptions from a class’s ORCT responses? 
How accurately do different stages of students (e.g., lower- vs. 
upper-division college students, undergraduates vs. graduates) 
self-assess their disagreement with an expert answer and recog-
nize their matching misconception statement? Again, these 
questions require further studies.

While this study has focused on boosting student engage-
ment in the classroom, our EDL approach and results may be 
applicable to online education, because our current platform 
(Courselets.org) is entirely Web based. Concretely, the way stu-
dents perform the EDL exercises (by answering a question in a 
Web browser on their laptops or smartphones) is the same 
regardless of whether they are doing it inside or outside a class-
room. In practice, students in this study actually did much of 
their EDL work online and outside class. Hence, our results 
already contain a substantial online learning component. One 
question is whether eliminating blind spots and boosting 
engagement via EDL would remain valuable in a purely online 
course. The fact that students greatly increased the number of 
EDL exercises they completed when given a chance to do so 
online (as opposed to only in class; compare 2015 with 2013 in 
Figure 2) is encouraging. This question will require further 
study.

Finally, it is interesting to consider how systemic blind spots 
may affect instructors. Our data suggest first that blind spots are 
a serious barrier to success for implementing student-centered 
learning strategies such as active and collaborative learning. 
That is, in the presence of major blind spots, implementing such 
strategies may not be sufficient to achieve large improvements 
in learning outcomes. This could lead to instructors judging 
their results as disappointing or “not worth the effort.” For 
example, if the instructor in this study had persisted only 
through stage 1 of this effort (2009), the results would likely be 
judged a failure. Second, scaling the process of solving blind 
spots is the core of translating an instructor’s “good intentions” 
of reform into success in practice. Active learning requires a 
transformation from the one-way communication mode of lec-
ture to the two-way communication and synthesis necessary for 
figuring out what each student needs to do next to overcome 
his or her obstacles. This is easier said than done. Even with all 
the best intentions in the world, an instructor who cannot see 
what every student is actually thinking on every concept is de 
facto trapped in a one-way communication mode. Such an 
instructor can speak, but cannot hear what most of the students 
are thinking. This is above all a scalability challenge. The key to 
success for EDL is not only its scalability as a Web platform but 
also its human scalability. That is, by a small amount of sam-
pling of student answers and identifying a small number of 
common errors, an EDL instructor can resolve the vast majority 
of students’ obstacles on a given concept.

A natural corollary of EDL’s human scalability is that 
EDL suggests an important new form of sharing and reuse of 
educational materials. In the past, the model for most online 
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educational materials (such as massive open online courses 
[MOOCs], lecture videos, online textbooks) has been to 
greatly expand an instructor’s distribution to reach larger and 
larger numbers of students. In this model, the online audience 
for a given material is students. By contrast, EDL seems to 
invite global collaboration among instructors in the form of 
online sharing of target problems, error models, and error 
model resolutions. That is, because most students make the 
same four or five common errors on a given challenge, reuse 
of those error models (and their associated resolutions) is 
likely to be valuable to many instructors teaching a given con-
cept, even if their courses are otherwise quite different in con-
tent. In this model, the (initial) online audience for a given 
material is other instructors, who will remix, modify, and 
extend it, before in turn distributing it to students. Adding a 
“second layer of reuse” in this way may actually increase the 
reuse-multiplier effect for online educational materials. EDL 
also opens new opportunities for students to be valued as 
important contributors and authors, for example, by articulat-
ing their own proposed error models (for how their thinking 
diverged from the expert’s usage of a concept) and proposed 
resolutions (which instructors can validate).

As an illustration of these new possibilities, Courselets.org 
is designed as a platform for making it easy for instructors to 
discover, share, reuse, remix, and write their own target prob-
lems, error models, and resolutions. The existing set of such 
materials on Courselets.org was developed for bioinformatics 
and computational biology courses and is licensed for free 
reuse and modification under a Creative Commons license. We 
expect this to be a common scenario for materials contributed 
to Courselets.org by other instructors across STEM disciplines. 
Courselets.org attempts to provide a working demonstration 
that a public repository for such open-source instructional 
materials becomes useful 1) when depositing materials there 
makes them immediately reusable by any instructor or student; 
and 2) when reuse fundamentally improves the materials, for 
example, by increasing the sample of student responses, dis-
covering new error models, and adding new error-resolution 
lessons and empirically testing their effectiveness. In this 
“teaching as publication” model, the author publishing a mate-
rial benefits not only from the credit of many peers choosing 
that material as the best available for teaching a given concept 
(a form of peer review that can be automatically tracked), but 
also from the community’s investment in extending and 
improving it (as outlined above). The key to these benefits is 
that each participant need only make a small contribution for 
a sustainable, continuous-improvement cycle to grow. That 
said, Courselets.org leaves decisions about sharing and licens-
ing to the individual contributors (e.g., to keep their materials 
strictly private).
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