
Errors in Hypothesis Testing; Linear Regression

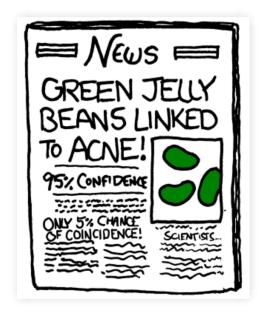
M. Drew LaMar September 07, 2016

Introduction to Quantitan (2016)

Class announcements

- Upcoming Booz Allen Events (<u>http://www.boozallen.com/</u>)
 - Diversity Brunch: September 9, 10 AM 11:30 AM in the Cohen Career Center
 - Fall Career & Internship Fair: September 9, 12 PM 4 PM in the Sadler Center
 - Meet the Firms Friday: September 16, 11 AM 2 PM in Miller Hall
 - Corporate Presentation/Info Session: September 27, 6
 PM 8 PM in Miller Hall

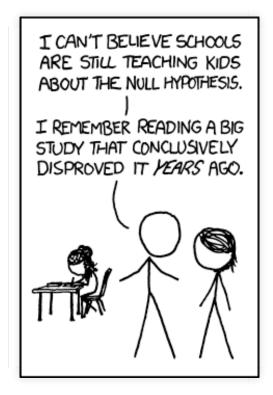
Interval estimates


http://www.smbc-comics.com/comic/2011-11-23

Hypothesis testing So, P = 0.04. Is that good?

https://youtu.be/7jSE3JANx14?t=4m29s

Jelly Beans


https://xkcd.com/882/

P-Values

P-VALUE	INTERPRETATION
0.001 0.01 0.02 0.03 0.04 0.049 0.050 0.051 0.06 0.07 0.08 0.09 0.099 0.099 0.099 0.099 0.099 0.099	-HIGHLY SIGNIFICANT OH CRAP. REDO CALCULATIONS. ON THE EDGE OF SIGNIFICANCE HIGHLY SUGGESTIVE, SIGNIFICANT AT THE P<0.10 LEVEL HEY, LOOK, AT THIS INTERESTING SUBGROUP ANALYSIS

https://xkcd.com/1478/

Hypothesis Testing

https://xkcd.com/892/

Errors in Hypothesis Testing

	Reality		
Conclusion	H_0 true	H_0 false	
Reject H_0	Type I error	Correct	
Do not reject H_0	Correct	Type II error	

Definition: Type I error is rejecting a true null hypothesis. The probability of a Type I error is given by $Pr[Reject H_0 | H_0 \text{ is true}] = \alpha$

Definition: Type II error is failing to reject a false null hypothesis. The probability of a Type II error is given by $Pr[Do not reject H_0 | H_0 is false] = \beta$

Errors in Hypothesis Testing - Power

	Reality		
Conclusion	H_0 true	H_0 false	
Reject H_0	•/ 1	Correct	
Do not reject H_0	Correct	Type II error	

Definition: The *power* of a statistical test (denoted $1 - \beta$) is given by $Pr[Reject H_0 | H_0 \text{ is false}] = 1 - \beta$ = 1 - Pr[Type II error]

Probability of errors in hypothesis testing

	Reality		
Conclusion	H_0 true	H_0 false	
Reject H_0	α	1-eta	
Do not reject H_0	1-lpha	eta	

- α is the significance level
- 1β is the power

<u>Statistical power example</u> <u>https://qubeshub.org/tools/statpowerviz/</u>

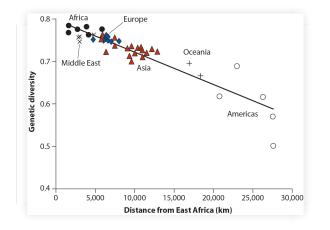
Power analysis

Power of a statistical test is a function of - Significance level α - Variability of data - Sample size - Effect size

- Desired power is set by researcher (typically 80%)
- Significance level set by researcher
- Data variability and effect size can be estimated by previous studies or pilot studies
- Sample size is then calculated to achieve desired power given previous fixed attributes

Regression

Definition: *Regression* is the method used to predict values of one numerical variable (response) from values of another (explanatory).


Note: Regression can be done on data from an observational or experimental study.

We will discuss 3 types:

- Linear regression
- Nonlinear regression
- Logistic regression

Linear regression

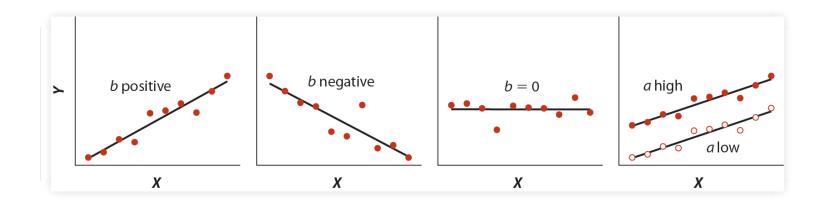
Definition: *Linear regression* draws a straight line through the data to predict the response variable from the explanatory variable.

Slope determines *rate of change* of response with explanatory humans lose 0.076 units of genetic diversity with every 10,000 km from East Africa.

Formula for the line

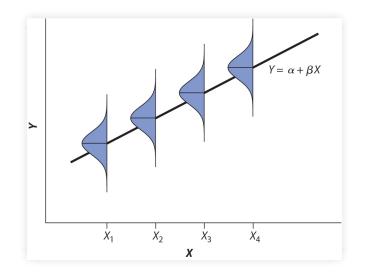
Definition: For the *population*, the regression line is

 $Y = \alpha + \beta X,$


where α (the *intercept*) and β (the *slope*) are population parameters.

Definition: For a *sample*, the regression line is

$$Y = a + bX,$$


where a and b are estimates of α and β , respectively.

Graph of the line

- *a*: intercept
- *b*:slope

Assumptions of linear regression

Note: At each value of X, there is a population of Y-values whose *mean* lies on the true regression line (this is the *linear* assumption).

Assumptions of linear regression

- Linearity
- Residuals are normally distributed
- Constant variance of residuals
- Independent observations

