Collections

Designing a High Quality and Accessible Scientific Poster

The aim of this project is to help undergraduates understand the importance of making their research accessible to a wide audience and to practice this idea by deliberately designing a scientific poster that is accessible to a more inclusive audience. Students will complete an activity that helps them identify the main conclusion of their research and helps them identify the key supporting data for that conclusion. Then, students will use their main conclusion and figures to design a scientific poster. These activities are designed to be used with students that have already completed their research and have results figures.

0 comments 2 reposts

Profile picture of Courtney Galle

Courtney Galle onto Writing/Presenting Tools

Polyploidapalooza: Exploring the diversity and evolution of polyploid plants and animals

This series of modules explores the complex world of polyploidy, including species formation, cell division, evolution, conservation, and economic importance. We focus on polyploidy across the plant and animal kingdoms using hands-on exercises and case studies.

0 comments 1 reposts

Profile picture of Courtney Galle

Courtney Galle onto Genetics

Geoscience links from SERC

InTeGrate materials engage students in understanding the earth system as it intertwines with key societal issues. They challenge students to address interdisciplinary problems, engage in geoscientific habits of mind, work with authentic geoscience data and develop system thinking. The collection is freely available and ready to be adapted by undergraduate educators across a range of courses including: general education or majors courses in Earth-focused disciplines such as geoscience or environmental science, social science, engineering, and other sciences, as well as courses for interdisciplinary programs.

  •  
Analyzing High Resolution Topography with TLS and SfM
from GETSI
Sustainability Topics: Technology, Natural Hazards
Grade Level: College Upper (15-16)
View these Materials »
An Ecosystem Services Approach to Water Resources
Sustainability Topics: Water & Watersheds, Design & Planning, Cycles & Systems:Hydrologic cycle
Grade Level: College Upper (15-16), College Lower (13-14)
View these Materials »
A Growing Concern: Sustaining Soil Resources through Local Decision Making
Sustainability Topics: Food Systems & Agriculture, Natural Resources
Grade Level: College Lower (13-14):College Introductory
View these Materials »
Carbon, Climate, and Energy Resources
Sustainability Topics: Energy, Cycles & Systems:Carbon Cycle, Human Impact & Footprint, Climate Change
Grade Level: College Lower (13-14), College Introductory
View these Materials »
Changing Biosphere
Sustainability Topics: Ecosystems, Biodiversity
Grade Level: High School (9-12), College Lower (13-14):College Introductory
View these Materials »
Cli-Fi: Climate Science in Literary Texts
Sustainability Topics: Climate Change
Grade Level: College Upper (15-16), College Lower (13-14)
View these Materials »
Climate of Change
Sustainability Topics: Climate Change
Grade Level: College Lower (13-14):College Introductory, College Lower (13-14)
View these Materials »
Coastal Processes, Hazards and Society
Sustainability Topics: Natural Hazards
Grade Level: College Lower (13-14):College Introductory
View these Materials »
Critical Zone Science
Sustainability Topics: Ecosystems, Cycles & Systems
Grade Level: College Lower (13-14), College Upper (15-16)
View these Materials »
Earth's Thermostat
Sustainability Topics: Climate Change
Grade Level: College Lower (13-14):College Introductory
View these Materials »
Environmental Justice and Freshwater Resources
Sustainability Topics: Water & Watersheds, Human Health & Well-being, Cultures, Ethics, & Values, Social & Environmental Justice
Grade Level: College Lower (13-14):College Introductory
View these Materials »
Environmental Justice and Freshwater Resources - Spanish Adaptation
Sustainability Topics: Cultures, Ethics, & Values, Water & Watersheds
Grade Level: College Upper (15-16), College Lower (13-14)
View these Materials »
Eyes on the Hydrosphere: Tracking Water Resources
from GETSI
Sustainability Topics: Water & Watersheds
Grade Level: College Lower (13-14):College Introductory
View these Materials »
Food as the Foundation for Healthy Communities
Sustainability Topics: Social & Environmental Justice, Food Systems & Agriculture, Human Health & Well-being
Grade Level: College Lower (13-14), College Introductory
View these Materials »
Future of Food
Sustainability Topics: Food Systems & Agriculture
Grade Level: College Lower (13-14):College Introductory, College Lower (13-14)
View these Materials »
GPS, Strain, and Earthquakes
from GETSI
Sustainability Topics: Natural Hazards
Grade Level: College Upper (15-16)
View these Materials »
High Precision Positioning with Static and Kinematic GPS
from GETSI
Sustainability Topics: Technology
Grade Level: College Upper (15-16)
View these Materials »
Human's Dependence on Earth's Mineral Resources
Sustainability Topics: Natural Resources:Mineral Resources
Grade Level: College Lower (13-14):College Introductory
View these Materials »
Ice Mass and Sea Level Changes
from GETSI
Sustainability Topics: Climate Change
Grade Level: College Lower (13-14), College Introductory
View these Materials »
Imaging Active Tectonics with InSAR and Lidar
from GETSI
Sustainability Topics: Technology, Risk & Resilience, Natural Hazards
Grade Level: College Upper (15-16)
View these Materials »
Interactions between Water, Earth’s Surface, and Human Activity
Sustainability Topics: Water & Watersheds, Natural Hazards
Grade Level: College Lower (13-14):College Introductory
View these Materials »
Lead in the Environment
Sustainability Topics: Social & Environmental Justice, Human Health & Well-being, Civil Society & Governance, Human Impact & Footprint, Pollution & Waste
Grade Level: College Upper (15-16), College Lower (13-14)
View these Materials »
Living on the Edge: Building resilient societies on active plate margins
Sustainability Topics: Natural Hazards
Grade Level: College Lower (13-14):College Introductory
View these Materials »
Major Storms and Community Resilience
Sustainability Topics: Risk & Resilience, Human Health & Well-being, Civil Society & Governance, Natural Hazards
Grade Level: College Lower (13-14):College Introductory, College Lower (13-14)
View these Materials »
Mapping the Environment with Sensory Perception
Sustainability Topics: Social & Environmental Justice, Human Impact & Footprint, Pollution & Waste
Grade Level: College Upper (15-16), College Lower (13-14)
View these Materials »
Map Your Hazards! – Assessing Hazards, Vulnerability and Risk
Sustainability Topics: Natural Hazards
Grade Level: College Lower (13-14), College Introductory
View these Materials »
Measuring Water Resources
from GETSI
Sustainability Topics: Natural Hazards, Natural Resources, Water & Watersheds
Grade Level: College Upper (15-16), College Lower (13-14)
View these Materials »
Modeling Earth Systems
Sustainability Topics: Climate Change, Cycles & Systems:Carbon Cycle, Cycles & Systems, Hydrologic cycle
Grade Level: College Upper (15-16)
View these Materials »
Natural Hazards and Risks: Hurricanes
Sustainability Topics: Natural Hazards, Risk & Resilience
Grade Level: College Lower (13-14), College Introductory
View these Materials »
Ocean Sustainability
Sustainability Topics: Natural Resources:Ocean/Coastal Resources
Grade Level: College Lower (13-14):College Introductory
View these Materials »
Regulating Carbon Emissions
Sustainability Topics: Pollution & Waste, Energy, Climate Change, Human Impact & Footprint
Grade Level: College Lower (13-14):College Introductory, College Lower (13-14)
View these Materials »
Renewable Energy and Environmental Sustainability
Sustainability Topics: Technology, Energy
Grade Level: College Upper (15-16), College Lower (13-14)
View these Materials »
Soils, Systems, and Society
Grade Level: College Upper (15-16), College Lower (13-14)
View these Materials »
Surface Process Hazards
from GETSI
Sustainability Topics: Natural Hazards, Risk & Resilience
Grade Level: College Lower (13-14):College Introductory
View these Materials »
Systems Thinking
Sustainability Topics: Cycles & Systems
Grade Level: College Lower (13-14):College Introductory
View these Materials »
The Wicked Problem of Global Food Security
Sustainability Topics: Food Systems & Agriculture
Grade Level: College Lower (13-14):College Introductory
View these Materials »
Water, Agriculture, and Sustainability
Sustainability Topics: Human Impact & Footprint, Natural Resources, Food Systems & Agriculture, Water & Watersheds
Grade Level: College Lower (13-14)
View these Materials »
Water: Science and Society
Sustainability Topics: Water & Watersheds
Grade Level: College Lower (13-14):College Introductory, College Lower (13-14)
View these Materials »
Water Sustainability in Cities
Sustainability Topics: Design & Planning, Water & Watersheds, Natural Resources, Technology
Grade Level: College Upper (15-16)
View these Materials »

0 comments 1 reposts

Profile picture of Aviva Liebert

Aviva Liebert onto Climate Justice

Climate Change Module (Project EDDIE)

Students explore how climate is changing from the recent record. Produced by Project EDDIE.

0 comments 2 reposts

Profile picture of Aviva Liebert

Aviva Liebert onto Ecology

Global Temperature Change in the 21st Century: An Introduction to Global Climate Models and Graphing in Excel (Adapted for Non-Majors)

Students link human behavior in various climate change scenarios to predicted temperature outcomes at both local (their assigned Latitude) and global (Latitudinal trends) scales. This adaptation is intended to be more accessible to non-majors.

0 comments 2 reposts

Profile picture of Aviva Liebert

Aviva Liebert onto Prof Comm

Investigating the footprint of climate change on phenology and ecological interactions in north-central North America

The module was used in lab following lecture material on pairwise interactions in ecology (emphasizing consumption, competition, mutualism), and parallel to community ecology (emphasizing food web structure, succession, resistance and resilience).

0 comments 2 reposts

Profile picture of Aviva Liebert

Aviva Liebert onto Ecology

Facilitating Scientific Literacy Through Writing: A Write-to-Learn Assignment for Large Introductory Undergraduate Biology Courses

Write-to-learn (WTL) assignments have been used in a variety of disciplines to encourage conceptual learning and critical thinking in undergraduate education. These assignments focus on facilitating rather than assessing learning. Conversely, write-to-communicate (WTC) assignments (e.g., lab reports and exams), often with the goal of assessing learning, are more commonly employed in foundation STEM courses. We developed a WTL assignment that focuses on promoting curiosity driven learning, critical thinking, and metacognition; skills that promote students’ scientific literacy through writing. We integrated theoretical frameworks for scientific literacy, that include the sub-constructs of third space, authenticity, and multiple discourse as well as science as a human endeavour, and metacognition and self-direction (1, 2) to develop this 3-part WTL assignment. In this assignment, students first select a topic of interest and write freely on their current understanding of the topic (Part 1). They then develop a research question based on their writing and seek answers to their question from published literature (Part 2). Finally, they reflect on their overall experience with the WTL process and propose further avenues of investigation for their research topic (Part 3). Student feedback suggests that they enjoyed the WTL process and their overall satisfaction with the structure of the assignment was high. As we continue to evolve the assignment based on student feedback, we are gratified that students reported high self-efficacy with regard to future writing as a result of participating in this assignment. We recommend use of this type of WTL assignment in large, introductory STEM courses, so as to facilitate rather than simply assess students’ learning.

Primary Image: Scientific literacy through writing. Schematic depicting a write-to-learn assignment format implemented in an introductory undergraduate biology course, along with corresponding science literacy constructs.

0 comments 3 reposts

Profile picture of Aviva Liebert

Aviva Liebert onto Prof Comm

Learning R for Biologists: A Mini Course Grab-Bag for Instructors

As biology becomes more data driven, teaching students data literacy skills has become central to biology curriculum. Despite a wealth of online resources that teach researchers how to use R, there are few that offer practical laboratory-based exercises, with teaching resources such as keys, learning objectives, and assessment materials. Here, we present a modular set of lessons and lab activities to help teach R through the platform of RStudio. Both software applications are free and open source making this curriculum highly accessible across various institutions. This curriculum was developed over several years of teaching a graduate level computational biology course. In response to the pandemic, the class was shifted to be completely online. These resources were then migrated to GitHub to make them broadly accessible to anyone wanting to learn R for the analysis of biological datasets. In the following year, these resources were used to teach the course in a flipped format, which is the lesson plan presented here. In general, students responded well to the flipped format, which used class time to conduct live coding demos and work through challenges with the instructor and teaching assistant. Overall, students were able to use these skills to practice analyzing and interpreting data, as well as producing publication quality graphics. While the modules presented range from very basic, doing simple summary statistics and plotting, to quite advanced, where R is integrated onto the command line, teachers should feel free to pick and choose which elements to incorporate into their own curriculum.

Primary Image: R‐Mini‐Course: An Introduction to R. The primary image was generated with BioRender to be a small representation of the applicability of R that we cover in our course.

0 comments 9 reposts

Profile picture of Aviva Liebert

Aviva Liebert onto Data Analysis

ProteinPhysiochemistry

How to determine physiochemical features of proteins using ExPasy Protpram, SOSUI server, and PSortB programs.

0 comments 1 reposts

Profile picture of Jana L. Villemain

Jana L. Villemain onto Biochemistry resources

A Case of Severe Insulin Resistance

This case focuses on understanding how a mutation in a cell signalling protein (a kinase) can prevent insulin function and lead to diabetes.

0 comments 1 reposts

Profile picture of Jana L. Villemain

Jana L. Villemain onto Biochemistry resources

Go Extinct! An Award-Winning Evolution Game That Teaches Tree-Thinking as Students Pursue the Winning Strategy

Evolutionary trees communicate both the diversity and unity of life, a central and important scientific concept, as highlighted by the Vision and Change undergraduate biology education movement. Evolutionary trees and cladograms are diagrams viewed by biologists as Rosetta Stone-like in how well they convey an enormous amount of information with clarity and precision. However, the majority of undergraduates in introductory biology courses find the non-linear diagram confusing and do not immediately understand the tree-thinking central to interpreting the evolutionary tree’s branching structure. Go Extinct! is an original board game featuring land vertebrates (i.e., amphibians, mammals, birds and reptiles) and it is designed to engage students in reading this evolutionary tree. Go Extinct! won the Society for the Study of Evolution’s Huxley Award for outstanding outreach achievements in recognition for how the gameplay itself incentivizes students to identify clades and common ancestors on a stylized tree. The game can be completed in about 30 minutes, which allows instructors time to give follow-up activity sheets that help students transfer their new ability to read a stylized tree into the ability to read more traditional-looking trees found in textbooks and the literature. Overall, teaching the game, playing the game, and completing the follow-up transfer activity can be completed in a 50-minute section. Each game can serve up to 6 students, which means 3 games can cover a section of 18 students. Go Extinct! provides a fun and effective learning experience that students will remember and may even request to play again.

Primary Image: Biologists play Go Extinct! Students who play Go Extinct! gain a mastery of reading an evolutionary tree or cladogram. The winning strategy depends on identifying common ancestors of animal cards in your hand. Photo taken by the author.

0 comments 2 reposts

Profile picture of Christie Sampson

Christie Sampson onto evolution

Learning R for Biologists: A Mini Course Grab-Bag for Instructors

As biology becomes more data driven, teaching students data literacy skills has become central to biology curriculum. Despite a wealth of online resources that teach researchers how to use R, there are few that offer practical laboratory-based exercises, with teaching resources such as keys, learning objectives, and assessment materials. Here, we present a modular set of lessons and lab activities to help teach R through the platform of RStudio. Both software applications are free and open source making this curriculum highly accessible across various institutions. This curriculum was developed over several years of teaching a graduate level computational biology course. In response to the pandemic, the class was shifted to be completely online. These resources were then migrated to GitHub to make them broadly accessible to anyone wanting to learn R for the analysis of biological datasets. In the following year, these resources were used to teach the course in a flipped format, which is the lesson plan presented here. In general, students responded well to the flipped format, which used class time to conduct live coding demos and work through challenges with the instructor and teaching assistant. Overall, students were able to use these skills to practice analyzing and interpreting data, as well as producing publication quality graphics. While the modules presented range from very basic, doing simple summary statistics and plotting, to quite advanced, where R is integrated onto the command line, teachers should feel free to pick and choose which elements to incorporate into their own curriculum.

Primary Image: R‐Mini‐Course: An Introduction to R. The primary image was generated with BioRender to be a small representation of the applicability of R that we cover in our course.

0 comments 9 reposts

Profile picture of Christie Sampson

Christie Sampson onto field ecology

Facilitating Scientific Literacy Through Writing: A Write-to-Learn Assignment for Large Introductory Undergraduate Biology Courses

Write-to-learn (WTL) assignments have been used in a variety of disciplines to encourage conceptual learning and critical thinking in undergraduate education. These assignments focus on facilitating rather than assessing learning. Conversely, write-to-communicate (WTC) assignments (e.g., lab reports and exams), often with the goal of assessing learning, are more commonly employed in foundation STEM courses. We developed a WTL assignment that focuses on promoting curiosity driven learning, critical thinking, and metacognition; skills that promote students’ scientific literacy through writing. We integrated theoretical frameworks for scientific literacy, that include the sub-constructs of third space, authenticity, and multiple discourse as well as science as a human endeavour, and metacognition and self-direction (1, 2) to develop this 3-part WTL assignment. In this assignment, students first select a topic of interest and write freely on their current understanding of the topic (Part 1). They then develop a research question based on their writing and seek answers to their question from published literature (Part 2). Finally, they reflect on their overall experience with the WTL process and propose further avenues of investigation for their research topic (Part 3). Student feedback suggests that they enjoyed the WTL process and their overall satisfaction with the structure of the assignment was high. As we continue to evolve the assignment based on student feedback, we are gratified that students reported high self-efficacy with regard to future writing as a result of participating in this assignment. We recommend use of this type of WTL assignment in large, introductory STEM courses, so as to facilitate rather than simply assess students’ learning.

Primary Image: Scientific literacy through writing. Schematic depicting a write-to-learn assignment format implemented in an introductory undergraduate biology course, along with corresponding science literacy constructs.

0 comments 3 reposts

Profile picture of Christie Sampson

Christie Sampson onto ecology

Facilitating Scientific Literacy Through Writing: A Write-to-Learn Assignment for Large Introductory Undergraduate Biology Courses

Write-to-learn (WTL) assignments have been used in a variety of disciplines to encourage conceptual learning and critical thinking in undergraduate education. These assignments focus on facilitating rather than assessing learning. Conversely, write-to-communicate (WTC) assignments (e.g., lab reports and exams), often with the goal of assessing learning, are more commonly employed in foundation STEM courses. We developed a WTL assignment that focuses on promoting curiosity driven learning, critical thinking, and metacognition; skills that promote students’ scientific literacy through writing. We integrated theoretical frameworks for scientific literacy, that include the sub-constructs of third space, authenticity, and multiple discourse as well as science as a human endeavour, and metacognition and self-direction (1, 2) to develop this 3-part WTL assignment. In this assignment, students first select a topic of interest and write freely on their current understanding of the topic (Part 1). They then develop a research question based on their writing and seek answers to their question from published literature (Part 2). Finally, they reflect on their overall experience with the WTL process and propose further avenues of investigation for their research topic (Part 3). Student feedback suggests that they enjoyed the WTL process and their overall satisfaction with the structure of the assignment was high. As we continue to evolve the assignment based on student feedback, we are gratified that students reported high self-efficacy with regard to future writing as a result of participating in this assignment. We recommend use of this type of WTL assignment in large, introductory STEM courses, so as to facilitate rather than simply assess students’ learning.

Primary Image: Scientific literacy through writing. Schematic depicting a write-to-learn assignment format implemented in an introductory undergraduate biology course, along with corresponding science literacy constructs.

0 comments 3 reposts

Profile picture of Christie Sampson

Christie Sampson onto ecology

Walkabout: An Easy to Use, Experiential Learning Activity for Applying Abstract Concepts to the Real-World

Students can have difficulty recognizing examples of course concepts in the real-world. They particularly struggle with phenomena that are ambiguously defined, have mimics, or are hard to distinguish from other phenomena. Students can better explore and understand these phenomena in situ. Unfortunately, short class periods, students’ full schedules, and limited resources hinder classic fieldtrips. So, I created Walkabout, which gives students experiences observing and analyzing in situ phenomenon in the surrounding environment during class periods. Walkabout aligns with elements of active learning, experiential learning, and adventure education. In Walkabout, students learn about and discuss the key characteristics of a concept or phenomenon using pre-class readings, reading responses, and class discussion of classic examples. Then, students leave the learning space to walk outside, identify, and photograph examples of the phenomenon. They return to the classroom or online learning space having selected their best example, which they present to the class and engage in a discussion of how well it represents the phenomenon. This activity can be applied to any course topic that discusses real-world phenomena that are easily observable in the environment surrounding the learners but are difficult to identify or define. Instructors can use it with in-person or online classes, synchronously or asynchronously, and in high-tech, low-tech, and no-tech learning environments. Walkabout helps to scaffold student learning, allows students to practice applying difficult concepts, and creates a more inclusive learning environment. It energizes students, helps them learn from each other, and keeps them engaged and focused in a way they enjoy.

Primary Image: A picture of a student using a smartphone to take a photograph of nature.

0 comments 1 reposts

Profile picture of Christie Sampson

Christie Sampson onto ecology

Investigating the footprint of climate change on phenology and ecological interactions in north-central North America

The module was used in lab following lecture material on pairwise interactions in ecology (emphasizing consumption, competition, mutualism), and parallel to community ecology (emphasizing food web structure, succession, resistance and resilience).

0 comments 2 reposts

Profile picture of Christie Sampson

Christie Sampson onto community ecology

Investigating human impacts on local Hawaiian stream ecology

Students learn about stream ecology on the island of Hawaii using data available through USGS and University of Hawaii websites and develop an understanding for potential stream changes due to predicted climate change.

0 comments 1 reposts

Profile picture of Christie Sampson

Christie Sampson onto ecology

Using drones for conservation work with Eben Broadbent

Eben N. Broadbent, PhD, is an assistant professor of forest ecology & geomatics in the School of Forest Resources and Conservation at the University of Florida, with a PhD in Biology (Ecology & Evolution) from Stanford University. He talks to us about the challenges and opportunities for ecological mapping using drones, including how planet microsatellites are imaging the planet daily.

0 comments 1 reposts

Profile picture of Christie Sampson

Christie Sampson onto field ecology

"Boost your evolution IQ": An evolution misconceptions game

Students often enter introductory biology courses with misconceptions about evolution. For example, many students believe that traits arise when a species needs them or that evolutionary processes are goal-oriented. To address these and other misconceptions, we have developed an activity called "Boost Your Evolution IQ." Student groups compete against one another in a fast-paced, challenging quiz that is presented using PowerPoint. Questions get harder from beginning to end, and the stakes get higher: Each correct answer earns double points in round 2 and then triple points in round 3. Student collaboration throughout the activity helps reinforce the concepts in advanced students and allows struggling students to hear evolution explained in various ways. Further, the same misconception is often tested multiple times, allowing students to learn from their mistakes. This activity is useful as a review before an evolution exam or as a pre- and post-test. It may also be adapted for large classes using clicker technology. We provide a detailed explanation of the approach in the attached video (Supporting File S1).

0 comments 2 reposts

Profile picture of Christie Sampson

Christie Sampson onto evolution

Venom Diversity & Evolution in Reptiles and Amphibians - An education module for university students

This module contains information for a three part series introducing the venom system in reptiles and discussing it in an evolutionary context. In the first part venom and its ecological roles are defined with a discussion of the diversity of venom structures and venomous lineages, primarily in squamates. Examples are provided of the various ways that venoms may vary among biological scales. In parts 2 and 3, the evolution of venom is discussed. Part 2 focuses on a description of how the venom system arose in squamates and a discussion of the challenges associated with defining "venomousness". Part 3 examines the various genetic mechanisms that produce venom variation using examples from primarily literature that are presented in Part 1. In addition to lecture materials, we include a primary literature based activity and a group activity designed to encourage students to explore the diversity of venomous taxa in reptiles and amphibians.

0 comments 3 reposts

Profile picture of Christie Sampson

Christie Sampson onto evolution

Furry with a chance of evolution: Exploring genetic drift with tuco-tucos

Genetic drift is an important mechanism of evolution, yet undergraduates often fail to understand how it leads to evolutionary change due in part to its random nature. This lesson plan describes a simulation-based activity that allows students to demonstrate the process of genetic drift across generations. Using a simulated population of tuco-tucos - a small rodent native to South America - students can explore how allele frequencies can change over time due to chance. Students will also demonstrate random changes in allele frequency (genetic drift) using two different population sizes (with an extended option for a third population size) so they may better conceptualize the impact of population size on genetic drift as an evolutionary force. Using inexpensive materials (beans and paper cups), instructors can actively engage students in the process of evolution. The simulations are followed by a brief discussion of two real-world examples of bottleneck and founder effects, two events when the impact of genetic drift can become more pronounced. The lesson then ends with a series of thought questions to reinforce student understanding of how genetic drift leads to evolution. This activity is appropriate for small or large class sizes and advanced high school and college biology courses. It can also be adapted for non-major college biology courses.

0 comments 1 reposts

Profile picture of Christie Sampson

Christie Sampson onto evolution

Defenses against predation: Interpreting graphs of predator behavior

In this lesson, students discuss anti-predator defense mechanisms and the types of cues defenses provide to predators. Students then interpret graphs of behavior of arthropod predators when presented with different phenotypes of color polymorphic tortoise beetles. Finally, students view and reflect on an interview with Dr. Lynette Strickland, the biologist who collected the data that they interpreted.

0 comments 2 reposts

Profile picture of Christie Sampson

Christie Sampson onto Biology