Linear Regression

M. Drew LaMar September 09, 2016

https://xkcd.com/605/

Introduction to Quantitative Biology, Fall 2016

Class announcements

- Biology Seminar today, 4:00 pm in Millington 150
- To celebrate, NO READING QUIZ FOR MONDAY
- I will start grading stuff soon. Sorry for the delay!
- Homework #2
 - OpenStats, Chapter 4: 4.6.3 Hypothesis testing (p. 209) -#4.18, 4.20, 4.22, 4.24, 4.28, 4.30
 - OpenStats, Chapter 7: 7.5.1 Line fitting, residuals, and correlation (p. 356) - #7.1-7.10 (even)
 - OpenStats, Chapter 7: 7.5.2 Fitting a line by least squares regression (p. 362) #7.24, 7.26, 7.30
 - OpenStats, Chapter 7: 7.5.4 Inference for linear regression (p. 367) #7.36

Linear regression is a statistical model

Linear regression is a model formulation

Usually (but not always) it is reserved for situations where you assert evidence of causation (e.g. A causes B)

Correlation, in contrast, describes relationships (e.g. A and B are positively correlated)

Linear correlation coefficient

Variables: For a correlation, our data consist of two numerical variables (continuous or discrete).

Definition: The (linear) *correlation coefficient* ρ measures the strength and direction of the association between two numerical variables in a population.

The linear (Pearson) correlation coefficient measures the tendency of two numerical variables to **co-vary** in a linear way.

The symbol r denotes a sample estimate of ρ .

Sample correlation coefficient

$$r = \frac{\sum_{i} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i} (X_i - \bar{X})^2} \sqrt{\sum_{i} (Y_i - \bar{Y})^2}}$$
$$-1 \le r \le 1$$

Sample correlation coefficient

$$r = \frac{\frac{1}{n-1} \sum_{i} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\frac{1}{n-1} \sum_{i} (X_i - \bar{X})^2} \sqrt{\frac{1}{n-1} \sum_{i} (Y_i - \bar{Y})^2}}$$

Sample correlation coefficient

$$r = \frac{\text{Covariance}(X, Y)}{s_X s_Y}$$

Spurious correlations

http://www.tylervigen.com/spurious-correlations

Important!

Technically, the linear regression equation is

$$\mu_{Y\mid X=X^*}=\alpha+\beta X^*,$$

were $\mu_{Y \mid X = X^*}$ is the mean of Y in the sub-population with $X = X^*$ (called *predicted values*).

You are predicting the mean of Y given X.

How do you find the "best fit" line?

Method of least squares

Definition: The *least-squares regression* line is the line for which the sum of all the *squared* deviations in Y is smallest.

How do you find the "best fit" line?

The method of least-squares leads to the following estimates for intercept and slope:

$$b = \frac{\sum_{i} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i} (X_i - \bar{X})^2}$$
$$a = \bar{Y} - b\bar{X}$$

Note:

$$b = \frac{\text{Covariance}(X, Y)}{s_X^2} = r \frac{s_Y}{s_X},$$

where *r* is the correlation coefficient!

Male lizards in the species *Crotaphytus collaris* use their jaws as weapons during territorial interactions. Lappin and Husak (2005) tested whether weapon performance (bite force) predicted territory size in this species.

Compute best-fit line: Slope

$$b = \frac{\text{Covariance}(X, Y)}{s_X^2}$$

```
# Slope
(b <- cov(biteData$bite,
biteData$territory.area)/var(biteData$bite))</pre>
```

[1] 11.6773

Compute best-fit line: Intercept

$$a = \bar{Y} - b\bar{X}$$

```
# Intercept
(a <- mean(biteData$territory.area) -
b*mean(biteData$bite))</pre>
```

```
[1] -31.53929
```

Faster!!! Use 1m...

Bonus!!! With 1m, can add best-fit line to plot.

```
# Need to adjust margins to see axis labels
par(mar=c(4.5,5.0,2,2))

# Scatter plot
plot(biteData, pch=16, col="firebrick",
cex=1.5, cex.lab=1.5, xlab="Bite force (N)",
ylab=expression("Territory area" ~ (m^2)))

# Add in the best-fit line
abline(biteRegression, lwd=3)
```

Bonus!!! With 1m, can add best-fit line to plot.

Predicted values and residuals

Definition: The *predicted value* of Y (denoted \hat{Y} , or μ_{Y+X}) from a regression line estimates the mean value of Y for all individuals having a given value of X.

Definition: *Residuals* measure the scatter of points above and below the least-squares regression line, and are denoted by

$$r_i = \hat{Y}_i - Y_i,$$

where
$$\hat{Y}_i = a + bX_i$$
.

Predicted values and residuals

Prediction values

We can predict what the mean value of Y is for values of the explanatory variable X not represented in our data, as long as we are within the range of values of the data.

The function predict accomplishes this, and even gives us a standard error for our estimate.

```
(pred_5.1 <- predict(biteRegression,
data.frame(bite = 5.1), se.fit = TRUE))</pre>
```

```
$fit

1

28.01492

$se.fit

[1] 2.163259

$df

[1] 9

$residual.scale

[1] 5.788413
```

Prediction values

Prediction values - Extrapolation

Definition: Extrapolation is the prediction of the value of a response variable outside the range of X-values in the data.

Regression should not be used to predict the value of the response values for an X-value that lies well outside the range of the data.

Residual plot

Definition: a *residual plot* is a scatter plot of the residuals $(Y_i - Y_i)$ against the X_i , the values of the explanatory variable.

Residual plots

```
# Get residuals from regression output
biteData$res = resid(biteRegression)

# Plot residuals
plot(res ~ bite, data=biteData, pch=16,
cex=1.5, cex.lab=1.5, col="firebrick",
xlab="Bite force (N)", ylab="Residuals")

# Add a horizontal line at zero
abline(h=0, lty=2)
```

Residual plots to check assumptions

Linear regression

summary(biteRegression)

Linear regression

```
Call:
lm(formula = territory.area ~ bite, data =
biteData)
Residuals:
   Min 1Q Median 3Q Max
-7.0472 -4.5101 -0.5504 3.6689 10.2237
Coefficients:
           Estimate Std. Error t value
Pr(>|t|)
(Intercept) -31.539 23.513 -1.341
0.2127
bite 11.677 4.848 2.409
0.0393 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'
0.05 '.' 0.1 ' ' 1
Residual standard error: 5.788 on 9 degrees of
freedom
Multiple R-squared: 0.3919, Adjusted
R-squared: 0.3244
```

F-statistic: 5.801 on 1 and 9 DF, p-value: 0.03934

P-value is less than 0.05, so we can reject the null hypothesis that the slope $\beta=0$.

Variation explained by explanatory variable

We can measure how well the line "fits" the data by estimating the \mathbb{R}^2 value, i.e.

$$R^2 = \frac{\sigma_{\text{regression}}^2}{\sigma_{\text{response}}^2} = \frac{\sigma_{\text{response}}^2 - \sigma_{\text{residual}}^2}{\sigma_{\text{response}}^2}.$$

This also can be said to measure the fraction of variation in Y that is "explained" by X.

Variation explained by explanatory variable

Basic idea is:

- If R^2 is close to 1, then X is explaining most of the variation in Y, and any other variation which could be caused by other sources is negligible in comparison.
- If R^2 is close to 0, then X is explaining very little of the variation in Y, and the remaining variation is caused by other sources not accounted for or measured in the system of study.

Variation explained by explanatory variable

For the lizard example,

```
biteRegSummary <- summary(biteRegression)
biteRegSummary$r.squared</pre>
```

[1] 0.3919418

Thus, 39% of the variation in territory area is explained by bite force.

Annotate plot

```
# Need to adjust margins to see axis labels
par(mar=c(4.5,5.0,2,2))
# Scatter plot
plot(territory.area ~ bite, pch=16,
col="firebrick", cex=1.5, cex.lab=1.5,
xlab="Bite force (N)",
ylab=expression("Territory area" ~ (m^2)),
data=biteData)
# Add in the best-fit line
abline(biteRegression, lwd=3)
# Text
text(5, 30.5, expression(R^{2} \sim "=" \sim 0.39),
cex=1.5)
text(5.14, 31.7, expression(y \sim "=" -31.54 +
11.68), cex=1.5)
```

Annotate plot

Summary of a regression in R

summary(biteRegression)

Summary of a regression in R

```
Call:
lm(formula = territory.area ~ bite, data =
biteData)
Residuals:
   Min 1Q Median 3Q Max
-7.0472 -4.5101 -0.5504 3.6689 10.2237
Coefficients:
           Estimate Std. Error t value
Pr(>|t|)
(Intercept) -31.539 23.513 -1.341
0.2127
bite 11.677 4.848 2.409
0.0393 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'
0.05 '.' 0.1 ' ' 1
Residual standard error: 5.788 on 9 degrees of
freedom
Multiple R-squared: 0.3919, Adjusted
R-squared: 0.3244
```

F-statistic: 5.801 on 1 and 9 DF, p-value:

0.03934