SIMIODE EXPO: SCUDEM V Birds and Bicycles

Team 112 Miles Pophal, Chenming Zhen, Henry Bae,

 Coach: Anthony Stefan
FLORIDA TECH

Melbourne, FL (USA) 32901
SIMIODE
Feb. 2021

Introduction: Outline

We seek to

- Explain the problem clearly and concisely
- Apply natural assumptions
- Show how the general model follows from those assumptions
- Reduce the model to an idealized case for sanity checking
- Demonstrate the model with some simulations
- Conclude with a discussion on initial conditions

Problem: Problem Statement

 A viral video shows a bird perched on a bicycle wheel able to move itself so the wheel spins, our task is to model the phenomena with a small apparatus attached to a wheel able to move a mass to generate the motion.

Problem: Our Apparatus

Our apparatus would

- Consist of a small piston capable of moving a mass radially outward and inward
- May be imparted with initial angular displacement or velocity from some initial lateral movement
- Comes from the bird leaning to start the motion
- Satisfies initial conditions to be used later of initial angular position and angular velocity

Problem: Simulation Example

FLORIDA'S STEM UNIVERSITY'

Problem: Equations of Motion

From physics we know:

- Linear velocity v :

$$
v=r(\theta) \dot{\theta}
$$

- Angular position (recall measured from the vertical) just $\theta(t)$
- Coordinate of center of mass of apparatus

$$
x(\theta)=r(\theta) \sin (\theta), \quad y(\theta)=r(\theta) \cos (\theta)
$$

- Here $r(\theta)$ is the distance from the axis of rotation (the axle) to the center of mass of the whole system.

Problem: Assumptions

- Our bicycle wheel and apparatus represents a rigid body
- Our apparatus impacts motion by moving close or away from the bicycle wheel
- When we think rotational motion the analogy of Newton's second law becomes:

$$
\sum \tau_{i}=I \alpha \Longleftrightarrow \sum \tau_{i}-I \alpha=0
$$

Where τ_{i} represent torques and I is the moment of inertia, and α is the angular acceleration $\ddot{\theta}$ wrt time t. And the 0 represents the zero vector since it arises from a cross product.

- The time our piston moves between states has negligible impact on the motion

Model Creation: Free Body Diagram

Model Creation: Development

Following the previous slide we provide some detail to the torque equation

- So our apparatus generates a torque by decreasing or increasing it's distance from the axis of rotation (center of wheel)
- The principal forces which generate torque are the apparatus (by gravity), air resistance, and friction
- These forces act on close enough points of contact to be treated the same
- When forces are tangential their torque component will be (in terms of the radius r)

$$
\tau=r \times F \Longrightarrow|\tau|=|F||r| \sin (\theta)=|F||r|
$$

Model Creation: Development

Reducing the complexity

- Our main equation

$$
\sum\left|\tau_{i}\right| \operatorname{sgn}\left(\tau_{i}\right)-I|\alpha|=0
$$

The sgn term represents the direction of the torque

- Torque by air resistance is proportional to velocity squared

$$
\tau_{\text {air }}=r F=r k(v)^{2}=k r(r \dot{\theta})^{2}=k r^{3}(\dot{\theta})^{2}
$$

- Torque by friction is proportional to normal force

$$
\tau_{\text {friction }}=\mu r F=\mu m v^{2}=m \mu r^{2}(\dot{\theta})^{2}
$$

- Torque by gravity is standard

$$
\tau_{g}=m g r \sin (\theta)
$$

Model Creation: Equation

- Moment of inertia term for a uniform wheel

$$
I(\ddot{\theta})=m r^{2}(\theta) \ddot{\theta}
$$

- Combining all terms to get

$$
-m r^{2}(\theta) \frac{d^{2} \theta}{d t^{2}}-\left(k r^{3}(\theta)+m \mu r^{2}(\theta)\right)\left(\frac{d \theta}{d t}\right)^{2}+m g r(\theta) \sin (\theta)=0
$$

- Since $r(\theta) \neq 0$ our equation reduces to

$$
-m r(\theta) \frac{d^{2} \theta}{d t^{2}}-\left(k r^{2}(\theta)+m \mu r(\theta)\right)\left(\frac{d \theta}{d t}\right)^{2}+m g \sin (\theta)=0
$$

Model Creation: Equation

FLORIDA'S STEM UNIVERSITY'

Defining $r(\theta)$

$$
r(\theta)=r_{1}+r_{2} H(\sin (\theta))
$$

- H-Heaviside step function

$$
r(\theta)=r_{1}+r_{2} H(\sin (\theta))= \begin{cases}r_{1}+r_{2}, & \sin (\theta) \in(0,1] \\ r_{1}, & \sin (\theta) \in[-1,0]\end{cases}
$$

Model Creation: Ideal Case

Reduction to ideal case by

- Lubricate axle eliminates frictional torque
- Apparatus is quite small eliminates air resistance
- With no dampening the velocity should increase without bound

$$
-m r(\theta) \frac{d^{2} \theta}{d t^{2}}+m g \sin (\theta)=0
$$

Alternatively:

$$
r(\theta) \frac{d^{2} \theta}{d t^{2}}=g \sin (\theta)
$$

Numerical Analysis: Scheme

- For clarity we used $t \in[0,2] \mathrm{s}$, and some approximate initial conditions:
- $r_{1}=0.7 \mathrm{~m}$
- $k=0.001 \mathrm{~kg} \mathrm{~m}^{-1}$
- $r_{2}=0.1 \mathrm{~m}$
- $\mu=.01$
- $m=5 \mathrm{~kg}$
- $\theta(0)=0 \mathrm{rad}$
- $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$
- $\dot{\theta}(0)=4 \mathrm{rads}^{-1}$
- Conditions can be changed from measurements as these were just estimated
- Applied a fourth order Runge-Kutta scheme for second order ODEs because of the incredible variance from initial conditions
- A longer time frame will be shown at the end of the analysis for further review

Numerical Analysis: Comparison

The models overlayed look like:

Numerical Analysis: Longer Time Interval

FLORIDA'S STEM UNIVERSITY'

Running t from $t \in[0,4]$ interval

Numerical Analysis: Notes from Numerics

- Real case might lag slightly behind the ideal case and may even begin to fall back
- This provides a sanity check since air resistance and friction go against the motion of the apparatus
- The model is very difficult to predict and is very sensitive to changes in initial conditions
- Predictions for longer range times become more inaccurate meaning the longer time difference from our numeric scheme

Maximal Speed: Critical Value

From calculus we know a maximum value for speed can occur either on the boundary of your domain or at a value where the derivative is 0 , so setting $\ddot{\theta}=0$ we can get:

$$
-\left(k r^{2}(\theta)+m \mu r(\theta)\right)\left(\frac{d \theta}{d t}\right)^{2}+m g \sin (\theta)=0
$$

Hence our angular velocity becomes

$$
\begin{aligned}
\left(\frac{d \theta}{d t}\right)^{2} & =\frac{m g \sin (\theta)}{k r^{2}(\theta)+m \mu r(\theta)} \\
\frac{d \theta}{d t} & =\sqrt{\frac{m g \sin (\theta)}{k r^{2}(\theta)+m \mu r(\theta)}}
\end{aligned}
$$

Maximal Speed: Critical Value

This only gives the maximum angular velocity so get the linear velocity we need a factor of radius meaning:

$$
v=r(\theta) \frac{d \theta}{d t}=r(\theta) \sqrt{\frac{m g \sin (\theta)}{k r^{2}(\theta)+m \mu r(\theta)}}=\sqrt{\frac{m g r^{2}(\theta) \sin (\theta)}{k r^{2}(\theta)+m \mu r(\theta)}}
$$

With some factoring:

$$
v=\sqrt{\frac{m g \sin (\theta)}{k+\frac{m \mu}{r(\theta)}}}
$$

Maximal Speed: Final Expression and Boundary

Maximized when $\sin (\theta)=1$ evaluating to:

$$
v_{\max }=\sqrt{\frac{m g}{k+\frac{m \mu}{r_{1}+r_{2}}}}=16.8575 \mathrm{~m} / \mathrm{s}
$$

Note about the boundary and value

- Initial conditions change the left endpoint so nothing definite to say
- Unbounded right side so speed could increase without bound
- This max velocity assumes it actually occurs, but if we speed up without bound this quantity is obviously false and moreover nonexistent

Initial Conditions: Bottom Start

FLORIDA'S STEM UNIVERSITY'

Can we still get motion if we start at the bottom? Of course with a high enough initial kick ($\dot{\theta}(0)=8 \mathrm{rads}^{-1}$), here's what motion would look like in the ideal and full models:

Initial Conditions: No initial velocity

With no initial velocity we can see no motion takes place, but if we change the position slightly we can still recover motion:

This also passes a sanity check since with no motion we don't turn and with no initial velocity it takes longer to get moving so we move less in a single time interval.

Initial Conditions: Limitations

- At our speeds air resistance and rotational friction are nearly meaningless
- At longer intervals our numerical estimates become more unreliable (RK-4)
- We rely on knowing the center of gravity for the apparatus
- Heaviside function is not a perfect fit only a simplification

Conclusion: Summary

To summarize:

- Set out to model the motion of a bird on a bicycle wheel
- Found with a given radius function we can keep spinning with increasing speed
- Depending on initial conditions we may not be able to even complete a rotation (e.g. lacking rotational velocity)
- Found an expression for the maximum speed
- Sanity checked our model with some numerical simulations
- Considered the limitations of our model

Conclusion: Our SIMIODE Experience

Working together with everyone

The epiphany moment

Applications in modern science

Conclusion: Thank You

A special thank you to Anthony Stefan for getting us interested and to SIMIODE/SCUDEM for taking the time to watch, review, and judge our presentation!

