
Numerical Solutions to Differential Equations in R
Nessy Tania, Erica Graham

In this tutorial, you will build R codes for obtaining numerical solutions to ordinary differential equations
(ODEs). Here are the steps:

1. Load the deSolve package in R (this package must be installed in order to load).

2. Create a function with your ODE.

3. Use R ODE solvers such as lsoda, lsode, ode23, ode45, etc.

Each step is outlined on this tutorial below.

1. Start a new R script.

2. Load the deSolve package in R. (This must be isntalled before you load it.)
load(deSolve)

3. In order to solve an ODE, we need to first define a function that takes in independent and dependent
variables, as well as a set of parameters (where applicable).

example1 = function (t, y, parameters) {
list(

t*y + t
)

}

Numerical ODE Solvers

R has a number of different ODE solvers that can be used for initial-value problems:

• lsoda: Automatically selects method for solving ODEs. This should be the first solve you try in R.
Use for either stiff or nonstiff ODEs.

• lsode: If using lsoda turns out to be a slow process, then the DEs you are solving may be stiff (the
solver needs to take very small steps each time). Use the ‘stiff’ option to solve this type of DE using
the backward differentiation formula. The ‘non-stiff’ option will use the Adams method to solve.

• ode45: Simultaneously uses fourth and fifth order RK formulas to make error estimates and adjust the
time step accordingly. For nonstiff ODEs.

• ode23: Uses simultaneously second and third order Runge Kutta formulas to make estimates of the
error, and calculate the time step size. Since the second and third order RK require less steps, ode23 is
“less expensive” in terms of computation demands than ode45, but is also lower order. Use for nonstiff
ODEs.

Example 1: Let’s solve the following ode:
dy

dt
= ty + t

with the initial condition y(0) = 0.5. To solve, type

library(deSolve)
example1 = function (t, Y, parameters) {

y = Y[1] # define the independent variable (optional)
list(

1

t*y + t
)

}
yinit = 0.5
times = seq(0,5,0.1)
out = as.data.frame(ode(y = yinit, func = example1, times, parms = c()))
names(out) = c("t","y")

The commands
out = as.data.frame(ode(y = yinit, func = example1, times, parms = c()))
can be broken down as follows:

• the output is out, which defines the solution.

• yinit is the initial value. If you have a system of equations, you input the initial conditions as a
vector.

• func tells R which function defines the differential equation

• times tells R to give the solution to the differential equation for the specified time points.

• parms provides an optional list of parameters to the model. In practice, parameters would contain a
list of any model parameters.

• Optionally, we may specify the method to be used within the ode command, e.g. method="lsoda".

Finally, we save the solution as a data frame, so that we can label the time points (always the first column)
and the independent variables.

Example 2: Let’s solve the following predator system

dx

dt
= −βxy + x

dy

dt
= βxy − αy,

with initial conditions x(0) = 0.1 and y(0) = 0.6, from t = 0 to t = 50. We can define the function

example2 = function (t, Y, parameters) {
alpha = parameters[1]
beta = parameters[2]
x = Y[1]
y = Y[2]
dxdt = -beta*x*y + x
dydt = beta*x*y - alpha*y
list(

c(dxdt, dydt) # this is the output of the function
)

}

Now, to solve the system (assuming the deSolve package is loaded), we type

yinit = c(0.1,0.6)
times = seq(0,50,0.01)
out = as.data.frame(ode(y = yinit, func = example2, times, parms = c(0.3, 0.4)))
names(out) = c("t","x","y")

You can plot the solutions too:

2

matplot(out$t,out[,2:3],type='l',col=c('red','blue'), xlab='t', ylab=F,lty=1)
legend('topleft',c('x','y'),col=c('red','blue'),lty=1)

Alternatively, you may plot the solution in the phase plane:

plot(outx, outy, type='l',xlab='x',ylab='y')

Exercise 3: Use ode23 to solve the following system. Then plot y1, y2, y3 over time.

y′1 = 2y1 + y2 + 5y3 + e−2t

y′2 = −3y1 − 2y2 − 8y3 + 2e−2t − cos(3t)

y′3 = 3y1 + 3y2 + 2y3 + cos(3t)

y1(0) = 1, y2(0) = −1, y3(0) = 0

t ∈ [0, π/2]

3

