
Implementing and TestingImplementing and Testing
an Agent-Based Modelan Agent-Based Model

M. Drew LaMar
October 14, 2016

Introduction to Quantitative Biology, Fall 2016

Class announcementsClass announcements
Reading assignment for Monday - Chapter 6 (THERE IS A
QUIZ)

There is no lab assignment due next week - only Homework
#4

We will use lab next week as a review session for the second
exam

The ODD Protocol - Learning ObjectivesThe ODD Protocol - Learning Objectives
Be able to name the benefits of using a “Materials and
Methods” protocol (e.g. ODD) for reporting and organizing
the steps of agent-based model design and analysis.

Describing

Understanding

Replicating

Formulating

The ODD Protocol - Learning ObjectivesThe ODD Protocol - Learning Objectives
Develop a firm understanding of the “Overview” and “Details”
elements of ODD.

The ODD Protocol - Learning ObjectivesThe ODD Protocol - Learning Objectives
Develop an introductory understanding of the “Design
concepts” element of ODD.

The ODD Protocol - Learning ObjectivesThe ODD Protocol - Learning Objectives
Understand, from its ODD description, the model we will
program and use in chapters 4 and 5.

Butterfly Model ODD - PurposeButterfly Model ODD - Purpose

The model was designed to explore questions about virtual
corridors. Under what conditions do the interactions of butterfly

hilltopping behavior and landscape topography lead to the
emergence of virtual corridors, that is, relatively narrow paths

along which many butterflies move? How does variability in the
butterflies’ tendency to move uphill affect the emergence of

virtual corridors?

Question: What are the explanatory variables and
processes and what is the system output we are

interested in?

Chapter 4: Implementing an ABM - Learn‐Chapter 4: Implementing an ABM - Learn‐
ing Objectivesing Objectives

Be able to translate a model from its written description in
ODD format into NetLogo code.

Be able to define global, turtle, and patch variables.

Become familiar with NetLogo's most important primitives,
such as ask, set, let, create-turtles, ifelse, and
one-of.

Start learning good programming practices, such as making
very small changes and constantly checking them, and writing
comments in your code.

Produce your own software for the Butterfly model
described in chapter 3.

Implementing an ABM - Tips & TricksImplementing an ABM - Tips & Tricks
Program the overall structure of a model first, before starting
any of the details.

Before adding each new element, conduct some basic tests of
the existing code and save the file.

For the love of all things made of chocolate, indentation and
organization is your friend!

NetLogo BrainteaserNetLogo Brainteaser

Discuss: When you click the new setup button, why does
NetLogo seem to color the patches in spots all over the
View, instead of simply starting at the top and working

down?

Answer: NetLogo always, by default, goes through turtles
and patches in random order. This is an attempt to remove
a possible confounding process - agent ordering. This is an

example of asynchronous updating.

Code CommentingCode Commenting

This is the programmers “Do as I say and not as I do!” Think of
commenting as taking notes in your learning.

“Comments are needed to make code easier for others to
understand, but they are also very useful to ourselves:

after a few days or weeks go by, you might not remember
why you wrote some part of your program as you did

instead of in some other way.”

Code Commenting - What do I comment?Code Commenting - What do I comment?
Briefly describe each procedure (section) or nontrivial piece
of code (paragraphs).

Explain meaning of variables (Pull from ODD if possible)

Document context of each procedure (specific to ABMs - turtle,
patch?)

Label ending of procedures and sometimes if or ifelse
statements (i.e. after closing using] character)

Use ;----------- to separate procedures in long
programs.

Comment pieces of code that are used for unit testing or
temporary output.
show (word elev1 " " elev2 " " elevation)

Code Commenting - CaveatsCode Commenting - Caveats

The point is to make your code readable and understandable,
so some caveats:

There is such a thing as too much commenting - try and make
your code unobfuscated (e.g. if there are multiple ways to
accomplish something, choose the readable over the elegant
and short)

Use tabs and blank lines to show code organization.

Chapter 5: From Animations to Science -Chapter 5: From Animations to Science -
Learning ObjectivesLearning Objectives

Learn the importance of version control.

Understand the concept that using ABMs for science means:

measuring system response and behavior through
producing quantitative output, and

1.

conduct simulation experiments (in silico).2.

Perform your first simulation experiment.

Define and initialize a global variable by creating a slider or
switch.

Develop an understanding of what reporters are and how to
write them.

Chapter 5: From Animations to Science -Chapter 5: From Animations to Science -
Learning ObjectivesLearning Objectives

Start learning how to find and fix mistakes in your code.

Learn to create output by:

writing text to an output window,1.

creating a time-series plot, and2.

exporting plot results to a file.3.

Create a version of the Butterfly model that uses real
topographic data by importing data into NetLogo.

Programming Note: Moving global vari‐Programming Note: Moving global vari‐
ables to the Interfaceables to the Interface

GUI (Graphical User Interface) elements on the Interface
both define and initialize a global variable. What this means if
you move a variable to the Interface:

You should comment out the variable in the globals [
] chunk of code. I would also put an additional comment at
the end stating it is on the Interface. For example:

globals
[
 ; q ; (Interface Slider) Probability that ...
]

Programming Note: Moving global vari‐Programming Note: Moving global vari‐
ables to the Interfaceables to the Interface

GUI (Graphical User Interface) elements on the Interface
both define and initialize a global variable. What this means if
you move a variable to the Interface:

You should remove or comment out the variable
initialization in the setup procedure. If you choose to
comment and not remove, I would also put the same
comment from the globals chunk in here as well. For
example:

to setup
[
 ; set q 0.2 ; (Interface Slider)
]

Programming Note: Initializing variablesProgramming Note: Initializing variables
New variables have a default value of zero until assigned
another value.

Good practice is to explicitly set it to zero anyways in the
code.

Programming Note: Troubleshooting tipsProgramming Note: Troubleshooting tips

Tips to reduce probability of getting stuck and increase
probability of getting unstuck.

Proceed slowly! Add small chunks of code at a time, check for
syntax (using Check button) and runtime (using Go button)
errors, and verify and validate code (i.e. is it doing what it is
supposed to do?) For verification and validation:

Create a Step button that steps through the program one
tick at a time.

1.

Use show statements throughout your code.2.

Use Agent Monitors.3.

Programming Note: Troubleshooting tipsProgramming Note: Troubleshooting tips

Tips to reduce probability of getting stuck and increase
probability of getting unstuck.

Think logically!

“It should work this way because…”, i.e. critically assess
output and results and see if they make sense

1.

“Let me try this and see what happens…”2.

