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Rhodes College
Memphis, TN

National, residential, liberal arts college

2046 students

5–8 Math majors per year

~ 30 Biology majors per year

5–10 Environmental Science majors per year

Growing Biomathematics major

Biomathematics Majors at Rhodes

2014

1 majo
r

2015

2 majo
rs

2016

2 majo
rs

2017

2 majo
rs

2018

5 majo
rs

2019

4 majo
rs

2020

2+
majo

rs

2021

6+
majo

rs

Current sophomores (class of 2020) and freshmen (class of 2021) have not declared yet
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Erin Bodine Background

Educational Background

Undergrad
Harvey Mudd

BS in Mathematics
BA in Anthropology

Few classes in Biomathematics

Biomath Research
UCLA

Epidemiological modeling
Published several papers

Population modeling

Graduate School
UT Knoxville

PhD in Mathematics
Concentration in Mathematical Ecology

Population modeling

Teaching at Rhodes
Classic calculus sequence Applied Calculus (biological applications)
Discrete Math Modeling (w/ bio apps) Continuous Math Modeling & Scientific Writing
Agent-based Modeling

Research at Rhodes Focus on population dynamics

EPIDEMIOLOGICAL MODELING SPECIES CONSERVATION MODELING

Ebolavirus Optimal Species Augmentation
Yellow Fever Northern Spotted owl & Barred Owl competition

Bromeliaceae life history & conservation
CANCER MODELING Invasive weevil control
Proton radiation therapy
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Unity College
Unity, ME

Environmental Liberal Arts College

750 students

All Environmentally related majors
No math, physics, or engineering majors

Applied Math & Statistics Minor

2 majors are BA degrees, the remainder (10+) are BS degrees
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Carrie Diaz Eaton Background

Educational Background

Undergrad
University of Maine

BS in Mathematics
Minor in Zoology

Research in neuromodeling

Masters
University of Maine

MA in Interdisciplinary Mathematics
Con Bio, Genetics

Research in neuromodeling

Graduate School
UT Knoxville

PhD in Mathematics
Concentration in Mathematical Ecology

Mutualism & population genetic modeling

Teaching at Unity
“Calculus” (biological/environmental applications) All algebra and intro stats where needed
Discrete Math Modeling (w/ bio apps) Modeling Ecological Disease
Continuous Modeling with ODEs (COA) Spanish
Quantitative Literacy HS→ College Bridge Online Grad Course Development in Systems Thinking

Research at Unity
EPIDEMIOLOGICAL MODELING INTERDISCIPLINARY MATHEMTICS EDUCATION

Humans vs Zombies Cofounded QUBES network
Student Projects Biocalculus implementation research

Marine applications of calculus
EVOLUTIONARY ECOLOGY GTA/Early Career Teaching Development

Ethnography & Identity
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What do we mean by “model”?

A model is a simplified representation of relationships and/or processes in the real
world, created for some purpose

A model can be represented in a variety of ways:

Experiential

physical models,
experiments, obser-
vations, simulations

Numerical

simulated & derived
data, quantitative
experimental data

Verbal
hypotheses,

predictions, qualitative
experimental data

Symbolic
equations, algorithms,

relationships
between variables

Visual

graphs, schematics,
flow diagrams

1

2

3

4
5

Adapted from Eaton, et al. 2017. Framework for Teaching Models & Modeling. arXiv:1607.02165v2
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What do we mean by “model”?

A model is a simplified representation of relationships and/or processes in the real
world, created for some purpose

A (bio)mathematician’s approach to modeling:

Experiential

physical models,
experiments,

observations, simulations

Numerical

simulated & derived
data, quantitative
experimental data
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hypotheses,
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Crazy Cat Lady
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What is a Discrete Difference Equation?

A discrete difference equation is an equation which generates a sequence of terms:

x0, x1, x2, . . . , xn.

The equation typically expresses the next term in the sequence, xn+1, as a function of
the previous term

xn+1 = f (xn).

Example

The discrete difference equation xn+1 = 2xn with x0 = 1 generates the sequence

x0 = 1, x1 = 2, x2 = 4, x3 = 8, x4 = 16, . . . .

Example

The discrete difference equation xn+1 = 2xn with x0 = 3 generates the sequence

x0 = 3, x1 = 6, x2 = 12, x3 = 24, x4 = 48, . . . .

Difference equations of the form xn+1 = a xn, where a > 0 model exponential growth (a > 1) or
exponential decay (0 < a < 1).
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Crazy Cat Lady

How could you model the crazy cat lady cat population?
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Discrete Math Modeling Course

Designed as a core course for the Biomathematics major

Designed to expose students to
Process of modeling Numerical Simulation Computer Programming

Difference Equation Models Matrix Models Agent-based Models

Designed as an introductory class

Designed for freshman & sophomores, but taken by students at all levels

Prerequisites: NONE

Students need to have decent algebra skills
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Modeling the Growth of a Bacterial Culture
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Modeling Growth of an E. coli culture
Optical density of E. coli growing in a culture at 37◦C

Time (hours) 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Cell Density (OD600) 0.055 0.120 0.231 0.360 0.516 0.821 1.300

We can express the data as a sequence:

x0 = 0.055, x1 = 0.120, x2 = 0.231, x3 = 0.360, x4 = 0.561, x5 = 0.821, x6 = 1.300
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Modeling Growth of an E. coli culture
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Assuming the growth is exponential, we can
model the growth with the equation
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Modeling Growth of an E. coli culture
Optical density of E. coli growing in a culture at 37◦C

n xn xn+1/xn

0 0.055 2.18

1 0.120 1.93

2 0.231 1.56

3 0.360 1.43

4 0.516 1.59

5 0.821 1.58

6 1.300

Exponential Growth Model

Assuming the growth is exponential, we can
model the growth with the equation

xn+1 = a xn with x0 = 0.055.

What value should be used for a?

Mean of Ratios: 1.712 Median of Ratios: 1.585
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Modeling Growth of an E. coli culture
Optical density of E. coli growing in a culture at 37◦C

Questions:

Which value of a, the mean
or the median of the ratios,
generates a sequence which
more accurately represents
the data?

How could we quantify which
model more accurately
represents the data?

Using this model, can we
predict the cell density of the
culture at 5 hr? 10 hr? 24
hr? 48 hr? 72 hr?

Over what period of time is
the model “useful”?

Exponential Growth Model

Assuming the growth is exponential, we can
model the growth with the equation

xn+1 = a xn with x0 = 0.055.

What value should be used for a?

Mean of Ratios: 1.712 Median of Ratios: 1.585
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Modeling Growth of an E. coli culture
Optical density of E. coli growing in a culture at 37◦C ... the full data set

Questions:

Using this model, can we
predict the cell density of the
culture at 5 hr? 10 hr? 24
hr? 48 hr? 72 hr?

Over what period of time is
the model “useful”?

To make a new model for the
full set of data what features
does the new model need to
have?

xn+1 = a xn, x0 = 0.055

a = 1.712 (mean) a = 1.585 (median)
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Modeling Growth of an E. coli culture
Optical density of E. coli growing in a culture at 37◦C ... the full data set

Logistic Growth Model

Assuming the growth is logistic, we can model
the growth with the equation

xn+1 − xn = r xn

(
1 −

xn

K

)
, x0 = 0.055, K = 4.

We cannot estimate the parameter r directly as
we did for the exponential model, but we can
visually fit r

xn+1 = xn + r xn
(
1 − xn

4

)
, x0 = 0.055
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Logistic Growth Model

Assuming the growth is logistic, we can model
the growth with the equation

xn+1 − xn = r xn

(
1 −

xn

K

)
, x0 = 0.055, K = 4.

We cannot estimate the parameter r directly as
we did for the exponential model, but we can
visually fit r xn+1 = xn + r xn

(
1 − xn

4

)
, x0 = 0.055

r = 0.2 r = 0.4 r = 0.6
r = 0.8 r = 1.0

Bodine & Eaton BioQuest 2017 24 July 2017 19 / 31



Modeling Growth of an E. coli culture
Optical density of E. coli growing in a culture at 37◦C ... the full data set

Logistic Growth Model

Assuming the growth is logistic, we can model
the growth with the equation

xn+1 − xn = r xn

(
1 −

xn

K

)
, x0 = 0.055, K = 4.

We cannot estimate the parameter r directly as
we did for the exponential model, but we can
visually fit r

xn+1 = xn + r xn
(
1 − xn

4

)
, x0 = 0.055

r = 0.2 r = 0.4 r = 0.6
r = 0.8 r = 1.0

Bodine & Eaton BioQuest 2017 24 July 2017 19 / 31



Modeling Growth of an E. coli culture
Optical density of E. coli growing in a culture at 37◦C ... the full data set

Logistic Growth Model

Assuming the growth is logistic, we can model
the growth with the equation

xn+1 − xn = r xn

(
1 −

xn

K

)
, x0 = 0.055, K = 4.

We cannot estimate the parameter r directly as
we did for the exponential model, but we can
visually fit r

xn+1 = xn + r xn
(
1 − xn

4

)
, x0 = 0.055

r = 0.64
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Modeling Population Genetics over Time
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Modeling Population Genetics over Time
Hardy-Weinberg Model Assumptions

1 The organism is diploid, sexual, and has discrete generations. Discrete generations refer to a life history
like that of an annual plant, in which the parental generation has died by the time the offspring generation
reproduces.

2 Allele frequencies are the same in both sexes.

3 Mendelian segregation occurs, which means that individuals with the heterozygous genotype produce
equal numbers of gametes (haploid reproductive cells, e.g., eggs and sperm) containing each allele. For
example, an Aa individual produces equal numbers of A and a gametes. There are a few genes that
violate this assumption; this condition is known as meiotic drive or segregation disorder. When meiotic
drive occurs, once allele in heterozygous individuals is overrepresented in the gametes.

4 Random mating occurs, meaning that mating is random with respect to the genotypes under
consideration (it may be non-random with respect to genotypes at other loci).

5 There are no mutations (permanent change to the DNA molecule), or at least the mutation rate is
negligible, i.e., very close to 0.

6 There is no migration (movement of individuals between populations). This assumption is also referred to
as the population having no gene flow.

7 There is no random genetic drift which refers to fluctuations in allele frequencies that occur by chance,
particularly in small subpopulations, as a result of random sampling error in the choice of gametes that
form the next generation. For large populations with random mating, it is reasonable to assume there is
no genetic drift.

8 There is no natural selection. Natural selection refers to a consistent (over multiple generations)
relationship between fitness and phenotype, or differences in fitness among genotypes.
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Modeling Population Genetics over Time
Defining Terms

Given the Hardy-Weinberg model assumptions ...

Consider a gene with two possible alleles A and a, and a population size of N.

pt = frequency of allele A in generation t

qt = frequency of allele a in generation t

Note, pt + qt = 1 for every generation t; total of 2N alleles in population.

Pt = frequency of genotype AA in generation t

Qt = frequency of genotype Aa in generation t

Rt = frequency of genotype aa in generation t

Note, Pt + Qt + Rt = 1 for every generation t; total of N genotypes in population.
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# A alleles in the population = Pt(2N)︸ ︷︷ ︸
A alleles from
AA individuals

+
1
2

Qt(2N)︸ ︷︷ ︸
A alleles from
Aa individuals

= 2PtN + QtN

pt =
2PtN + QtN

2N
= Pt +

1
2

Qt qt =
1
2

Qt + Rt
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Since the allele frequency is the same in both sexes (ASSUMPTION 2), the frequencies
of pt, qt, Pt, Qt, and Rt will be the same within both sexes.

Since mating is random (ASSUMPTION 4), then we can assume mating will occur in
proportion to the genotype frequencies within the population.

Example

The proportion of the male population in generation t that are genotype AA is Pt, and the
proportion of the female population in generation t that are genotype AA is also Pt. Therefore, the
probability of a AA × AA mating is (Pt)(Pt) = (Pt)2. Similarly, the probability of a AA × Aa matings
is the sum of the probability of a AA(♂) × Aa(♀) mating and a AA(♀) × Aa(♂) mating, i.e.
(Pt)(Qt) + (Pt)(Qt) = 2PtQt.
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Since the allele frequency is the same in both sexes (ASSUMPTION 2), the frequencies
of pt, qt, Pt, Qt, and Rt will be the same within both sexes.

Since mating is random (ASSUMPTION 4), then we can assume mating will occur in
proportion to the genotype frequencies within the population.

All Possible Matings

Offspring Genotype Frequencies
Mating Type Mating Frequency AA Aa aa

AA × AA (Pt)2 1 0 0
AA × Aa 2PtQt 1⁄2 1⁄2 0
AA × aa 2PtRt 0 1 0
Aa × Aa (Qt)2 1⁄4 1⁄2 1⁄4
Aa × aa 2QtRt 0 1⁄2 1⁄2
aa × aa (Rt)2 0 0 1
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All Possible Matings

Offspring Genotype Frequencies
Mating Type Mating Frequency AA Aa aa

AA × AA (Pt)2 1 0 0
AA × Aa 2PtQt 1⁄2 1⁄2 0
AA × aa 2PtRt 0 1 0
Aa × Aa (Qt)2 1⁄4 1⁄2 1⁄4
Aa × aa 2QtRt 0 1⁄2 1⁄2
aa × aa (Rt)2 0 0 1

The genotype frequencies of the offspring generation:

Pt+1 = (1)(Pt)
2 +

1
2
(2PtQt) +

1
4
(Qt)

2 = (Pt)
2 + PtQt +

1
4
(Qt)

2 =

(
Pt +

1
2

Qt

)2

= (pt)
2.
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All Possible Matings

Offspring Genotype Frequencies
Mating Type Mating Frequency AA Aa aa

AA × AA (Pt)2 1 0 0
AA × Aa 2PtQt 1⁄2 1⁄2 0
AA × aa 2PtRt 0 1 0
Aa × Aa (Qt)2 1⁄4 1⁄2 1⁄4
Aa × aa 2QtRt 0 1⁄2 1⁄2
aa × aa (Rt)2 0 0 1

The genotype frequencies of the offspring generation:

Pt+1 = (1)(Pt)
2 +

1
2
(2PtQt) +

1
4
(Qt)

2 = (Pt)
2 + PtQt +

1
4
(Qt)

2 =

(
Pt +

1
2

Qt

)2

= (pt)
2.

Qt+1 = 2ptqt Rt+1 = (qt)2
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Modeling Population Genetics over Time
Constructing the Hardy-Weinberg Model

Genotype Frequencies in Offspring Generation

Pt+1 = (pt)
2 Qt+1 = 2ptqt Rt+1 = (qt)2

pt+1 =

Pt+1 +
1
2

Qt+1

= (pt)
2 +

1
2
(2ptqt) = (pt)

2 + ptqt

= (pt)
2 + pt(1 − pt) = (pt)

2 + pt − (pt)
2

= pt
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Modeling Population Genetics over Time
Continent Island Model

Assume migration in one direction (from a continent to an island), that is remove
ASSUMPTION 6 from the Hardy-Weinberg Model Assumptions.

Continent-Island Model

Let m be the proportion of the total number of island inhabitants in each generation which are
migrants, and thus (1 − m) represents the proportion of native inhabitants. Let q̂ be the frequency
of allele a in the continent population (we will assume this to be constant over time). The allele
frequency of a in the island population over time will be

qt+1 = (1 − m)qt + mq̂

Questions:

For given values of m, q̂, and q0, how does the allele frequency of a change in the island
population over several generations? That is, what happens to the terms in sequence of qt
values? Do they approach a particular value? Do they oscillate?

How does changing the parameter values (m, q̂, and q0) change the dynamics of the allele
frequency of a in the island population over several generation?

Bodine & Eaton BioQuest 2017 24 July 2017 25 / 31



Modeling Population Genetics over Time
Continent Island Model

Assume migration in one direction (from a continent to an island), that is remove
ASSUMPTION 6 from the Hardy-Weinberg Model Assumptions.

Continent-Island Model

Let m be the proportion of the total number of island inhabitants in each generation which are
migrants, and thus (1 − m) represents the proportion of native inhabitants. Let q̂ be the frequency
of allele a in the continent population (we will assume this to be constant over time). The allele
frequency of a in the island population over time will be

qt+1 = (1 − m)qt + mq̂

Questions:

For given values of m, q̂, and q0, how does the allele frequency of a change in the island
population over several generations? That is, what happens to the terms in sequence of qt
values? Do they approach a particular value? Do they oscillate?

How does changing the parameter values (m, q̂, and q0) change the dynamics of the allele
frequency of a in the island population over several generation?

Bodine & Eaton BioQuest 2017 24 July 2017 25 / 31



Modeling Population Genetics over Time
Continent Island Model

Assume migration in one direction (from a continent to an island), that is remove
ASSUMPTION 6 from the Hardy-Weinberg Model Assumptions.

Continent-Island Model

Let m be the proportion of the total number of island inhabitants in each generation which are
migrants, and thus (1 − m) represents the proportion of native inhabitants. Let q̂ be the frequency
of allele a in the continent population (we will assume this to be constant over time). The allele
frequency of a in the island population over time will be

qt+1 = (1 − m)qt + mq̂

Questions:

For given values of m, q̂, and q0, how does the allele frequency of a change in the island
population over several generations? That is, what happens to the terms in sequence of qt
values? Do they approach a particular value? Do they oscillate?

How does changing the parameter values (m, q̂, and q0) change the dynamics of the allele
frequency of a in the island population over several generation?

Bodine & Eaton BioQuest 2017 24 July 2017 25 / 31



Modeling Population Genetics over Time
Natural Selection Model

Assume that natural selection occurs, that is remove ASSUMPTION 8 from the
Hardy-Weinberg Model Assumptions.

Natural Selection Model

Let w1, w2, and w3 be the relative fitnesses for genotypes AA, Aa, and aa. The genotype
frequencies in generation t + 1 with and without selection are given in the table where
w̄ = w1p2

t + 2w2ptqt + w3q2
t .

Pt+1 (AA) Qt+1 (Aa) Rt+1 (aa)

Frequency in absence of natural selection p2
t 2ptqt q2

t

Relative fitness of genotype w1 w2 w3

Frequency with natural selection w1p2
t

w̄

2w2ptqt

w̄
w3q2

t

w̄

pt+1 = Pt+1 +
1
2

Qt+1 =
w1p2

t + w2pt(1 − pt)

w1p2
t + 2w2pt(1 − pt) + w3(1 − pt)2
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Modeling Population Genetics over Time
Natural Selection Model

Assume that natural selection occurs, that is remove ASSUMPTION 8 from the
Hardy-Weinberg Model Assumptions.

Natural Selection Model

Let w1, w2, and w3 be the relative fitnesses for genotypes AA, Aa, and aa.

pt+1 = Pt+1 +
1
2

Qt+1 =
w1p2

t + w2pt(1 − pt)

w1p2
t + 2w2pt(1 − pt) + w3(1 − pt)2

Question: What are the dynamics of the allele frequency of A in the population under different
forms of selection?

Genotype
AA Aa aa

General relative fitness w1 w2 w3

Lethal recessive 1 1 0
Detrimental alleles (recessive) 1 1 1− s
Detrimental alleles (additive) 1 1− s/2 1− s
Dominance (purifying selection) 1 1− hs 1− s
Dominance (positive selection) 1 + s 1 + hs 1
Heterozygote advantage 1− s1 1 1− s2

Heterozygote disadvantage 1 + s1 1 1 + s2

The frequency of the recessive (lethal) glued
allele for two D. melanogaster population
replicates each starting with all heterozygotes
(q0 = 0.5).
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Roadmap

1 Introducing Ourselves

2 Establishing a Common Vocabulary

3 Examples from a Discrete Math Modeling Course

4 Discussion

5 A Discrete QUBES Faculty Mentoring Network (FMN)
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Discussion
Where could a discrete difference equation model be utilized in your class?

What classes are you teaching this Fall?

Into which classes could you see introducing discrete difference equation
models? Where in the class would they fit most appropriately?

What materials would you need to include a discrete difference equation
model in your class?
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A Discrete QUBES FMN

https://qubeshub.org/groups/discretefmn_f2017
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Thank you!
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