Modelling using differential equations: undergraduate projects

Mark Nelson¹

¹School of Mathematics and Applied Statistics University of Wollongong, Wollongong, AUSTRALIA

SIMIODE EXPO, 2021

Who is this talk for?

• Project as an elective (counts towards graduation requirements).

- Project as an elective (counts towards graduation requirements).
 - Bachelor of Mathematics Advanced: MATH245, MATH345.

- Project as an elective (counts towards graduation requirements).
 - Bachelor of Mathematics Advanced: MATH245, MATH345.
 - Bachelor of XXX (Dean's Scholar): MATH345.

- Project as an elective (counts towards graduation requirements).
 - Bachelor of Mathematics Advanced: MATH245, MATH345.
 - Bachelor of XXX (Dean's Scholar): MATH345.
- Summer project (does not count towards graduation requirements).

- Project as an elective (counts towards graduation requirements).
 - Bachelor of Mathematics Advanced: MATH245, MATH345.
 - Bachelor of XXX (Dean's Scholar): MATH345.
- Summer project (does not count towards graduation requirements).
 - Competitive funding. AMSI (6 weeks), Faculty (10 weeks).

- Project as an elective (counts towards graduation requirements).
 - Bachelor of Mathematics Advanced: MATH245, MATH345.
 - Bachelor of XXX (Dean's Scholar): MATH345.
- Summer project (does not count towards graduation requirements).
 - Competitive funding. AMSI (6 weeks), Faculty (10 weeks).
 - Dean's Scholar (10 weeks).

- Project as an elective (counts towards graduation requirements).
 - Bachelor of Mathematics Advanced: MATH245, MATH345.
 - Bachelor of XXX (Dean's Scholar): MATH345.
- Summer project (does not count towards graduation requirements).
 - Competitive funding. AMSI (6 weeks), Faculty (10 weeks).
 - Dean's Scholar (10 weeks).
- Capstone project. (started 2020).
- Honours project.

• Individual project: one student, one academic.

- Individual project: one student, one academic.
- 'Top' students.

- Individual project: one student, one academic.
- 'Top' students.
- Typically...
 - unconnected to our curriculum.
 - · connected to our curriculum.

- Individual project: one student, one academic.
- 'Top' students.
- Typically...
 - unconnected to our curriculum.
 - · connected to our curriculum.
- Expectation of research? **Zero**.

- Individual project: one student, one academic.
- 'Top' students.
- Typically...
 - unconnected to our curriculum.
 - · connected to our curriculum.
- Expectation of research? Zero.
- (my) Modelling projects: is this a fraudulent talk?

(focus on this topic!)

(focus on this topic!)
Dr Matthew Holden (UQ): Dynamics of illegal harvest.

(focus on this topic!)
Dr Matthew Holden (UQ): Dynamics of illegal harvest.

• How can mathematics help?

(focus on this topic!)

- How can mathematics help?
 - Dynamical systems component: predict response of populations to poaching.

(focus on this topic!)

- How can mathematics help?
 - Dynamical systems component: predict response of populations to poaching.
 - 'Predators' Eqn: Profit function of quantity of product on market. (different assumptions)

(focus on this topic!)

- How can mathematics help?
 - Dynamical systems component: predict response of populations to poaching.
 - 'Predators' Eqn: Profit function of quantity of product on market. (different assumptions)
 - Decision making: optimisation/optimal control.

(focus on this topic!)

- How can mathematics help?
 - Dynamical systems component: predict response of populations to poaching.
 - 'Predators' Eqn: Profit function of quantity of product on market. (different assumptions)
 - Decision making: optimisation/optimal control.
 - Q. Is it better to legalise trade (reduce demand) or increase enforcement?

(focus on this topic!)

- How can mathematics help?
 - Dynamical systems component: predict response of populations to poaching.
 - 'Predators' Eqn: Profit function of quantity of product on market. (different assumptions)
 - Decision making: optimisation/optimal control.
 - Q. Is it better to legalise trade (reduce demand) or increase enforcement?
 - Simple ODE models (relatively...).

(focus on this topic!)

- How can mathematics help?
 - Dynamical systems component: predict response of populations to poaching.
 - 'Predators' Eqn: Profit function of quantity of product on market. (different assumptions)
 - Decision making: optimisation/optimal control.
 - Q. Is it better to legalise trade (reduce demand) or increase enforcement?
 - Simple ODE models (relatively...).
 - Important

(focus on this topic!)

- How can mathematics help?
 - Dynamical systems component: predict response of populations to poaching.
 - 'Predators' Eqn: Profit function of quantity of product on market. (different assumptions)
 - Decision making: optimisation/optimal control.
 - Q. Is it better to legalise trade (reduce demand) or increase enforcement?
 - Simple ODE models (relatively...).
 - Important
 - Models suggest that demand reduction is more promising than increasing law enforcement.

(focus on this topic!)

- How can mathematics help?
 - Dynamical systems component: predict response of populations to poaching.
 - 'Predators' Eqn: Profit function of quantity of product on market. (different assumptions)
 - Decision making: optimisation/optimal control.
 - Q. Is it better to legalise trade (reduce demand) or increase enforcement?
 - Simple ODE models (relatively...).
 - Important
 - Models suggest that demand reduction is more promising than increasing law enforcement.
 - Not research...but 'what if'?

(focus on this topic!)

Dr Matthew Holden (UQ): Dynamics of illegal harvest.

- How can mathematics help?
 - Dynamical systems component: predict response of populations to poaching.
 - 'Predators' Eqn: Profit function of quantity of product on market. (different assumptions)
 - Decision making: optimisation/optimal control.
 - Q. Is it better to legalise trade (reduce demand) or increase enforcement?
 - Simple ODE models (relatively...).
 - Important
 - Models suggest that demand reduction is more promising than increasing law enforcement.
 - Not research...but 'what if'?

(SIMIODE21. Glen Ledder. An Epidemiological Model for COVID-19)

 Mathematics + Cancer: An Undergraduate Bridge Course in Applied Mathematics. SIAM Review 62(1), 244—263, 2020

- Mathematics + Cancer: An Undergraduate Bridge Course in Applied Mathematics. SIAM Review 62(1), 244—263, 2020
- *SIAM News* **53**(4), May 2020, Special Issue on Infectious Disease Modeling.

- Mathematics + Cancer: An Undergraduate Bridge Course in Applied Mathematics. SIAM Review 62(1), 244—263, 2020
- SIAM News 53(4), May 2020, Special Issue on Infectious Disease Modeling.
- Jenny Morber. Grass, Trees and Fire: Elements of a Savanna Lifecycle. SIAM News, November 2018
- Daniel H. Rothman. Carbon Cycle Catastrophes: A Dynamical Systems Perspective. SIAM News 52, November 2019.

Ideas for projects: research articles

Two projects being taken in (Autumn session) 2021.

Ideas for projects: research articles

Two projects being taken in (Autumn session) 2021.

 M.G.M. Gomes, L.J. White, and G.F. Medley. Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives. *Journal of Theoretical Biology*, 228:539–549, 2004. (Recommended by a referee!)

Ideas for projects: research articles

Two projects being taken in (Autumn session) 2021.

- M.G.M. Gomes, L.J. White, and G.F. Medley. Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives. *Journal of Theoretical Biology*, 228:539–549, 2004. (Recommended by a referee!)
- Njagarah, J.B, and Nyabadza, F. Modelling the role of drug barons on the prevalence of drug epidemics. *Math Biosci Eng.* 2013 Jun; 10(3):843–60.

Ideas for projects: other student projects

Ideas for projects: other student projects

 C.M. Kribs-Zaleta. Sociological phenomena as multiple nonlinearities: MTBI's new metaphor for complex human interactions. *Mathematical Biosciences and Engineering*, 10: (5–6): 1587—1607, 2013.
 (Mathematical and Theoretical Biology Institute).

Ideas for projects: other student projects

 C.M. Kribs-Zaleta. Sociological phenomena as multiple nonlinearities: MTBI's new metaphor for complex human interactions. *Mathematical Biosciences and Engineering*, 10: (5–6): 1587—1607, 2013. (Mathematical and Theoretical Biology Institute).
 Drug barron, alcoholism, smoking

Ideas for projects: other student projects

- C.M. Kribs-Zaleta. Sociological phenomena as multiple nonlinearities: MTBI's new metaphor for complex human interactions. *Mathematical Biosciences and Engineering*, 10: (5–6): 1587—1607, 2013. (Mathematical and Theoretical Biology Institute).
 Drug barron, alcoholism, smoking
- Mark Nelson Previous six credit-point projects.

Ideas for projects: other ideas

Ideas for projects: other ideas

• PhD thesis that you have examined.

Ideas for projects: other ideas

- PhD thesis that you have examined.
- Your research.

• Top students.

- Top students.
- Weekly one-hour meeting (scheduled).

- Top students.
- Weekly one-hour meeting (scheduled).
- Drop in if you have a problem...

- Top students.
- Weekly one-hour meeting (scheduled).
- Drop in if you have a problem...
- Consultation hours. (four hours a week).

- Top students.
- Weekly one-hour meeting (scheduled).
- Drop in if you have a problem...
- Consultation hours. (four hours a week).
- If underlying research paper: share with student?

- Top students.
- Weekly one-hour meeting (scheduled).
- Drop in if you have a problem...
- Consultation hours. (four hours a week).
- If underlying research paper: share with student?

How are student projects assessed? Should students undertake research as part of their project?

• Presentation: 10%.

- Presentation: 10%.
- Report: 90% (only marked by supervisor).

- Presentation: 10%.
- Report: 90% (only marked by supervisor).
- A standard-ish format for me...

- Presentation: 10%.
- Report: 90% (only marked by supervisor).
- A standard-ish format for me...
 - **Y%** on tasks due in weeks 3, 5, 7, 9 & 11.

- Presentation: 10%.
- Report: 90% (only marked by supervisor).
- A standard-ish format for me...
 - **Y%** on tasks due in weeks 3, 5, 7, 9 & 11.
 - Submitted in the form of a 'chapter'.

- Presentation: 10%.
- Report: 90% (only marked by supervisor).
- A standard-ish format for me...
 - Y% on tasks due in weeks 3, 5, 7, 9 & 11.
 - Submitted in the form of a 'chapter'.
 - Can resubmit 'chapter' as many times as required.

- Presentation: 10%.
- Report: 90% (only marked by supervisor).
- A standard-ish format for me...
 - **Y%** on tasks due in weeks 3, 5, 7, 9 & 11.
 - Submitted in the form of a 'chapter'.
 - Can resubmit 'chapter' as many times as required.
 - (**90** − **Y**) %. Final report. (Week 13)

- Presentation: 10%.
- Report: 90% (only marked by supervisor).
- A standard-ish format for me...
 - **Y%** on tasks due in weeks 3, 5, 7, 9 & 11.
 - Submitted in the form of a 'chapter'.
 - Can resubmit 'chapter' as many times as required.
 - (90 Y) %. Final report. (Week 13)
 - 'Detailed' literature review may or may not be required.

- Presentation: 10%.
- Report: 90% (only marked by supervisor).
- A standard-ish format for me. . .
 - **Y%** on tasks due in weeks 3, 5, 7, 9 & 11.
 - Submitted in the form of a 'chapter'.
 - Can resubmit 'chapter' as many times as required.
 - (90 Y) %. Final report. (Week 13)
 - 'Detailed' literature review may or may not be required.
- Agreed with student by week 3.

• Not required.

- Not required.
- What is research?

- Not required.
- What is research?
- Modelling projects: minor changes to model or 'minor' new investigation of old model.

- Not required.
- What is research?
- Modelling projects: minor changes to model or 'minor' new investigation of old model.
- Modelling projects: major changes to model, 'major' new investigations of old model. Can lead to papers, but...

• Individual projects for 'top' students.

- Individual projects for 'top' students.
- Ideas for projects.

- Individual projects for 'top' students.
- Ideas for projects.
 - Research talks (Dr Matthew Holden, great speaker).
 - Math exposition.
 - Research articles.
 - Other student projects
 - PhD thesis.
 - Your research.

- Individual projects for 'top' students.
- Ideas for projects.
 - Research talks (Dr Matthew Holden, great speaker).
 - Math exposition.
 - Research articles.
 - Other student projects
 - PhD thesis.
 - Your research.
- How are student projects assessed?

- Individual projects for 'top' students.
- Ideas for projects.
 - Research talks (Dr Matthew Holden, great speaker).
 - Math exposition.
 - Research articles.
 - Other student projects
 - PhD thesis.
 - Your research.
- How are student projects assessed?
- Q. Should students do 'research'?
 - A. What do we mean by research?

Quote

Harold Macmillan (1894–1986) British Conservative statesman; Prime Minister, 1957–63

"As usual the Liberals offer a mixture of sound and original ideas. Unfortunately none of the sound ideas is original and none of the original ideas is sound."

speech to London Conservatives, 7 March 1961

- Individual projects for 'top' students.
- Ideas for projects.
 - Research talks (Dr Matthew Holden, great speaker).
 - Math exposition.
 - Research articles.
 - Other student projects
 - PhD thesis.
 - Your research.
- How are student projects assessed?
- Q. Should students do 'research'?
 - A. What do we mean by research?

Tianze Wei (finished two years of degree): "Modelling the effect of counter-measures upon the spread of a disease"

• At t = 0 a contagious disease is introduced into a small town.

- At t = 0 a contagious disease is introduced into a small town.
- At $t=t_{\rm civil}$ the civil authorities recommend that the population take counter-measures: level one social distancing, proper hand hygiene, wearing a mask, all three.

- At t = 0 a contagious disease is introduced into a small town.
- At $t=t_{\rm civil}$ the civil authorities recommend that the population take counter-measures: level one social distancing, proper hand hygiene, wearing a mask, all three.
- How to model change in β ?

- At t = 0 a contagious disease is introduced into a small town.
- At $t = t_{civil}$ the civil authorities recommend that the population take counter-measures: level one social distancing, proper hand hygiene, wearing a mask, all three.
- How to model change in β ?
- How effective are the policies?

- At t = 0 a contagious disease is introduced into a small town.
- At $t = t_{civil}$ the civil authorities recommend that the population take counter-measures: level one social distancing, proper hand hygiene, wearing a mask, all three.
- How to model change in β ?
- How effective are the policies?
- Split population into two: one group follows advice, one group does not.

Tianze Wei (finished two years of degree): "Modelling the effect of counter-measures upon the spread of a disease"

- At t = 0 a contagious disease is introduced into a small town.
- At $t = t_{civil}$ the civil authorities recommend that the population take counter-measures: level one social distancing, proper hand hygiene, wearing a mask, all three.
- How to model change in β ?
- How effective are the policies?
- Split population into two: one group follows advice, one group does not.