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We study instabilities and pattern formation in reaction-diffusion layers that are diffusively coupled. For
two-layer systems of identical two-component reactions, we analyze the stability of homogeneous steady states
by exploiting the block symmetric structure of the linear problem. There are eight possible primary bifurcation
scenarios, including a Turing-Turing bifurcation that involves two disparate length scales whose ratio may
be tuned via the interlayer coupling. For systems of n-component layers and nonidentical layers, the linear
problem’s block form allows approximate decomposition into lower-dimensional linear problems if the coupling
is sufficiently weak. As an example, we apply these results to a two-layer Brusselator system. The competing
length scales engineered within the linear problem are readily apparent in numerical simulations of the full
system. Selecting a

√
2:1 length-scale ratio produces an unusual steady square pattern.
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I. INTRODUCTION

In 1952, Alan Turing hypothesized that reaction and dif-
fusion could compete to create stationary spatial patterns [1].
This hypothetical mechanism for biological morphogenesis
has been the theoretical foundation for decades of work on
Turing patterns, which form when a rapidly diffusing activator
interacts with a slowly diffusing inhibitor. Nearly 40 years
later, experimentalists observed these patterns in a chemical
reaction-diffusion system [2]. Since then, chemical systems
have been the canonical testing ground for Turing patterns.

A variation on the classic Turing system is the multilayered
system, in which each layer is a reaction-diffusion system
that is diffusively coupled to adjacent layers. These coupled
systems are common in the biological world, seen in neural,
developmental, and ecological contexts [3]. One example from
neuroscience is a neural-glial network, consisting of a layer of
neurons connected diffusively to a layer of glial cells, where
each layer exhibits dynamics at different time scales. The
chemicals released at a tripartite synapse (one glial cell and a
pair of neurons) and their effect on those cells are known [4,5];
however, the effect of glial cells on the network level remains
a subject of ongoing study [6]. Understanding how coupled
layers influence one another contributes to our understanding
of these networks.

Though experimental studies of the biological systems are
quite difficult, investigations of the fundamental properties of
coupled reaction-diffusion systems have progressed via chemi-
cal experiments. Experimentalists employ two thin gels (which
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contain the reactants) that are put in contact with one another.
By adding or removing a permeable membrane between the
layers and by adjusting its properties, the coupling strength can
be altered. This approach with the chlorine dioxide-iodine-
malonic acid (CDIMA) reaction has produced superlattice
patterns called black-eyed and white-eyed patterns, which
involve wavelength ratios of nearly 2:1; other ratios were not
feasible for this reaction and experimental configuration [7].
Recent experiments have exploited the photosensitivity of the
CDIMA chemical reaction, using an external light source to
probe the interaction between different forced patterns [8].
For a broad overview of experimental and numerical results
for some multilayer systems, see Ref. [3].

A few theoretical studies of multilayer systems have taken
place in the setting of diffusively coupled ordinary differential
equations; this framework neglects spatial dependence within
layers (and, hence, spatiotemporal pattern formation) but is
more easily analyzed than the spatial case. Linear stability
analysis and numerical bifurcation studies reveal regimes of
in-phase and out-of-phase oscillations of coupled Brusselators
[9], as well as regimes of synchronization and chaos in coupled
Oregonators [10]. For Brusselators, regions of in-phase waves
and echo waves, whose phase differs by half the period, can
be determined analytically [11,12].

Work incorporating spatial dependence within layers has
also used linear stability and bifurcation analyses to determine
and understand possible patterns, now in the setting of
partial differential equation models of chemical reactions.
For coupled Oregonators, simulations reveal twinkling eye
patterns, Turing spots arranged in a hexagonal lattice that
oscillate 120 degrees out of phase with their nearest neighbors,
and traveling waves in Turing structures, such as pinwheels in
spots and traveling waves in labyrinths [13]. A numerically
computed dispersion relation suggests that the twinkling eye
pattern is due to an interaction of Turing and Hopf modes,
whereas the traveling wave patterns are formed via a short
wave instability [13]. Similar analyses have also elucidated the
bifurcations to time-dependent Turing states and superlattices
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Abstract

From bird flocks to fish schools and ungulate herds to insect swarms, social biological aggregations are found across the
natural world. An ongoing challenge in the mathematical modeling of aggregations is to strengthen the connection
between models and biological data by quantifying the rules that individuals follow. We model aggregation of the pea
aphid, Acyrthosiphon pisum. Specifically, we conduct experiments to track the motion of aphids walking in a featureless
circular arena in order to deduce individual-level rules. We observe that each aphid transitions stochastically between a
moving and a stationary state. Moving aphids follow a correlated random walk. The probabilities of motion state transitions,
as well as the random walk parameters, depend strongly on distance to an aphid’s nearest neighbor. For large nearest
neighbor distances, when an aphid is essentially isolated, its motion is ballistic with aphids moving faster, turning less, and
being less likely to stop. In contrast, for short nearest neighbor distances, aphids move more slowly, turn more, and are
more likely to become stationary; this behavior constitutes an aggregation mechanism. From the experimental data, we
estimate the state transition probabilities and correlated random walk parameters as a function of nearest neighbor
distance. With the individual-level model established, we assess whether it reproduces the macroscopic patterns of
movement at the group level. To do so, we consider three distributions, namely distance to nearest neighbor, angle to
nearest neighbor, and percentage of population moving at any given time. For each of these three distributions, we
compare our experimental data to the output of numerical simulations of our nearest neighbor model, and of a control
model in which aphids do not interact socially. Our stochastic, social nearest neighbor model reproduces salient features of
the experimental data that are not captured by the control.
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Introduction

From bird flocks to fish schools and ungulate herds to insect
swarms, nature abounds with examples of animal aggregations [1–
3]. These groups may arise from environmental factors, social
factors, or a combination of the two. Environmental factors induce
organisms to move in relation to food sources, light sources,
gravity, predators, wind, chemical gradients, and more. On the
other hand, even in the absence of significant environmental cues,
some animals aggregate because of their intrinsic social tendencies.
Social forces such as attraction, repulsion and alignment occur
when these organisms interact, sensing each other via sight, smell,
hearing, and so forth [4–8]. Social aggregations not only are
examples of natural pattern formation, but on long time and space
scales may influence disease transmission, food supply availability,
ecological dynamics, and ultimately, evolution [9,10]. Additional-
ly, the understanding of aggregations has been used to design
algorithms in robotics, computer science, and engineering [11,12].

A central question in the study of aggregations pertains to the
relationship between individual-level and group-level behaviors,

and it is crucial to distinguish between these. Individual-level
behaviors might include an organism’s tendency to move closer to
conspecifics, or to align its movement with that of its neighbors.
Group-level properties describe characteristics of many individu-
als, such as the shape of an aggregation, its spatial density
distribution, and its velocity distribution. The connection between
individual and group-level behaviors is highly nontrivial, as is
typical for a complex system [13]. One methodology for exploring
this connection is through mathematical modeling. By construct-
ing mathematical models that describe each individual organism’s
rules for movement, one can simulate and analyze the ensemble to
investigate the aggregate behavior. Indeed, aggregation modeling
is the subject of an intensive effort in the mathematical modeling
community, explored in [5,14–23] and many dozens of other
studies. There exists a menagerie of mathematical models for
aggregation. One criteria that distinguishes models is the degree to
which randomness plays a role. Models can be completely
deterministic, deterministic but with an added noise component,
or completely stochastic. Models for random movement of
biological organisms (such as the one we will presently develop)
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Step 1: Contemplate
• Research experience? 
• Professional experience? 

• Research progress? 
• Portfolio enhancement? 
• Emotional reward?

• Time 
• Money 
• Stress? 
• Reduced speed? 



Step 2: Fund
• Student stipends 
• Student travel to site 
• Faculty salary/stipend 
• Computers 
• Software 
• Books 
• Conference travel 
• Snacks/meals 
• Social events

• NSF REU site 
• NSF standard (incl. RUI) 
• NSF special programs 
• Start-up funds 
• College funds 
• Department 
• You have to ask!!! 

- Colleagues 
- Chair 
- SRO 
- Anyone



Step 3: Build
You are a manager with (likely) no managerial training
• Advertise (in classes, on websites, in newsletters…) 
• Create application process (cover letters, cv, interviews…) 
• Consider student grouping, project assignments, diversity 
• Coordinate with campus for housing, food, etc. 
• Set expectations with students
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Step 4: Maintain
• Spend time. Then spend some more time. Then spend… 
• Provide professional development: literature search, 

BibTex/BibDesk, research log, document code, write paper, 
write poster, give talk, set daily goals… 

• Exchange feedback frequently (it goes both ways) 
• Orchestrate fun



Step 5: Inspire
“Here's what I think we need to tell students: 99.9% of research progress consists of teeny, 
tiny steps in knowledge rather than Einsteinian leaps. Even to take these tiny steps we must 
stand on the shoulders of the many people who have taken many tiny steps before us. And 
tiny steps are worthwhile. And research is a community effort, and it is satisfying to be part of 
a great community of past and future scholars who will take tiny steps to move forward our 
understanding of and appreciation for the universe. And still, even though we are taking only 
tiny steps, it's really hard. But very much worth it. And you can do it.”

http://www.chadtopaz.com/2013/06/07/research-it-doesnt-take-a-genius/


