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In this article, we provide information to 
assist mathematics teacher educators in 
selecting classroom observation tools. 
We review three classroom observation 
tools: (1) the Reform-Oriented Teaching 
Observation Protocol (RTOP); (2) the 
Instructional Quality Assessment (IQA) 
in Mathematics; and (3) the Mathematical 
Quality of Instruction (MQI). We begin by 
describing each tool and providing examples 
of research studies or program evaluations 
using each tool. We then look across tools 
to identify each tool’s speci� c focus, and 
we discuss how the features of each tool 
(and the protocol for its use) might serve as 
affordances or constraints in relation to the 
goals, purposes, and resources of a speci� c 
investigation. We close the article with 
suggestions for how each tool might be used 
by mathematics teacher educators to support 
teachers’ learning and instructional change.

Key words: Classroom observation tools; Instructional 
quality; Reform-oriented teaching

In the September Mathematics Teacher Educator edito-
rial, Smith (2014) describes how “tools” originally devel-
oped for research can be utilized by mathematics teacher 
educators to support teachers’ learning and instructional 

change. Smith provides examples of how research 
frameworks for analyzing instructional tasks and teach-
ers’ questions can serve as scaffolds for teachers’ learning 
(about cognitive demands or question types), instructional 
practice (in selecting tasks or asking questions), and 
re� ection (on the nature of tasks or questions used during 
a lesson). In these examples, and more generally, tools 
highlight particular aspects of practice that research has 
identi� ed as critical for enhancing students’ learning of 
mathematics. Through the lens of a speci� c tool, teachers 
may be able to see aspects of instruction that previously 
blended into the myriad classroom activities occurring 
throughout a lesson. Once aspects of instruction are 
made visible, tools can provide a concrete structure for 
the development of new practices by specifying crite-
ria and identifying standards for the implementation of 
the intended practice. Finally, tools can foster formative 
assessment and self-evaluation by focusing teachers’ 
re� ections on emerging or existing practices to identify 
strengths and/or motivate change.

In mathematics teacher educators’ work as researchers, 
tools can serve to focus our analysis on key features of 
an intervention or treatment (e.g., professional learning 
activity, professional development initiative, or teacher 
education course or program). Tools can communicate 
standards for components of practice (e.g., mathematical 
tasks or teacher’s questions) that can be shared across 
institutions, programs, research groups, and professional 
development settings. Tools allow us to gather data 
speci� cally related to the question under investigation 
(Smith, 2014), generating evidence that directly indi-
cates the effectiveness or impact of the intervention and 
enables us to make valid claims about the intervention. 
In this way, tools can support evidenced-based practice 
in mathematics teacher education, particularly when the 
same tools are employed across multiple projects, sites, 
and investigators.

In this article, we take a closer look at a speci� c set of 
research tools that also hold promise for supporting 
teachers’ learning and instructional change—classroom 
observation instruments. When the purpose of a pro-
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fessional development project, intervention, or teacher 
education program is to change or impact some aspect of 
teachers’ instructional practices, classroom observations 
are an essential component in identifying whether the 
intended practice is being implemented by teachers. The 
tools used to observe and assess classroom instruction 
must be able to identify the instructional practice(s) under 
investigation, using valid and reliable measures. Data and 
results generated by the classroom observation instru-
ment should be useful in evaluating the effectiveness of 
the project, intervention, or program and for providing 
feedback to inform improvements in teachers’ practice.

In this article, we provide information to assist mathemat-
ics teacher educators in selecting a classroom observa-
tion tool. We review three classroom observation tools 
and the protocols for their use:1 (1) the Reform-Oriented 
Teaching Observation Protocol (RTOP); (2) the Instruc-
tional Quality Assessment (IQA) in Mathematics; and 
(3) the Mathematical Quality of Instruction (MQI). We 
have purposefully selected three tools with different foci 
and methods of use in order to raise issues regarding the 
selection of classroom observation tools more broadly. 
We begin by describing each tool and providing exam-
ples of research studies or program evaluations using 
each tool. We then look across tools to identify each 
tool’s speci� c focus, and we discuss how the features 
of each tool (and the protocol for its use) might serve as 
affordances or constraints in relation to the goals, pur-
poses, and resources of a speci� c investigation. We close 
the article with suggestions for how each tool might be 
used by mathematics teacher educators to support teach-
ers’ learning and instructional change.

The Reformed Teaching 
Observation Protocol

Purpose and Theoretical Foundation

The Reformed Teaching Observation Protocol (RTOP; 
Sawada et al., 2002), created originally to gather data for 
the Arizona Collaborative for Excellence in the Prepara-
tion of Teachers (ACEPT), is a classroom observation 
protocol designed to measure the degree to which mathe-
matics and science teaching are reform-oriented. Sawada 
and colleagues use the term reform-oriented to synthesize 
three instructional aspects: standards-based teaching,2 an 
inquiry orientation in lesson design and implementation, 
and student-centered teaching practices. This protocol, 

grounded in a constructivist view of teaching (von Gla-
sersfeld, 1989), builds upon reform efforts and advance-
ments in K–12 standards for mathematics and science 
instruction (American Association for the Advancement 
of Science [AAAS], 1989; National Council of Teachers of 
Mathematics [NCTM], 2000; National Research Council 
[NRC], 1996).

The primary goal for the RTOP was to support reform 
efforts in professional development and teacher educa-
tion. This goal demanded an instrument that would not 
only evaluate mathematics and science teaching but 
also help improve instruction (e.g., to provide a forma-
tive assessment of classroom instruction). In other words, 
evidence from an evaluation could communicate what 
went well during instruction, what could be improved, 
and how this improvement might occur.

The RTOP Instrument

The RTOP is a 25-item Likert-scale questionnaire (sample 
rubric provided in Appendix A; link to entire RTOP pro-
vided in Appendix D) examining three factors within the 
learning environment (subscales in parentheses): Lesson 
Design and Implementation, Content (propositional and 
procedural knowledge), and Classroom Culture (com-
municative interactions and student/teacher relation-
ships). A brief description of the factors and subscales is 
offered here; Figure 1 provides example items to illustrate 
each subscale.

Lesson design and implementation, the only factor 
without subscales, identi� es ways a teacher designs and 
sequences a lesson to support meaningful learning. The 
second factor, Content, includes two subscales: (1) propo-
sitional knowledge assesses whether instruction focuses 
on understanding core ideas meant to build conceptual 
understanding, and (2) procedural knowledge assesses 
how students solve problems and engage in problem-
solving behaviors. Items on the propositional and proce-
dural knowledge subscales are broad in nature and are 
not content speci� c. The third factor, Classroom culture, 
also has two subscales: (1) communicative interactions 
identify discourse moves that occurred during instruction, 
and (2) student/teacher relationships capture teacher-
moves that facilitate a caring and nurturing environment.

The RTOP uses � ve-point Likert scales for each item. 
Raters are provided space for � eld notes, which supple-

1 We use the terms classroom observation instrument and classroom observation tool synonymously to refer to the set of rubrics used in class-
room observations. We use the term protocol to encompass the rubrics and the requirements for their use (e.g., rater training, how they are 
used during an observation, etc.).

2 Given the cross-disciplinary nature of the RTOP, “standards-based teaching” is intended to highlight process standards for doing mathematics 
and engaging in science rather than content-speci� c standards.
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ment the quantitative scores and provide evidence to be 
used for shared re� ection with the observed teachers. On 
the 0–4 scale, a score of 0 indicates that the item was 
“never observed” during the lesson, a score of 2 indicates 
that the item was observed at least twice, and a score 
of 4 indicates that the item was “very descriptive” of the 
lesson. A total of 10 or greater on any subscale suggests 
evidence of reform orientation for the construct assessed 
by that subscale. The RTOP’s internal consistency is 
exceptionally high, � = 0.97, indicating that individual 
teachers tend to score similarly between subscales. The 
subscales also have suf� cient internal consistency (e.g., 
teachers tend to score similarly on the � ve items within a 
subscale), ranging from � = 0.80 to as high as � = 0.93, 
surpassing the threshold for reliable use in research set-
tings (Gall, Gall, & Borg, 2007). Subscales may be used in 
place of the entire instrument if desired.

Administration of the RTOP

Researchers can use the RTOP to assess videotaped or 
live mathematics or science instruction in grades K–12, 
community college, or university settings. More observa-
tions of the same teacher increase the statistical valid-
ity of the instrument at the teacher level; however, one 
observation with two or more raters is suf� cient to draw 
conclusions about an instructional episode. Prior to using 
the RTOP, raters are expected to complete a free online 
training (link provided in Appendix D), which takes 
approximately 1–2 days and should be completed by 
teams of at least two raters.3 The online modules include 

(a) understanding the design of the RTOP and (b) reach-
ing adequate interrater reliability with established raters. 
During the training, trainees evaluate recorded instruction 
and compare their scores with benchmark scores from 
RTOP developers. To be considered certi� ed to use the 
RTOP in formal research, trained raters should have over-
all scores within +/– 5 points of the developers’ scores, 
with each item score varying 1 point or less (Sawada et 
al., 2002). In research, two or more trained raters are 
expected to observe each lesson and then draw agreed-
upon conclusions about the observed lesson. Note that 
the online training videos feature college-level education 
courses, and additional practice coding videos from K–12 
mathematics classrooms may be necessary before using 
the RTOP.

Interpretation of RTOP Results

The RTOP generates an overall total score for each 
observed lesson, created by summing scores on all items 
within subscales. Scores range from 0 to 100, with higher 
scores indicating greater reform orientation. In a valida-
tion study including 141 Grade 6–16 mathematics and 
science teachers, the average RTOP score was 51.3 with 
a standard deviation of 20.1 (Sawada et al., 2002). An 
overall score of 50 (e.g., 25 items x 2 points per item) is 
the minimum threshold for considering instruction to have 
elements of reformed teaching (Sawada et al., 2002). For 
example, a score of 60 would suggest that the observed 
lesson was reform-oriented. Deeper inspection of the 
� ndings (e.g., by looking at scores for individual factors, 

RTOP factors and subscales RTOP sample items

Lesson Design and Implementation

(5 items) “In this lesson, student exploration proceeded formal presentation.”

Content

Propositional knowledge
(5 items)

Procedural knowledge
(5 items)

“The lesson promoted strongly coherent conceptual understanding.”

“Students made predictions, estimates, and/or hypotheses and devised means 
for testing them.”

Classroom Culture

Communicative interactions
(5 items)

“The teacher’s questions triggered divergent modes of thinking.”

Student/Teacher relationships
(5 items)

“The metaphor ‘teacher as listener’ was very characteristic of this classroom.”

Figure 1. Examples of RTOP items for each subscale.

3 In-person training is no longer available.
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subscales, or items) would be necessary to determine 
whether there was a general trend of reform-orientation 
across all factors or noticeable differences between fac-
tors (e.g., a total score of 10 or greater on any subscale 
suggests evidence of reform-oriented teaching for those 
speci� c constructs).

Quantitatively, RTOP scores can be used to assess change 
over time (e.g., by comparing teachers’ pre/post scores), 
to assess the impact of an intervention or program (e.g., 
comparing control and treatment groups), or to provide a 
general measure of reform-oriented teaching in a school 
or district (e.g., percent of teachers above the 50-point 
threshold). Qualitatively, RTOP results are intended to 
foster discussions with individuals or groups of teach-
ers about what raters noted during observed lessons 
and ways that mathematics or science teaching might be 
revised to promote reform-oriented teaching practices. 
In this way, the RTOP can be used in a school or district 
as a vehicle to spur building-wide or district-wide reform 
initiatives or in university settings to promote mathemat-
ics and science preservice teachers’ ideas and practices 
regarding reform-oriented teaching.

The RTOP as a Research Tool

The RTOP has been used in several studies of mathemat-
ics and science teaching (Adamson et al., 2003; Dun-
leavy, Dede, & Mitchell, 2009; Jong, Pedulla, Reagan, 
Salomon-Fernandez, & Cochran-Smith, 2010; Roehrig & 
Kruse, 2005), and it has been adapted to meet speci� c 
needs in other studies (e.g., Ciancolo, Flory, & Atwell, 
2006; Morrell, Wainwright, & Flick, 2004; Wainwright, 
Morrell, Flick, & Schepige, 2004). We present two 
examples here of how the RTOP was used to identify 
reform-oriented instructional practices.

Examining secondary instruction. Adamson and his 
ACEPT team (2003), the developers of the RTOP, con-
ducted research to identify the impact of university 
coursework led by ACEPT instructors on secondary 
mathematics and science teachers’ use of reform-oriented 
instructional practices. Two research questions guided 
this study: (1) Was there a difference in RTOP scores 
between teachers previously enrolled in ACEPT courses 
and those who did not experience such ACEPT courses? 
and (2) In what ways did students’ content knowledge 
differ when comparing Grade 6–12 students taught by 
graduates from the ACEPT program and their peers taught 
by a non-ACEPT graduate?

ANOVA analyses identi� ed a signi� cant difference in 
mean RTOP scores between ACEPT graduates and com-
parison teachers, F(2,26) = 3.44, p < .05. Science students 

taught by ACEPT graduates had greater content knowl-
edge than their peers taught by non-ACEPT graduates, 
F(2,13) = 6.23, p = .01, as measured by content-speci� c 
instruments. Thus, university instruction promoting 
reform-oriented teaching was associated with better 
teacher and student outcomes compared to a similar 
peer group.

Examining elementary instruction. Jong and colleagues 
(Jong, Pedulla, Reagan, Salomon-Fernandez, & Cochran-
Smith, 2010) used the RTOP to examine classroom 
practices of preservice elementary mathematics teachers 
and to determine whether student teachers were enacting 
reform-oriented instruction after experiencing university 
coursework aligned with the vision of teaching shared 
by NCTM (2000) and the RTOP authors. Furthermore, 
the districts where student teachers were placed utilized 
reform-oriented curricula. The study investigated these 
questions: (1) To what extent did a sample of elementary 
preservice teachers implement reform-oriented teaching? 
and (2) What is the relationship between these teachers’ 
levels of reformed instruction and their students’ math-
ematical understanding (as measured by district-level 
mathematics tests)?

Results indicated that on average, the elementary student 
teachers engaged in reform-oriented mathematics teach-
ing. Mean scores for the � ve subscales ranged from 1.94 
to 2.42, which is near or above the minimum threshold 
(≥ 2) for instruction showing characteristics of reformed 
teaching. The overall RTOP average was above 50, 
indicating that in general, student teachers’ instructional 
practices had characteristics of reform-oriented instruc-
tion. Subsequent analysis showed that three of the � ve 
RTOP subscales (propositional knowledge, procedural 
knowledge, and student/teacher relationships) were mod-
erately correlated with students’ mathematics understand-
ing as measured by the district-level tests (i.e., r ≥ 0.51). 
Thus, the student teachers appeared to be enacting the 
reform-oriented instructional practices advocated by their 
teacher preparation program, and these practices were 
associated with increased student learning.

Summary of RTOP

The RTOP has been used in several studies of mathemat-
ics and science teaching for 15 years (see Appendix D) 
and continues to be cited and utilized as a basis for new 
protocols (e.g., Morrell, Wainwright, & Flick, 2004). Stud-
ies using the RTOP share a vision that reform-oriented 
instruction is likely to lead to productive student out-
comes. The RTOP plays an important role by instantiat-
ing this shared vision, which then allows observers and 
teachers to have a common ground for instructional 
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conversations within and between the content areas of 
mathematics and science. The RTOP generates quantita-
tive data and also lends itself to offering meaningful feed-
back that can be conveyed to a teacher as a way to revise 
his or her mathematics or science instruction to align with 
the vision of reform-oriented instruction.

The Instructional Quality Assessment 
Mathematics Toolkit

Purpose and Theoretical Foundation

The Instructional Quality Assessment (IQA) Mathemat-
ics Toolkit (Matsumura, Garnier, Slater, & Boston 2008; 
Boston & Wolf, 2006) is a classroom observation protocol 
designed to measure the quality of mathematics instruc-
tion at scale using a combination of lesson observations, 
assignment collections, and student work. The IQA is 
based on two main constructs: Academic Rigor and 
Accountable Talk. The primary theoretical framework for 
Academic Rigor is Stein and colleagues’ Mathematical 
Tasks Framework (Stein, Grover, & Henningsen, 1996), 
which considers the cognitive demand (i.e., type and 
level of thinking) that a mathematical task can potentially 
elicit from students, and how cognitive demands change 
throughout a lesson. Accountable Talk (Resnick & Hall, 
1998) consists of the mathematical quality of classroom 
discourse with respect to accountability to the learning 
community and to the discipline of mathematics. Thus, 
the IQA assesses the quality of instruction based on the 
mathematical work that students do and discuss in the 
classroom, based on the cognitive demands and account-
able talk moves observed during the lesson.

The IQA Instrument

Figure 2 provides an overview of the IQA constructs, 
rubrics, and indicators4 (sample rubric provided in 
Appendix B; link to entire instrument provided in Appen-
dix D). The construct of Academic Rigor contains three 
rubrics. First, Potential of the Task identi� es the highest 
level of thinking and explanation that the written task has 
the potential to elicit from students. Second, Task Imple-
mentation measures the highest level of thinking in which 
the majority of students actually engaged during the 
observed lesson. Third, Rigor of the Discussion assesses 
the level of students’ mathematical thinking and reason-
ing evident during a whole-class discussion following 
students’ work on the task.

The Rigor of the Discussion rubric is a holistic assessment 
of students’ mathematical representations, explanations, 
and strategies provided during whole-class discussion, 
whereas the Accountable Talk rubrics measure speci� c 
elements of classroom discussion at a � ner grain size. 
Accountable Talk contains � ve rubrics: Participation, 
Teacher’s Linking, Students’ Linking, Teacher’s Press, and 
Students’ Response. Participation captures the proportion 
of students participating in the discussion. Teacher’s Link-
ing and Students’ Linking capture accountability to the 
learning community, measured by the degree to which 
the teacher or students make connections to and build 
upon others’ contributions to the discussion. Teacher’s 
Press assesses the extent to which the teacher requires 
students to explain and justify their thinking, while Stu-
dents’ Response assesses the extent to which students 
provide such explanations or justi� cations. These rubrics 

IQA construct IQA rubric IQA indicator

Academic Rigor

Potential of the Task Instructional Tasks

Task Implementation Task Implementation

Rigor of the Discussion

Explanations of Mathematical 
Thinking and ReasoningAccountable Talk

Participation

Teacher’s Linking

Students’ Linking

Teacher’s Press

Students’ Response

Figure 2. An overview of the IQA constructs and rubrics.

4 Rubrics for Rigor of Teacher’s Questions and Mathematical Residue were added to the IQA in the fall of 2014 and are not discussed herein.
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capture accountability to knowledge and rigorous think-
ing in the discipline of mathematics.

Each rubric is scored from 0–4 (with 0 indicating the 
construct is absent). For the Academic Rigor rubrics, low 
levels of cognitive demand (e.g., memorization or recall 
of facts or formulas, or the use of previously learned 
mathematical procedures without connections to con-
cepts or meaning [Stein, Grover, & Henningsen, 1996; 
Stein, Smith, Henningsen, & Silver, 2009]) correspond 
to scores of 1 or 2, respectively. High-level cognitive 
demands (e.g., developing mathematical meaning for 
or with given procedures and/or open-ended problem 
solving [Stein, Grover, & Henningsen, 1996; Stein, Smith, 
Henningsen, & Silver, 2009]) that do not explicitly prompt 
students to explain their reasoning are assigned a score 
of 3, while those that do contain such prompts score 4. 
For the Accountable Talk rubrics, infrequent or formu-
laic talk moves (or student responses) score 1 or 2, and 
the presence and consistency of high-level talk moves 
score 3 or 4, respectively. As few as two observations per 
teacher may be suf� cient to provide a reliable indica-
tor of instructional quality when teachers comply with 
the data collection requirements (i.e., students engage in 
mathematical work followed by a whole-class discussion). 
When teachers were observed on consecutive days by 
the same (trained) observer, the IQA was found to have 
an acceptable internal consistency reliability (� = .86)
with only two observations (Matsamura, Garnier, Slater, 
& Boston, 2008). The dependability coef� cient increased 
to .90 with one additional observation and to .94 for 
� ve observations.

Administration of the IQA

The IQA rubrics can be used in observations of K–12 
mathematics classrooms. Researchers, professional devel-
opment providers, and/or teacher educators can select 
individual IQA constructs or rubrics as aligned with the 
goals of the project, intervention, or program. A two-day 
face-to-face training is required for researchers to use 
the IQA; online training is not currently available. IQA 
developers intentionally designed the IQA rubrics to be 
used reliably during live classroom observations, but the 
IQA can also be used with videotaped lessons.5 Dur-
ing the observation, raters take detailed � eld notes that 
are used to complete rubrics immediately following the 
observation. Once pairs of raters have achieved at least 
80% exact-point agreement in the � eld (or using video-
taped lessons from a project’s dataset), lessons may be 
observed/scored by an individual rater.

Interpretation of IQA Results

When using the IQA, raters give the observed lesson 
one score on each IQA rubric. Because the IQA rubrics 
yield ordinal data, results from across an entire program, 
school, or project are reported as number (and per-
centages) of lessons at each score level for each rubric. 
Comparisons (e.g., between teachers’ pre- and post-
workshop data, data from control vs. project teachers, or 
different rubrics) should be conducted using nonparamet-
ric tests or tests of frequency or proportion. Descriptive 
data for each rubric, such as means and medians, are 
often reported to support interpretations of the results. 
For example, given the 4-point scale across all rubrics, 
a mean (or median) score above 2.5 is interpreted as an 
indicator of higher/consistent use of cognitively challeng-
ing tasks and/or accountable talk moves. Further, it is 
possible to make comparisons and identify relationships 
across different rubrics (e.g., comparing Potential of the 
Task to Task Implementation to determine whether high-
level task demands were maintained) because the rubrics’ 
score levels are similarly structured. The IQA score levels 
are also very descriptive, indicating speci� c characteris-
tics or frequencies of instructional practice necessary for 
each score level. The detailed descriptors for each score 
level and the consistency in score levels across rubrics 
facilitate qualitative interpretations of the IQA results.

The IQA as a Research Tool

The IQA has been used to assess mathematics teach-
ers’ instructional practices in large-scale studies at the 
school or district level (e.g., Jackson, Garrison, Wilson, 
Gibbons, & Shahan, 2013; Quint, Akey, Rappaport, & 
Willner, 2007; Wilhelm, 2014) and professional develop-
ment research (e.g., Boston & Smith, 2009, 2011; Sztajn, 
Wilson, Edgington, & Confrey, 2011). In this section, 
we describe two studies that used the IQA to identify 
reform-oriented instructional practices in secondary and 
middle level mathematics classrooms following teachers’ 
participation in professional development or curricular 
reform efforts.

Measuring the effect of secondary mathematics teacher 
professional development. Boston and Smith (2009) used 
the IQA Mathematics Toolkit to assess the effectiveness 
of professional development designed to help teach-
ers select and implement cognitively demanding tasks. 
Participants were 18 secondary mathematics teachers in 
the “Enhancing Secondary Mathematics Teacher Prepara-
tion” (ESP) project. Ten secondary mathematics teachers 

5 A unique feature of the IQA is that it can be used with collections of student work in lieu of classroom observations. As the purpose of this 
paper is to discuss a sample of classroom observation protocols, the rubrics for student work collections are not discussed. See Matsumura, 
Garnier, Slater, & Boston (2008) for technical quality and Boston (2012) for examples of use.
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who did not participate in ESP served as a control group. 
Instructional tasks, student work, and lesson observations 
were collected in fall, winter, and spring from ESP teach-
ers and spring only from control group teachers. Only the 
IQA Task Potential and Implementation rubrics were used 
in this study because Accountable Talk was not a central 
feature of the ESP professional development.

Mann-Whitney tests indicated that ESP teachers’ mean 
Potential of the Task score increased signi� cantly from 
2.54 to 3.01 from fall to spring (z = 2.34, p < .01 [one-
tailed]). Chi-squared tests also indicated that the number 
of high-level tasks (�2(2) = 16.18; p < .01) and imple-
mentations (�2(2) = 16.11; p < .001) in ESP teachers’ data 
collections increased signi� cantly over time. While no 
signi� cant difference existed between the control group 
and ESP teachers’ fall lesson observations, ESP teachers’ 
scores for spring lesson observations were signi� cantly 
higher than scores of the control group for Potential 
of the Task (z = 2.15, p = .02 [one-tailed]) and Imple-
mentation (z = 1.87; p = .03 [one-tailed]). In addition, 
the results were independent of the type of curriculum 
teachers used, providing further evidence of the effec-
tiveness of the professional development in supporting 
teachers to select and implement cognitively challenging 
instructional tasks.

Examining the Effect of Standards-based Curriculum and 
Professional Development. Boston (2012) used the IQA 
Academic Rigor and Accountable Talk rubrics to exam-
ine the effect of a district-wide curriculum adoption and 
accompanying professional development with 13 middle 
school mathematics teachers. Although lesson observa-
tions and assignments with accompanying student work 
served as data for the study, we focus here on the analysis 
of the lesson observations.

Results showed that for lesson observations following 
teachers’ participation in the professional development 
initiative, the majority of tasks that teachers selected 
(58%) and implemented (65%) were low level (1 or 2 for 
Potential of the Task and Implementation). Only 27% of 
the whole-class discussions exhibited evidence of high-
level thinking and reasoning (3 or 4 for Rigor of Discus-
sion), while 54% were considered low level, and 19% 
of observed lessons lacked any discussion. Results were 
comparable for each Accountable Talk rubric, with mini-
mal class discussions scoring 3 or 4 for Teacher’s Linking 
and Students’ Linking, or Teacher’s Press and Students’ 
Response.

These results demonstrated that teachers did not seem 
to be utilizing the high-level tasks provided by their 
Standards-based curriculum on a consistent basis for 

classroom instruction. Additionally, teachers were not 
consistently enacting whole-class discussions, and when 
they did, the discussion contributed little to students’ 
opportunities to learn. Boston (2012) explained how 
these, and other, more � ne-grained results based on the 
IQA, can be used to provide speci� c feedback to district 
leaders regarding the ef� cacy of the new curriculum 
adoption and professional development initiative. Further-
more, the results suggest pathways for improvement in 
teachers’ instructional practice that can be addressed by 
ongoing professional developed tailored to the needs of 
the district.

Summary of the IQA

The IQA is a holistic assessment of mathematics instruc-
tion with a speci� c focus on the opportunities for stu-
dents to engage in cognitively challenging mathematical 
work and thinking and to explain and express their rea-
soning in whole class discussions. Hence, the IQA rubrics 
are “best-suited for assessing reform-oriented instructional 
practices, for use in implementation studies of curriculum 
or professional development or to identify changes in the 
nature of school- or district-wide instructional practice 
over time” (Boston, 2012, pp. 95–96). The small number 
of observations needed to obtain a stable indicator of 
classroom practice allows for it to be used at scale and 
in settings in which videotape is not practical or pos-
sible. By identifying and measuring aspects of mathemat-
ics instruction that correspond to student achievement 
(Boaler & Staples, 2008; Stein & Lane, 1996; Stigler & 
Hiebert, 2004), the IQA provides feedback that can assist 
mathematics teacher educators in designing professional 
development that addresses speci� c elements of instruc-
tion (e.g., tasks, implementation, and/or discussion). Thus, 
the IQA can serve as both a lesson observation protocol 
and a tool for professional development.

The Mathematical Quality of Instruction

Purpose and Theoretical Foundation

The Mathematical Quality of Instruction (MQI) is a mul-
tidimensional assessment of the rigor and richness of the 
mathematics present during classroom instruction. The 
MQI must be used on videotaped instructional episodes 
(rather than live classroom observations). The instru-
ment, designed by the Learning Mathematics for Teaching 
Project (http://www.sitemaker.umich.edu/lmt/home), 
was originally developed alongside efforts to conceptual-
ize and validate measures of mathematical knowledge 
for teaching (MKT) (Ball, Thames & Phelps, 2008). MKT 
refers to the mathematical knowledge that is speci� cally 
entailed in the work of teaching. In accord with perspec-
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tives advanced in the MKT literature, the MQI is designed 
to attend to the mathematics-speci� c components of the 
lesson and does not preference or measure a particular 
pedagogical approach. In other words, the authors claim 
that it is possible and bene� cial to attend to the math-
ematical quality of an instructional episode regardless of 
the instructional methods. This orientation is re� ected in 
the instrument’s attention to what rather than how math-
ematical work is evidenced during the lesson.

A second key construct informing the design of the MQI 
is the instructional triangle (Cohen, Raudenbush, & Ball, 
2003) in which instruction is conceptualized as interac-
tions among teachers, students, and content. Given this 
more encompassing view of instruction, the instrument 
measures mathematical quality based on what a teacher 
says and does, what the students say and do, and what 
the curricula afford.

The original coding scheme was developed and re� ned 
through a synthesis of literature on mathematics class-
room instruction and analysis of over 250 recorded les-
sons from 2nd– to 6th-grade classrooms. The codes are 
intended to capture elements of lessons that compromise 
the mathematical integrity of a lesson (e.g., the presence 
of errors or imprecise language), as well as aspects of 
instruction that support student learning (e.g., the use of 
multiple representations and explanations that focus on 
why something works). The instrument was revised in 
February 2014 to re� ne codes based on feedback from 
validation studies and to more explicitly align with math-
ematical practices outlined in the Common Core State 
Standards for Mathematics (CCSSM) (National Governors 
Association Center for Best Practices & Council of Chief 
State School Of� cers, 2010).

The MQI Instrument

The goal of the MQI is to measure the nature of the 
mathematical content available to students during instruc-
tion. To this end, the current instrument is organized 
around � ve dimensions of instruction: Classroom Work 
is Connected to Mathematics, Richness of the Math-
ematics, Working with Students and Mathematics, Errors 
and Imprecision, and Common Core Aligned Student 
Practices (see Figure 3; sample rubrics provided in 
 Appendix C). Researchers can decide to use some or all 
of the MQI dimensions.

The six subscales within the Richness of Mathematics 
dimension capture the extent to which teachers and/or 
students (1) explicitly link and connect representations 
of mathematical ideas or procedures; (2) provide math-
ematical explanations that focus on why rather than how; 
(3) attend to the meaning of number relationships and 

operations; (4) discuss multiple procedures or solution 
methods; (5) develop mathematical generalizations based 
on examining instances or examples; and (6) � uently use 
mathematical language.

The dimension of Working with Students and Math-
ematics captures whether teachers can understand and 
respond to mathematical ideas students present and 
appropriately remediate student errors. The Errors and 
Imprecision dimension is more strictly focused on the 
teacher’s use of correct, clear, and precise mathematical 
language and notation. The � nal dimension, Common 
Core Aligned Student Practices, incorporates the elements 
from what was called “Student Participation in Meaning-
Making and Reasoning” in previous versions, along with 
additional subscales to denote the extent to which stu-
dents work on contextual tasks and communicate about 
the mathematics. As a whole, subscales in this dimension 
measure student engagement in sense-making as indi-
cated by the quality of student explanations; evidence 
of students’ questioning, conjecturing, and generalizing 
mathematical ideas; and the cognitive demand of the task 
as it is enacted.

Videotaped lessons are chunked into equal intervals of 5 
to 7.5 minutes, with each segment coded along the � ve 
dimensions. The � rst dimension, Classroom Work is
Connected to Mathematics, is simply coded yes or no 
depending on whether at least 50% of class time (at least 
3.75 minutes in a 7.5-minute segment) is connected to 
mathematics, rather than management or other activities. 
For the remaining four dimensions, raters take notes on 
each video segment and use these notes to score a num-
ber of subscales and the dimension overall after viewing 
the entire video (see Figure 3). Subscales and overall 
dimensions are scored using 4-point rubrics rang-
ing from not present (0) to high (3). To illustrate, the rubric 
for the subscale Linking Between Representations and 
the dimension Overall Richness of the Mathematics are 
included in Appendix C. Researchers can opt to follow the 
“MQI Lite” protocol, where they provide an overall score 
for each dimension but do not score individual subscales.

Administration of the MQI

The MQI is designed for coding video of K–9 classroom 
instruction in mathematics. Video-based training is avail-
able free and online (link provided in Appendix D). Train-
ing requires approximately 16 hours that can be parsed 
into 1- to 2-hour increments. The training modules consist 
of detailed descriptions of codes and scoring guidelines, 
along with videos exemplifying different score points 
and practice tests. After working through these modules, 
individuals can become MQI certi� ed by achieving an 
established percentage of agreement with master coding 
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on a selection of videos. The entire MQI protocol is made 
available once an individual has completed training and 
is consider certi� ed.

Interpretation of MQI Results

In order to provide generalizable, reliable indicators of 
mathematical quality at the teacher level, the developers 
recommend that at least 3 lessons be scored indepen-
dently by two coders. As described by Hill, Charalam-
bous, and Kraft (2012), internal consistency reliabilities 
for overall dimensions substantially increased when three 
observations (per teacher) were scored by two certi-
� ed coders compared to just one certi� ed coder. When 
four observations were scored by two certi� ed coders, 
internal consistency reliabilities continued to increase, but 
only slightly; for example, Richness of the Mathematics 

increased from 0.77 to 0.80, and Errors and Imprecision 
increased from 0.71 to 0.75.

A composite lesson score can be obtained by averag-
ing scores from the � ve dimensions, and the composite 
scores from a teacher’s four lessons can then be aggre-
gated into one overall teacher-level score. At the teacher-
level, the choice to report composite lesson scores, the 
overall scores for each dimension, or individual subscale 
scores is dependent on the purpose and grain-size of the 
research questions. Generally, the overall scores for each 
of the � ve dimensions are reported. However, scores for 
each subscale within a dimension can be used to provide 
formative feedback directly to teachers or aggregated to 
inform professional development. Scores from multiple 
teachers over the course of several observations may 
also be aggregated to provide feedback at the district 

MQI dimension MQI subscales

Classroom Work is Connected 
to Mathematics

1.  Overall Classroom Work is Connected to Mathematics

Richness of the Mathematics 2.  Linking Between Representations

3.  Explanations

4.  Mathematical Sense-Making

5.  Multiple Procedures or Solution Methods

6.  Patterns and Generalizations

7.  Mathematical Language

8.  Overall Richness of the Mathematics

Working with Students 
and Mathematics

9.  Remediation of Student Errors and Dif� culties

10. Teacher Uses Student Mathematical Contributions

11. Overall Working with Students and Mathematics

Errors and Imprecision 12. Mathematical Content Errors

13. Imprecision in Language or Notation

14. Lack of Clarity in Presentation of Mathematical Content

15. Overall Errors and Imprecision

Common Core Aligned 
Student Practices

16. Students Provide Explanations

17. Student Mathematical Questioning and Reasoning (SMQR)

18. Students Communicate about the Mathematics of the Segment

19. Task Cognitive Demand

20. Students Work with Contextualized Problems

21. Overall Common Core Aligned Student Practices

Figure 3. Dimensions and subscales in the MQI.
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level. Such data can indicate trends across teachers or 
schools for program evaluation purposes (e.g., to measure 
impact of professional development or changes in the 
 curriculum).

The MQI as a Research Tool

Two of the original goals prompting the development of 
the MQI were (a) to provide more than a propositional 
link between teacher knowledge and classroom instruc-
tion and (b) to capture the mathematical aspects of 
instruction as distinct from pedagogical strategy. Next, we 
discuss examples of recent studies designed to meet these 
goals and explore other potential uses of the MQI.

Relating teacher knowledge and classroom instruction. 
Hill and her colleagues at the University of Michigan 
(Hill et al., 2008) employed a mixed-methods approach 
to investigate how teachers’ mathematical knowledge, as 
measured on paper-pencil MKT assessments, interacted 
with the mathematical quality of instruction. To facilitate 
the correlational study, MQI subscales were compressed 
into six separate dimensions (using an earlier version of 
the MQI). Teacher-level scores for each dimension and an 
overall lesson score were calculated by averaging scores 
across three videotaped lessons per teacher. Signi� cant 
correlations were found between MKT and teachers’ 
scores for the dimensions of Total Errors, Language Errors, 
and Responding to Students Appropriately (Spearman’s 
� = –.83 and –.80 and .65, respectively). In addition to 
establishing strong positive correlations between MKT 
and MQI, qualitative analysis of both convergent (i.e., 
high MKT and high MQI) and divergent teacher cases 
revealed additional factors (i.e., curricular materials or 
teacher beliefs) that may mediate this relationship.

Building on this study, the MQI was used in a small-scale 
study to investigate the interrelationships amongst the 
mathematical quality of classroom instruction, curricu-
lum, and teacher knowledge (Charalambous & Hill, 2012). 
Researchers aggregated overall scores on each MQI 
dimension across six videotaped lessons to categorize 
mathematical quality of instruction for each case-study 
teacher. Both MKT and the nature of the curriculum (e.g., 
reform-oriented or traditional) were positively related to 
teachers’ abilities to use representations, provide explana-
tions, and use precise language and notation as identi� ed 
by the MQI.

Relating classroom instruction and students’ math-
ematical achievement. MQI is one of � ve classroom 
observation protocols used in the larger Measures of 

Effective Teaching (MET) project6 (Kane & Staiger, 2012). 
Preliminary � ndings indicate that the instrument does 
indeed measure qualities of instruction distinct from 
those assessed in non-subject speci� c observation tools 
(i.e., Classroom Assessment Scoring System [CLASS] or 
Framework for Teaching [FFT]). Speci� c studies within 
this project (see Appendix E) also reveal aspects of the 
MQI that are strongly or weakly correlated to teach-
ers’ value-added scores. Used at scale in this manner, 
the MQI can provide a vision of current mathematics 
instruction at a district or school level or indicate areas of 
instruction having the most impact on student achieve-
ment. For example, a comparison of scores across the 
� ve MQI dimensions indicated that the majority of math-
ematics lessons observed as part of the MET project were 
on-topic and relatively error free. However, the lessons 
were not necessarily mathematically rich, and students 
were given few opportunities to engage in sense-making 
activity (Kane & Staiger, 2012).

Summary of the MQI

The MQI instrument provides a reliable, quanti� able 
measure of the mathematical quality of instruction and 
is useful in a variety of settings. Two goals prompting the 
development of the MQI were (a) to provide more than 
a propositional link between teacher knowledge and 
classroom instruction and (b) to capture the mathemati-
cal aspects of instruction as distinct from pedagogical 
strategy. It can support large-scale studies attempting 
to establish correlations between classroom instruction 
and factors such as teachers’ mathematical knowledge, 
professional development experiences, curricular materi-
als, or student achievement. The level of detail provided 
within each subscale can also support qualitative analysis 
necessary to identify aspects of instruction that are espe-
cially enhanced or constrained by such factors.

Looking Across Classroom 
Observation Instruments

The classroom observation instruments reviewed herein 
(RTOP, IQA, MQI) have all been validated for use in 
mathematics education research. Each instrument can 
also be used to support mathematics teacher educa-
tion, professional development, and program evaluation. 
Furthermore, each tool has features that may strengthen 
or limit its use, depending upon the speci� c contexts, 
resources, and research questions under investigation in 
a given study. In this section, we highlight features of the 
three tools that may help mathematics teacher 

6 The MQI Lite, used in this comparative study, provides only overall scores for the � ve dimensions of the MQI, rather than scores for 
each subscale.
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educators select a classroom observation tool appropriate 
for analyzing the speci� c aspect of instructional practice 
under investigation. We do this by considering the focus 
and contexts, as well as the features of each tool that may 
serve as affordances or constraints in relation to the goals, 
purposes, and resources of a given study.

Focus and Contexts

We propose that the purpose of a classroom observation 
instrument is to support knowledgeable raters’ ability to 
notice the same aspects of instruction—ideally, aspects 
of instruction that impact students’ learning of mathemat-
ics. Each tool reviewed herein helps the observer notice 
speci� c aspects of an instructional episode. What is 
noticed prompts the observer to make inferences about, 
and create meaning for, the instructional episode as a 
whole and speci� c events within that episode. With the 
multitude of events occurring throughout a mathematics 
lesson, each tool focuses the observer’s attention in ways 
that elevate the importance of some events and reduce 
the importance of others.

The RTOP focuses the observer’s attention on general 
features of reform-oriented instruction. Though the RTOP 
was developed to apply to mathematics and science, the 
reform-oriented instructional practices assessed by the 
RTOP rubrics are not inherently content-speci� c and may 
be applicable to other content-areas beyond mathematics 
and science. The large number of speci� c prompts within 
subscales makes the RTOP ideal for providing feedback 
to teachers regarding reform-oriented instruction. As the 
RTOP was designed to identify reform-oriented instruc-
tional practices, researchers or teacher educators should 
have some indication or expectation of the presence of 
these practices in order for the RTOP to be an appropriate 
tool. Contexts in which the RTOP may be ideal include 
assessments of (a) school-wide reform initiatives across 
multiple content areas, (b) preservice teachers and pro-
grams at the elementary level or across multiple secondary 
education content areas, or (c) professional development 
focused on the speci� c constructs identi� ed by the RTOP 
(see Figure 1). For example, the RTOP would be a good 
choice to provide data for the research questions “Are 
preservice teachers in our program able to enact reform-
oriented instruction?” (Jong, Pedulla, Reagan, Salomon-
Fernandez, & Cochran-Smith, 2010) or “Did secondary 
mathematics and science teachers utilize reform-oriented 
instruction after experiencing such practices during univer-
sity coursework?” (Adamson et al., 2003).

The IQA draws observers’ attention to speci� c aspects of 
reform-oriented mathematics instruction, namely, cogni-
tively challenging instructional tasks, task implementa-

tion, and discussion (including accountable talk). As the 
IQA was designed to identify speci� c reform-oriented 
instructional practices, some indication or expectation 
that these practices exist, are valued, or are intended to 
be developed over time should exist in order for the IQA 
to be appropriate to use. Contexts in which the IQA may 
be ideal include school-wide mathematics reform initia-
tives, preservice mathematics teachers and programs (at 
the elementary or secondary education level), and pro-
fessional development, curriculum implementations, or 
large-scale assessments of reform-oriented mathematics 
teaching, speci� cally focused on the constructs identi� ed 
by the IQA (e.g., cognitive demand and discussion). While 
similar to the RTOP in its focus on reform practices, the 
IQA attends to mathematics instruction and the use of 
cognitively challenging instructional tasks. Studies ideally 
suited for the IQA might investigate questions such as 
“Does secondary mathematics teachers’ implementation 
of cognitively challenging tasks improve following their 
participation in task-centered professional development?” 
(e.g., Boston & Smith, 2009) or “How are elementary 
teachers using cognitively challenging tasks provided 
in their curriculum?” (e.g., Quint, Akey, Rappaport, & 
 Willner, 2007).

The MQI assesses the rigor and richness of the mathemat-
ics throughout a lesson. In contrast to the other two tools, 
the MQI does not privilege reform-oriented instructional 
practices (though such practices may generate higher 
scores on some MQI rubrics, such as Working with 
Students and Mathematics, and Common Core Aligned 
Student Practices). The MQI is thus appropriate to evalu-
ate students’ opportunities to learn mathematics across a 
variety of instructional approaches, regardless of whether 
there is an expectation for reform-oriented instructional 
practices. MQI developers specify its use for grades K–9, 
perhaps because of the focus on mathematical content 
and the demands this places on raters. Contexts in which 
the MQI would be ideal include professional develop-
ment initiatives or curriculum implementation, preservice 
mathematics teacher education programs at the middle or 
elementary level, or large-scale assessments of mathemat-
ics teaching, with a focus on the quality of mathematics 
during the instructional episode. Questions well-suited 
for the MQI include “What is the relationship between 
teachers’ mathematical knowledge and the mathematical 
quality of instruction?” (e.g., Hill et al., 2008) or “How does 
the mathematical quality of instruction relate to students’ 
mathematical achievement?” (e.g., Kane & Staiger, 2012).

In summary, the tools presented here overlap in some 
aspects but selectively attend to general reform-oriented 
practices (RTOP), speci� c reform-oriented practices in 
mathematics instruction (IQA), or the mathematical quality 
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of instruction across a variety of instructional approaches 
(MQI). The choice of an observation tool should be driven 
by the alignment between the research questions in a 
given study and the aspects of instruction made salient 
by that particular tool. We discuss next how features of 
each instrument can serve as affordances or constraints, 
depending on the focus and resources of a given study.

Features as Affordances or Constraints

As presented in each review, each classroom observation 
instrument has its own protocol for use and interpreta-
tion. We note that any feature is not inherently good or 
bad but becomes an affordance or constraint in relation 
to the goals and resources of a particular study. While 
our discussion references three speci� c tools, the four 
affordances and constraints discussed herein can apply to 
classroom observation tools more generally.

First, consider the requirement for live and/or videotaped 
observations. Live or videotaped observations can be 
used for the IQA or RTOP, and videotaped observations 
are necessary for the MQI. Live observations can be less 
invasive, which may facilitate participation and con-
sent from schools, teachers, students, and parents. Live 
observations eliminate the need for video equipment or 
technology to collect, store, and share videos; however, 
they may require greater human resources, as at least 
one trained rater is necessary to observe and code each 
lesson. In live observations, the observer has access to 
the teacher, students, instructional materials, and other 
artifacts of the classroom and school. The rater can gain 
a holistic sense of classroom events (e.g., listening to 
conversations in multiple small groups; capturing par-
ticipation, which may be dif� cult to identify in a video), 
where results obtained from videotape are in� uenced by 
the camera view of the lesson. However, live observa-
tions produce only written records and artifacts of the 
lesson, whereas video provides the ability to accumulate 
records of practice, score lessons independently or as a 
group, and replay instances in order to better understand 
key components of the lesson. Through technology, video 
can be shared in ways that enable raters to be in different 
physical locations (e.g., collaborations between research-
ers at different institutions).

Second, consider the requirement for rater training. 
The MQI and RTOP provide free, online rater training, 
while IQA training is only available face-to-face from 
the rubric developer. MQI online training can be com-
pleted individually, and raters require a certain level of 
mathematics knowledge (and mathematical knowledge 
for teaching) to successfully complete the certi� cation. 
This system is thorough and produces high-quality raters 
but perhaps limits the pool of potential raters who can 

achieve certi� cation. RTOP training should be completed 
by the research group together to allow for discussion and 
consensus. Raters must have a general sense of reform-
oriented practices; hence the potential pool of raters is 
larger than for the MQI. To use the IQA, research groups 
attend a training session provided by the developer. 
Raters develop the ability to classify tasks by level of 
cognitive demand (Stein & Smith, 1998), identify features 
of task implementation that serve to maintain or reduce 
cognitive demands (e.g., Henningsen & Stein, 1997), and 
identify speci� c features of discussions and accountable 
talk moves (e.g., Resnick & Hall &, 1998).

Third, consider how explicit each rubric is in provid-
ing descriptions of score levels. Rubrics can consist of 
detailed score levels (e.g., IQA and MQI) or more general, 
“sliding scale” score levels (e.g., the individual RTOP 
prompts), which create differences in using the instru-
ments and interpreting the results. Using the RTOPs’ 
more general score levels, raters focus on the number of 
occurrences of each indicator. Results thus identify the 
presence or absence of reform-oriented practices and 
can serve to indicate which practices were lacking or not 
observed. The IQA (Appendix B) and the MQI (Appen-
dix C) provide very descriptive score levels within each 
rubric or subscale. These score levels serve as explicit 
indicators of exactly what features of a construct were 
strong or need to be improved to achieve the next level 
(for raters and for providing feedback to motivate instruc-
tional improvements).

Fourth, consider the scale of the research project and the 
usability of the rubrics. For small-scale projects, the vari-
ety of RTOP prompts can provide rich descriptive data 
to foster conversations with teachers or evaluate teacher 
preparation programs or professional development work-
shops. The IQA and the MQI were designed to be used 
reliably by trained raters in large-scale studies. For the 
IQA, the limited number and narrow focus of the rubrics 
make the IQA useable regardless of the scale of the study. 
The systematic process for using the MQI (e.g., coding 
timed segments) contributes to its usability at scale. All of 
the instruments can provide detailed results and feed-
back at the subscale or rubric level. For any instrument, 
while summing or averaging across individual rubrics or 
subscales into a composite or overall score may be useful 
for research purposes (e.g., correlating observation results 
to student achievement data or tests of teacher content 
knowledge), collapsing subscales or constructs into a 
single score also reduces the level of detail and speci� city 
for which the results can be reported and interpreted.

Figure 4 provides a summary of features of each instru-
ment discussed herein. As presented, a given feature of a 
tool can serve as an affordance or constraint.
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RTOP IQA MQI

Focus Reform-oriented instruction Cognitively challenging tasks, 
implementation, and discussion

Mathematical quality of 
instruction

Contexts Reform-oriented instruction:

• Building-wide reform initiatives

• Professional development 
initiatives

• Preservice teacher education 
programs

Reform-oriented mathematics instruction:

• Professional development initiatives

• Curriculum implementation

• Preservice mathematics teacher 
education programs

• Large-scale assessments of reform-
oriented mathematics teaching

Mathematics instruction:

• Professional development 
initiatives

• Curriculum implementation

• Preservice mathematics 
teacher education programs

• Large-scale assessments of 
mathematics teaching

Affordances • General indicators of reform-
oriented instruction

• Can be used across content 
areas

• Live or videotaped lessons

• Teacher-level data

• Validated in MET Study

• Provides rich descriptive data for 
discussions with teachers

• Can show change over time

• Free on-line training

• Very speci� c focus; can make explicit 
connections to PD

• Live or video-taped lessons, or student 
work

• Can be used at scale; can provide 
school- or district-level data

• Descriptive statistics reported on 
individual rubrics

• Well-de� ned score levels, explicit about 
what is needed to achieve next score 
level

• Inter-rater reliability

• Validated in prior studies

• Provides rich descriptive data for 
discussions with teachers

• Can be used over time, across sites, or 
compared to prior research

• Not biased toward any type of 
instruction

• Videotaped lesson 
observations

• Can be used at scale; can 
provide school- or district-
level data

• Well-de� ned score levels, 
explicit about what is needed 
to achieve next score level

• Inter-rater reliability

• Validated in MET Study

• Many rubrics: provides 
rich descriptive data for 
discussions with teachers

• Can be used over time, 
across sites, or compared to 
prior research

• Free online training

Constraints • Not inherently mathematical

• Many indicators—dif� cult to use 
at scale and to get exact-point 
agreement between raters

• No descriptors for each score 
level; not explicit about what is 
needed to achieve next score 
level

• Training videos do not depict 
K–12 instruction

• Limited focus

• Bias toward reform-oriented 
mathematics teaching

• Accessibility of training

• Not appropriate for comparisons 
or evaluations when there is no 
expectation of reform-oriented 
mathematics instruction

• Limited to K–9

• Not intended for live 
observations

• Raters need adequate MKT

• Broader focus may make it 
harder to establish explicit 
connections to PD

Figure 4. Summary of features of the RTOP, IQA, and MQI.
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Using the Classroom Observation 
Instruments to Support 
Instructional Change

The classroom observation instruments reviewed herein 
are often used to evaluate teachers’ instructional prac-
tices and provide feedback to inform research studies or 
interventions, teacher preparation courses or programs, 
or professional development efforts. While designed as 
research tools, each classroom observation instrument 
can also provide important information to support teach-
ers’ learning and instructional change by (1) serving as 
tools used in professional development and (2) provid-
ing a focus for formative assessment or self-evaluation of 
practice. Each of these uses will be discussed brie� y, with 
speci� c reference to the classroom observation tools.

First, the classroom observation instrument themselves 
can be used as tools in professional development or 
teacher education. Used in this way, the tools could sup-
port teachers to notice the aspects of instruction central 
to each rubric, provide criteria for analyzing the aspects 
of instruction, and communicate a standard or develop a 
shared vision for practice. The RTOP has been used as a 
professional development tool for instructional planning, 
teaching, and re� ecting on instruction (e.g., Ciancolo, 
Flory, & Atwell, 2006; Lawson et al., 2002; MacIsaac & 
Falconer, 2002). Lawson and his team (2002) used the 
RTOP to develop and frame summer institutes aimed at 
supporting college-level instructors to design and imple-
ment reform-oriented instruction. The IQA rubrics assess 
instructional practices (e.g., tasks, implementation, and/
or discussion) that can be fostered through professional 
development (Boston & Smith, 2009, 2011). In fact, a 
variety of professional development materials currently 
exist that engage teachers in learning about and analyzing 
tasks, task implementation, and discussion (e.g., Stein & 
Smith, 1998; Stein & Smith, 2011; Stein, Smith, Henning-
sen, & Silver, 2009). Professional development or teacher 
education activities could be developed to incorporate 
the IQA rubrics explicitly (similarly for the RTOP and the 
MQI), where teachers might use the rubrics to analyze 
tasks, curricula, or videos of classroom instruction. The 
IQA has been used in this way to design a professional 
development workshop for middle-school principals. The 
goal of the workshop was to enable principals to iden-
tify high-quality tasks, implementation, and discussion 
during informal observations in mathematics classroom 
and to provide formative feedback to mathematics teach-
ers based on these observations (Boston, 2011; Boston, 
Henrick, & Gibbons, 2014). Similarly, because the MQI 
is designed for use with video, it could easily be incor-
porated into professional development opportunities or 

teacher education courses. In these settings, the MQI can 
raise teachers’ awareness and understanding of critical 
components of quality mathematics instruction such as 
using precise mathematical language, linking representa-
tions, or focusing on patterns and generalizations.

Second, classroom observation tools can be used as tools 
for formative assessment or self-evaluations of practice. 
Teachers can use the tools to identify the presence and 
quality of speci� c practices and to provide concrete path-
ways for instructional change. Each tool has features that 
support formative assessment of practice. The RTOP iden-
ti� es many speci� c items that allow for detailed feedback, 
and thus can be used to engage teachers in re� ections or 
conversations about speci� c aspects of reform-oriented 
instruction. The IQA contains a small number of rubrics, 
but is designed with detailed score levels to indicate spe-
ci� c criteria for improving instruction within each rubric. 
For the MQI, the speci� city provided in the rubrics, 
coupled with recent revisions to align the � nal dimen-
sion with CCSSM, can serve as a valuable learning tool 
as teachers begin to make sense of new standards. Clear 
examples and language can support teachers’ re� ection 
on how instruction (either their own or others’) encom-
passes important mathematical practices. As a practice-
based tool, the MQI can focus teachers’ attention on key 
components of quality mathematics instruction such as 
using precise mathematical language, linking representa-
tions, or focusing on patterns and generalizations.

Summary and Conclusions

In this article, we have reviewed three classroom obser-
vation instruments to provide information about these 
tools and to present general considerations for selecting 
observation tools that would be useful to other mathemat-
ics teacher educators. The tools presented herein commu-
nicate and evaluate standards of practice in mathematics 
teaching and learning; speci� cally, of reform-oriented 
instruction (RTOP), the selection and implementation 
of cognitively challenging tasks and discussion (IQA), 
and/or the mathematical rigor and richness of a lesson 
(MQI). We propose that the selection of a classroom 
observation tool should depend upon the question under 
investigation and the focus (e.g., the aspects of instruc-
tion each tool helps you to notice) of a speci� c study, 
professional development project, or program evaluation. 
In this way, the tool generates evidence directly con-
nected to the intervention, appropriate for assessing the 
impact or effectiveness of the intervention and establish-
ing evidenced-based practice as stated in the call for 
MTE articles.
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Appendix A: Sample Rubrics: Reformed Teaching 
Observation Protocol (RTOP)

Note. A score of 0 indicates “never occurred.” A score of 4 indicates “very descriptive.”

(Return to page 155)
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Appendix B: Sample Rubrics: Instructional Quality 
Assessment (IQA) Potential of the Task Rubric

4

The task has the potential to engage students in exploring and understanding the nature of mathematical 
concepts, procedures, and/or relationships, such as:

• Doing mathematics: using complex and non-algorithmic thinking (i.e., there is not a predictable, well-
rehearsed approach or pathway explicitly suggested by the task, task instructions, or a worked-out 
example); OR 

• Procedures with connections: applying a broad general procedure that remains closely connected to 
mathematical concepts.

The task must explicitly prompt for evidence of students’ reasoning and understanding. 

For example, the task MAY require students to: 

• solve a genuine, challenging problem for which students’ reasoning is evident in their work on the task;

• develop an explanation for why formulas or procedures work; 

• identify patterns and form and justify generalizations based on these patterns;

• make conjectures and support conclusions with mathematical evidence;

• make explicit connections between representations, strategies, or mathematical concepts and 
procedures.

• follow a prescribed procedure in order to explain/illustrate a mathematical concept, process, 
or relationship.

3

The task has the potential to engage students in complex thinking or in creating meaning for 
mathematical concepts, procedures, and/or relationships. However, the task does not warrant a 
“4” because: 

• the task does not explicitly prompt for evidence of students’ reasoning and understanding.

• students may be asked to engage in doing mathematics or procedures with connections, but the 
underlying mathematics in the task is not appropriate for the speci� c group of students (i.e., too easy or 
too hard to promote engagement with high-level cognitive demands); 

• students may need to identify patterns but are not pressed for generalizations or justi� cation;

• students may be asked to use multiple strategies or representations, but the task does not explicitly 
prompt students to develop connections between them;

• students may be asked to make conjectures but are not asked to provide mathematical evidence or 
explanations to support conclusions

2

The potential of the task is limited to engaging students in using a procedure that is either speci� cally called 
for or its use is evident based on prior instruction, experience, or placement of the task. There is little 
ambiguity about what needs to be done and how to do it. The task does not require students to make 
connections to the concepts or meaning underlying the procedure being used. Focus of the task appears to 
be on producing correct answers rather than developing mathematical understanding (e.g., applying a 
speci� c problem-solving strategy, practicing a computational algorithm).

OR There is evidence that the mathematical content of the task is at least two grade-levels below the grade 
of the students in the class.

1
The potential of the task is limited to engaging students in memorizing or reproducing facts, rules, formulae, 
or de� nitions. The task does not require students to make connections to the concepts or meaning that 
underlie the facts, rules, formulae, or de� nitions being memorized or reproduced.

0 Students did not engage in a mathematical activity.

N/A

(Return to page 158)
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Appendix C: Sample Rubrics: Mathematical Quality of 
Instruction (MQI) 4-point

MQI 4-point ©2014 Learning Mathematics for Teaching/Heather Hill.
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MQI 4-point ©2014 Learning Mathematics for Teaching/Heather Hill.

(Return to page 161)
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Appendix D: Additional References and Resources

• This article is based on a session at the AMTE 2014 Annual Meeting. The AMTE session PowerPoint can be 
downloaded at: http://padlet.com/wall/amte2014

• Reformed Teaching Observation Protocol (RTOP)

• Training Site: 
http://physicsed.buffalostate.edu/AZTEC/RTOP/RTOP_full/index.htm

• Entire Protocol:
http://physicsed.buffalostate.edu/AZTEC/RTOP/RTOP_full/PDF/RTOPform_IN001.pdf

• Research using the RTOP: Adamson et al., 2003; Dunleavy, Dede, & Mitchell, 2009; Jong, Pedulla, Reagan, 
Salomon-Fernandez, & Cochran-Smith, 2010; Roehrig & Kruse, 2005.

• Adaptations of RTOP: IOP in Ciancolo, Flory, & Atwell, 2006; see OTOP in Morrell, Wainwright, & Flick, 2004; 
Wainwright, Morrell, Flick, & Schepige, 2004

• IQA rubrics are available for viewing at: 
http://peabody.vanderbilt.edu/docs/pdf/tl/IQA_RaterPacket_LessonObservations_Fall_12.pdf

• For information on IQA training, contact Melissa Boston at: bostonm@duq.edu

• Research using the IQA: Boston, 2012; Boston & Smith 2009, 2011; Boston & Wilhelm, in press; Quint, Akey, 
Rappaport, & Willner, 2007; MIST Project: 
http://peabody.vanderbilt.edu/departments/tl/teaching_and_learning_research/mist/index.php

• Learning Mathematics for Teaching (LMT) Project: 
http://www.sitemaker.umich.edu/lmt/home

• Mathematical Quality of Instruction (MQI) Training Site: 
http://isites.harvard.edu/icb/icb.do?keyword=mqi_training

• Information on MQI studies based on the MET data is available at: 
http://www.gse.harvard.edu/ncte/projects/core/default.php#.U6hZNqgozdA

(Return to page 155)
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