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Introduction: Outline.

We seek to

� Explain the problem clearly and concisely

� Apply natural assumptions

� Show how the general model follows from those assumptions

� Reduce the model to an idealized case for sanity checking

� Demonstrate the model with some simulations

� Conclude with a discussion on initial conditions

Miles, Chenming, Henry, C:Anthony (FIT) Bird Model 2 / 26



Problem: Problem Statement.
A viral video shows a bird perched on a bicycle wheel able to move itself
so the wheel spins, our task is to model the phenomena with a small
apparatus attached to a wheel able to move a mass to generate the
motion.
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Problem: Our Apparatus.

Our apparatus would

� Consist of a small piston capable of moving a mass radially outward
and inward

� May be imparted with initial angular displacement or velocity from
some initial lateral movement

� Comes from the bird leaning to start the motion

� Satisfies initial conditions to be used later of initial angular position
and angular velocity
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Problem: Simulation Example.
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Problem: Equations of Motion.

From physics we know:

� Linear velocity v :

v = r(θ)θ̇

� Angular position (recall measured from the vertical) just θ(t)

� Coordinate of center of mass of apparatus

x(θ) = r(θ) sin(θ), y(θ) = r(θ) cos(θ)

� Here r(θ) is the distance from the axis of rotation (the axle) to the
center of mass of the whole system.
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Problem: Assumptions.

� Our bicycle wheel and apparatus represents a rigid body

� Our apparatus impacts motion by moving close or away from the
bicycle wheel

� When we think rotational motion the analogy of Newton’s second law
becomes: ∑

τi = Iα ⇐⇒
∑

τi − Iα = 0

Where τi represent torques and I is the moment of inertia, and α is
the angular acceleration θ̈ wrt time t. And the 0 represents the zero
vector since it arises from a cross product.

� The time our piston moves between states has negligible impact on
the motion
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Model Creation: Free Body Diagram.
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Model Creation: Development.

Following the previous slide we provide some detail to the torque equation

� So our apparatus generates a torque by decreasing or increasing it’s
distance from the axis of rotation (center of wheel)

� The principal forces which generate torque are the apparatus (by
gravity), air resistance, and friction

� These forces act on close enough points of contact to be treated the
same

� When forces are tangential their torque component will be (in terms
of the radius r)

τ = r × F =⇒ |τ | = |F ||r | sin(θ) = |F ||r |
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Model Creation: Development.

Reducing the complexity

� Our main equation ∑
|τi |sgn(τi )− I |α| = 0

The sgn term represents the direction of the torque

� Torque by air resistance is proportional to velocity squared

τair = rF = rk(v)2 = kr(r θ̇)2 = kr3(θ̇)2

� Torque by friction is proportional to normal force

τfriction = µrF = µmv2 = mµr2(θ̇)2

� Torque by gravity is standard

τg = mgr sin(θ)
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Model Creation: Equation.

� Moment of inertia term for a uniform wheel

I (θ̈) = mr2(θ)θ̈

� Combining all terms to get

−mr2(θ)
d2θ

dt2
− (kr3(θ) + mµr2(θ))

(
dθ

dt

)2

+ mgr(θ) sin(θ) = 0

� Since r(θ) 6= 0 our equation reduces to

−mr(θ)
d2θ

dt2
− (kr2(θ) + mµr(θ))

(
dθ

dt

)2

+ mg sin(θ) = 0
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Model Creation: Equation.

Defining r(θ)

r(θ) = r1 + r2H(sin(θ))

� H−Heaviside step function

r(θ) = r1 + r2H(sin(θ)) =

{
r1 + r2, sin(θ) ∈ (0, 1]

r1, sin(θ) ∈ [−1, 0]
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Model Creation: Ideal Case.

Reduction to ideal case by

� Lubricate axle eliminates frictional torque

� Apparatus is quite small eliminates air resistance

� With no dampening the velocity should increase without bound

−mr(θ)
d2θ

dt2
+ mg sin(θ) = 0

Alternatively:

r(θ)
d2θ

dt2
= g sin(θ)
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Numerical Analysis: Scheme.

� For clarity we used t ∈ [0, 2] s, and some approximate initial
conditions:

r1 = 0.7 m

r2 = 0.1 m

m = 5 kg

g = 9.8 m s−2

k = 0.001 kg m−1

µ = .01

θ(0) = 0 rad

θ̇(0) = 4 rad s−1

� Conditions can be changed from measurements as these were just
estimated

� Applied a fourth order Runge-Kutta scheme for second order ODEs
because of the incredible variance from initial conditions

� A longer time frame will be shown at the end of the analysis for
further review
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Numerical Analysis: Comparison.

The models overlayed look like:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

0

2

4

6

8

10

12

A
n
g
le

 (
ra

d
)

Ideal and Full Models Angle vs. Time

Ideal Model

Full Model

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

c
o

s
(A

n
g

le
)

Cos(Angle) vs. Time Ideal and Full Models

Ideal Model

Full Model

Miles, Chenming, Henry, C:Anthony (FIT) Bird Model 15 / 26



Numerical Analysis: Longer Time Interval.

Running t from t ∈ [0, 4] interval
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Numerical Analysis: Notes from Numerics.

� Real case might lag slightly behind the ideal case and may even begin
to fall back

� This provides a sanity check since air resistance and friction go
against the motion of the apparatus

� The model is very difficult to predict and is very sensitive to changes
in initial conditions

� Predictions for longer range times become more inaccurate meaning
the longer time difference from our numeric scheme
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Maximal Speed: Critical Value.

From calculus we know a maximum value for speed can occur either on
the boundary of your domain or at a value where the derivative is 0, so
setting θ̈ = 0 we can get:

−(kr2(θ) + mµr(θ))

(
dθ

dt

)2

+ mg sin(θ) = 0

Hence our angular velocity becomes(
dθ

dt

)2

=
mg sin(θ)

kr2(θ) + mµr(θ)

dθ

dt
=

√
mg sin(θ)

kr2(θ) + mµr(θ)
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Maximal Speed: Critical Value.

This only gives the maximum angular velocity so get the linear velocity we
need a factor of radius meaning:

v = r(θ)
dθ

dt
= r(θ)

√
mg sin(θ)

kr2(θ) + mµr(θ)
=

√
mgr2(θ) sin(θ)

kr2(θ) + mµr(θ)

With some factoring:

v =

√
mg sin(θ)

k + mµ
r(θ)
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Maximal Speed: Final Expression and Boundary.

Maximized when sin(θ) = 1 evaluating to:

vmax =

√
mg

k + mµ
r1+r2

= 16.8575 m/s

Note about the boundary and value

� Initial conditions change the left endpoint so nothing definite to say

� Unbounded right side so speed could increase without bound

� This max velocity assumes it actually occurs, but if we speed up
without bound this quantity is obviously false and moreover
nonexistent
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Initial Conditions: Bottom Start.

Can we still get motion if we start at the bottom? Of course with a high
enough initial kick (θ̇(0) = 8 rad s−1), here’s what motion would look like
in the ideal and full models:
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Initial Conditions: No initial velocity.

With no initial velocity we can see no motion takes place, but if we change
the position slightly we can still recover motion:
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This also passes a sanity check since with no motion we don’t turn and
with no initial velocity it takes longer to get moving so we move less in a
single time interval.
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Initial Conditions: Limitations.

� At our speeds air resistance and rotational friction are nearly
meaningless

� At longer intervals our numerical estimates become more unreliable
(RK-4)

� We rely on knowing the center of gravity for the apparatus

� Heaviside function is not a perfect fit only a simplification
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Conclusion: Summary.

To summarize:

� Set out to model the motion of a bird on a bicycle wheel

� Found with a given radius function we can keep spinning with
increasing speed

� Depending on initial conditions we may not be able to even complete
a rotation (e.g. lacking rotational velocity)

� Found an expression for the maximum speed

� Sanity checked our model with some numerical simulations

� Considered the limitations of our model
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Conclusion: Our SIMIODE Experience.

Working together with everyone

The epiphany moment

Applications in modern science
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Conclusion: Thank You.

A special thank you to Anthony Stefan for getting us interested and to
SIMIODE/SCUDEM for taking the time to watch, review, and judge our
presentation!

Miles, Chenming, Henry, C:Anthony (FIT) Bird Model 26 / 26


	Introduction
	Outline

	Problem
	Problem Statement
	Our Apparatus
	Simulation Example
	Equations of Motion
	Assumptions

	Model Creation
	Free Body Diagram
	Development
	Equation
	Ideal Case

	Numerical Analysis
	Scheme
	Comparison
	Longer Time Interval
	Notes from Numerics

	Maximal Speed
	Critical Value
	Final Expression and Boundary

	Initial Conditions
	Bottom Start
	No initial velocity
	Limitations

	Conclusion
	Summary
	Our SIMIODE Experience
	Thank You


