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Existence Theorems

• A theorem stating the existence of an object, such as the solution to a problem or equation.

• Generally, the existence theorems are of three types:

• (Type 1). Existence theorems that give explicit formulas for solutions, for example:

Cramer’s Rule:  

• Cramer's Rule (studied in linear algebra) is a method that uses determinants to solve systems

of equations that have the same number of equations as variables.) It gives a condition for existence of

the unique solution to system of linear equations as well as formulas to find this solution.

• Cramer, Gabriel (1750). "Introduction à l'Analyse des lignes Courbes 
algébriques" (in French) . Geneva: Europeana. pp. 656–659. Retrieved 2012-
05-18 

• Introduction to Line Analysis Algebraic Curves (English)

https://www.europeana.eu/resolve/record/03486/E71FE3799CEC1F8E2B76962513829D2E36B63015


Existence Theorems

Wronskian: 𝑊[𝑓, 𝑔] =
𝑓 𝑔

𝑓′ 𝑔′

The second order differential equations of the type:

𝑑2𝑦

𝑑𝑥2 + 𝑃(𝑥)
𝑑𝑦

𝑑𝑥
+ 𝑄(𝑥)𝑦 = 𝑓(𝑥) ……(1)

where P(x), Q(x) and f(x) are functions of x. The variation of parameters method states that:

if 𝑊[𝑓, 𝑔] ≠ 0, Then (1) has exactly two linearly independent solutions. These solutions can be worked out by

using Cramer’s Rule.

[1] Coddington, Earl A.; Levinson, Norman (1955). Theory of Ordinary Differential Equations. McGraw-Hill.

[2] Boyce, William E.; DiPrima, Richard C. (2005). Elementary Differential Equations and Boundary Value Problems (8th ed.). Wiley. pp. 186–192, 237–241.

https://archive.org/details/theoryofordinary00codd
https://en.wikipedia.org/wiki/McGraw-Hill


Existence Theorems

(Type 2). The theorems which only state the condition(s) for the existence of the objects , for example:

Bolzano-Weierstrass Theorem:

Version 1. Every bounded sequence of real numbers has a convergent subsequence

Version 2. Every bounded, infinite set of real numbers has a limit point

[1] C. Pugh, Real mathematical analysis. Second edition. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 2015.

[2] K. Ross, Elementary analysis. The theory of calculus. Second edition. In collaboration with Jorge M. Lopez.

Undergraduate Texts in Mathematics. Springer, New York, 2013.
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Intermediate Value Theorem

It states that if the real valued function f is continuous

on [𝑎, 𝑏] and 𝑓 𝑎 < 𝑦 < 𝑓 𝑏 . Then there existsa <
𝑐 < 𝑏 such that

𝑦 = 𝑓 𝑐 .

[1] O'Connor, John J.; Robertson, Edmund F., "Intermediate value theorem", MacTutor 
History of Mathematics archive, University of St Andrews 

 

 

 

  

    

    

 

 



Existence Theorems

The extreme value theorem states that if a real-valued

function 𝑓 is continuous on the closed interval [𝑎, 𝑏], then

f must attain a maximum and a minimum value, each at

least once.

Rudin, Walter (1976). Principles of Mathematical Analysis. New York: McGraw

Hill. pp. 89–90. ISBN 0-07-054235-X.

Extreme Value Theorem

https://archive.org/details/1979RudinW
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-07-054235-X


Existence Theorems

It states that:

If the real-valued function𝑓: [𝑎, 𝑏] → ℝ is differentiable over (𝑎, 𝑏) and continuous at 𝑥 = 𝑎,

and 𝑥 = 𝑏. Then there exists a number 𝑐 ∈ (𝑎, 𝑏) such that 𝑓′(𝑐) is equal to the function's

average rate of change over the interval, that is

𝑓 𝑏 − 𝑓(𝑎)

𝑏 − 𝑎
= 𝑓′ 𝑐 .

Graphically, the theorem guarantees that an arc between two endpoints has a point at which the

tangent to the arc is parallel to the secant through its endpoints.

Mean Value Theorem   
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Existence Theorems

Mean Value 

Theorem 

applications  

How do you prove positive derivative means increasing function: with the MVT.

How do  you prove derivative 0 on an interval means constant function: with the MVT.

It is the first result which gives an explicit relation between values of 𝑓 and 𝑓′.

Curve Sketching, the Fundamental Theorem, Taylor Series, and even Hospital's rules, 

they all are refined versions of repeated applications of the MVT plus special conditions.

https://abesenyei.web.elte.hu/publications/meanvalue.pdf

https://abesenyei.web.elte.hu/publications/meanvalue.pdf


Existence Theorems
Roll’s theorem is a special case of mean value theorem. It states that when 𝒇 𝒂 = 𝒇(𝒃) then there exists a

number 𝒄 ∈ (𝒂, 𝒃) such that 𝒇′ 𝒄 = 𝟎.

Peano existence theorem is a fundamental theorem which describe the condition for the existence of the solution

to ordinary differential equation with some initial conditions. It states that the differential equations:

𝑦′(𝑥) = 𝑓(𝑥, 𝑦(𝑥));  𝑦 𝑥0 = 𝑦0

has a unique solution if f is continuous.

[1] Murray, Francis J.; Miller, Kenneth S. (1976) [1954]. Existence Theorems for Ordinary Differential Equations (Reprint ed.). New York:

Krieger



Existence Theorems
(Type 3) Existence theorems whose proofs involve iteration processes.

Lipschitz continuity

A function 𝑓:ℝ → ℝ is called Lipschitz continuous if there exists a positive real constant 𝑘 ≥ 0 such that

𝑓 𝑥 − 𝑓(𝑦) ≤ 𝑘 𝑥 − 𝑦 ∀ 𝑥, 𝑦 ∈ 𝑋.

The Picard-Lindelöf theorem, Picard's existence theorem, Cauchy-Lipschitz theorem, or existence

and uniqueness theorem gives a set of conditions under which an initial value problem has a unique solution.

Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and

uniqueness of the solution to an initial value problem.

[1]  Arnold, V. I. (1978). Ordinary Differential Equations. The MIT Press. ISBN 0-262-51018-9.

https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-262-51018-9


Existence Theorems

A special type of Lipschitz continuity, called contraction is used in the Banach fixed-point theorem

(an existence theorem). It states that:

Let (X,d) be a complete metric space and 𝑇: 𝑋 → 𝑋 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠

𝑑 𝑇𝑥, 𝑇𝑦 ≤ 𝐾 𝑑 𝑥, 𝑦 ; 0 ≤ 𝐾 < 1.

Then T has unique fixed point in X.

It is the fundamental existence theorem in the metric fixed-point theory. It appears to be a powerful

tool for the existence of the solutions of mathematical models involving differential equations and

others representing real world phenomena.

[1] Ciesielski, Krzysztof (2007). "On Stefan Banach and some of his results" (PDF). Banach J. Math. Anal. 1 (1): 1–

10. doi:10.15352/bjma/1240321550.

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.15352%2Fbjma%2F1240321550



