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Modus operandi

We will proceed through the slides and activities and ask you to
think about the issues, pausing for some reflection with perhaps
some contributions from you. Please use the Chat to ask questions.

We will have time for conversation at the end or any time during
the conference - check out my avatar or through email,
Director@simiode.org.

Director@simiode.org


Outline of Minicourse

I Pose a real problem

I Introduce probability concepts

I Share notions and mathematics of Stochastic Processes

I Investigate role of differential equations in Stochastic
Processes

I Special case - Poisson Process

I Demonstrate applications of Poisson Process

I Return to our real problem.

All materials/references are available at www.simiode.org
and in the Conference Program for this Minicourse.

Source: Winkel, B. 2013. 1-027-T-StochasticProcesses-TeacherVersion.
https://www.simiode.org/resources/802.

https://www.simiode.org/resources/802


Real Problem

We have a process (human or machine processor or server) which
has an hourly cost to operate (depends on skill and speed) and for
which we make money for each customer process we complete.

Our customer is a human or a machine. Arrivals enter a finite line
to be served and we make money off each service.

We wish to know what level of service we should provide so as
to maximize our profit, knowing that we will lose customers who
are turned away when our waiting line is full.

We know the hourly costs of our service, depending on skill and
speed, and the charge for each of our completed services.



Mathematical Formulation of Real Problem

1. Suppose the cost to provide a service at an average rate of µ
customers per hour is c · µ dollars/hour.

2. We gross A dollars for every customer served.

3. Our system or line has a capacity of N customers, i.e. when
there are N customers in line potential customers will walk
away and we will lose their customer dollars.

4. Suppose our customers arrive on average at a rate of λ
customers per hour. This is known from experience or design.

5. What service rate, µ, will provide maximum hourly profit?

6. That is, we seek to maximize money coming in from servicing
customer less money going out for actual servicing effort.



What would a profit function look like?

(Money In!) Money we take in each hour by customers arriving,
being able to get in line, getting serviced, and paying the amount
A dollars each.

LESS

(Money out!) Money we spend on serveer in each hour.



What would a profit function look like?

(Money In!) Money we take in each hour by customers arriving,
being able to get in line, and paying the amount A dollars each.

LESS

(Money out!) Money we spend on server in each hour.

Suppose we know the percentage of time the line is full, pN , (we
have N customers in the line) and we have to turn away customers.

Then what does 1− pN mean?



Recall variables:

1. µ is service rate of average number of customers per hour.

2. λ is arrival rate of average number of customers per hour
who/which arrive at our line.

3. c the cost per unit of server (ability and speed).

4. N the capacity of our line above which our customers are
turned away.

5. pN the percentage of time the line is full.

6. A the revenue in dollars for each customer served.

Which of these are good models for money in and money out?
Number? In or Out?

(1) λ · A, (2) c · µ, (3) A · µ
(4) λ · A · pN , (5) c · µ · pN

(6) λ · A · (1− pN), (7) c · µ · (1− pN)



How does this look for profit as a function of service rate, µ?

P(µ) = λ · (1− pN) · A− c · µ

What will we need in order to have a function of µ to optimize?

Let’s go after it then! But first . . .



What does it mean to be a random event? Examples and note one:

I Number of names on nightly police blotter.

I Number of cars passing spot on an interstate in time interval?

I Number of channel switches per minute performed on the
television by the resident “couch potato” in the dorm lounge.

I Number of particle emissions per second from a isotope.

I Number of active phone calls at a given three digit exchange.

I Number of hits to your Facebook page per hour.

I Number of no-hitters per season in Major League Baseball.

I Number of people in the array of WalMart checkout counters.

I Number of requests at Amazon Service Desk per hour.

I Number of points scored per minute in college football game.

I Number of paramecia in a Petri dish each hour of a lab “run.”



I Consider, arrivals of telephone calls at a switching station in a
given interval of time.

I Examine system over period of time [t, t + h]

I “State” is a common word with a technical definition which
we will see often in our study now. This system is in state En

at time t if exactly n messages (or more generally, events have
taken place) have arrived in time interval [0, t].

I We seek to build a mathematical model for Pn(t), the
probability that the system is in state En at time t.



Take one of the possible random events described in the list above:

[Consider “Number of names on nightly police blotter.”]

1. Define what the state, En, might be for each n.

2. What is reasonable time frame over which to study this?

3. Explain what Pn(t) means in each case for n = 0, 1, 2, 3 . . ..

4. Attempt to sketch Pn(t) for n = 0, 1, 2, and 100, on time
interval t ∈ [0,T ]. Think what Pn(t) means for each n.

5. What does P0(0) mean and what value would it often take?



Offer reasonable assumptions on this random process.

Pertinent/relevant assumptions as well.



Formalize assumptions into mathematics about a system which
moves from state to state randomly.

C1) If in time interval, [t, t + h], h is very small, not too much can
happen. Perhaps move from one state, say En, to an adjacent
state En±1 only. We only have states, En, for integers n ≥ 0.

C2) If in state En what happens in time interval [t, t + h] depends
only on current state En and the length of time interval h; not
on current time or previous history.

C3) If in state En the probability that we move to a non-adjacent
state, En±k , k > 1 in time interval [t, t + h] is very small. Not
too much can happen in tiny interval.

C4) It does not matter what time it is as to system changing
state. Movements between states is independent of time.



(C4) indicates that actual time has no effect on the events. If time
shapes events then we have a more complicated situation. But we
are comfortable (are you?) with what we have going for us already.

These assumptions translate into axioms for a stochastic process.

Our system can be in any of the states: E0,E1,E2,E3, . . . ,En, . . .

A process which satisfies the following axioms is a stochastic
process and is a general birth and death process.



1. System changes only to its neighbors, En to En+1 or En−1 for
n ≥ 1, E0 to E1 only.

2. If at any time t the system is in state En, the probability that
during the time interval [t, t + h] the transition En to En+1

occurs equals λnh + o(h), and the probability that during the
time interval [t, t + h] the transition En to En−1 occurs equals
µnh + o(h). Here λn and µn say that these state transition
probabilities might be a function of the state, En itself.

o(h) is very small when compared to h. So, the probabilities
may not be exact, but error is very small when compared to h.
Formally, limh→0

o(h)
h = 0.

3. The probability that during the time interval [t, t + h] more
than one change occurs is o(h).

4. The system’s change is independent of t.



We have interest in Pn(t), the probability a system is in state En

at time t.

We have other interests, e.g.,
∞∑
n=0

n · Pn(t), the mean state

(average value or expected value of the state) of the system at
time t.

We formulate a mathematical model for Pn(t), the probability that
the system is in state En at time t.

We first obtain some information about Pn(t + h), i.e. the
probability that the system is in state En at time t + h. We derive
this from the condition of the system at time t.



At time t + h the system can be in state En if only if one of the
following mutually exclusive events is true:

1. at time t the system was in state En and in the interval
[t, t + h] no change occurred;

2. at time t the system was in state En−1 and a transition to
state En occurred in the time interval [t, t + h];

3. at time t the system was in state En+1 and a transition to
state En occurred in the time interval [t, t + h]; or

4. at time t the system was in state Ek where |k − n| > 1, i.e.
more than two steps from En and two or more transitions
occurred in the time interval [t, t + h].



Since the events described in (1) - (4) above are mutually exclusive
we can add their probabilities to get the probability that at time
t + h the system can be in state En.

We obtain the equations below for Pn(t + h) for n > 0 by adding
the probabilities of these mutually exclusive and exhaustive events.

Incidentally, the product of two probabilities, e.g., Pn−1(t) · λn−1h
signifies two independent events, i.e. one does not portend
information about the other, so we just multiply their probabilities.

Consider, Pn−1(t) · λn−1h. First, the probability that the system is
in state En−1 at time t and second, the probability that the system
moves from state En−1 to state En in the time interval [t, t + h].



Pn(t + h) = Pn(t)(1− λnh − µnh)

+Pn−1(t)λn−1h

+Pn+1(t)µn+1h + o(h) .

For n = 0, we have

P0(t + h) = P0(t)(1− λ0h − µ0h)

+P1(t)µ1h + o(h) .

We call these general birth and death equations.



We move to a set of differential equations (goodie!) by examining
first difference quotients,

Pn(t + h)− Pn(t) = −Pn(t)(λnh + µnh) + Pn−1(t)λn−1h

+Pn+1(t)µn+1h + o(h) ,

and then divide by h and take the limit as h goes to 0.

And so we have (recall limh→0
o(h)
h = 0) differential equations for

Pn(t) for integer values n > 0:

P ′n(t) =
dPn(t)

dt
= −Pn(t)(λn +µn)+Pn−1(t)λn−1+Pn+1(t)µn+1 .



Using a similar process for n = 0 we can show that

P ′0(t) =
dP0(t)

dt
= −P0(t)(λ0 + µ0) + P1(t)µ1 . (1)

And from above for integer values n > 0:

P ′n(t) =
dPn(t)

dt
= −Pn(t)(λn +µn)+Pn−1(t)λn−1+Pn+1(t)µn+1 .

(2)

This is an infinite sytem of first order, ordinary differential
equations to solve. Egads!



Let us consider some situations.

Pure birth process, i.e. µn = 0 for all n says there is no death or
loss in state value and λn = λ · n says that growth depends on the
state En, as in birth rate proportional to population size.

For the growing police blotter we have a process called a Poisson
process, i.e. µn = 0 for all n says there are no erasures of names
from the police blotter. Only names get added to the list and
λn = λ says that growth of the list DOES NOT depend on how
many names are on the list. This Poisson process is used to test
randomness in many phenomena as we shall see shortly.



Let us examine the Police Blotter or Roster situation.

Suppose our system is a Poison process, which involves the number
of names on the police blotter or roster for the evening shift, i.e.
we wish to model the number of names of persons “checked-in” or
who called in about something (dog barking!) at the police station
during the course of the evening, beginning at midnight (t = 0).

Our system will be in state En if there are n names on the roster
and Pn(t) is the probability that n names are on the roster at time
t (say in minutes past midnight).

You can make an argument as to whether or not such events are
random. Let us assume these arrivals on the police roster occur
randomly throughout the night.



Here are some questions to consider in this situation:

I What does λ signify or mean? Let us see if we can find out.

I If t = 0 signifies the beginning of the night shift at midnight
with clean slate, what is P0(0)? What are Pn(0) for all other
n > 0?

Say out loud to your self what Pn(0) describes.

Pause.



Here are some questions to consider in this situation:

I What does λ signify or mean? Let us see if we can find out.

I If t = 0 signifies the beginning of the night shift at midnight
with clean slate, what is P0(0)? What are Pn(0) for all other
n > 0?

Say out loud to your self what Pn(0) describes.

Pn(0) is the probabillty the system is in state En (or has n names
on the roster) at time t and since the sheet is blank to start, we
have P0(0) = 1 while Pn(0) = 0 for n > 0.



Write out (1) in this case with initial condition P0(0) = 1.

P ′0(t) =
dP0(t)

dt
= −P0(t)(λ0 + µ0) + P1(t)µ1 = −λλ ,

for in this case λn = λ while µn = 0 for all integers n ≥ 0. OR Just

P ′0(t) = −λ · P0(t) with P0(0) = 1 .

Can we solve this? If so, what is the solution?



Write out (1) in this case with initial condition P0(0) = 1.

P ′0(t) =
dP0(t)

dt
= −P0(t)(λ0 + µ0) + P1(t)µ1 = −λP0(t)λ ,

for in this case λn = λ while µn = 0 for all integers n ≥ 0. OR Just

P ′0(t) = −λ · P0(t) with P0(0) = 1 .

Can we solve this? If so, what is the solution? We sure can!

This is the good olde exponential decay, first order differential
equation, so

P0(t) = P0(0)e−λ·t = e−λ·t .



Again, pause to say out loud and think about what the solution

P0(t) = P0(0)e−λ·t = e−λ·t ,

to this differential equations

P ′0(t) = −λ · P0(t) with P0(0) = 1 .

really says in the context of the police blotter as the night moves
on. What does the plot of the solution look like and does it make
sense?

Pause.



Now, write out (2) for n = 1 first (and then we can do the same
for n = 2, 3, 4, etc.)

P ′n(t) =
dPn(t)

dt
= −Pn(t)(λn +µn)+Pn−1(t)λn−1+Pn+1(t)µn+1 .

Recall, λn = λ and µn = 0. Thus, we have,

P ′1(t) =
dP1(t)

dt
= −P1(t)λ+ P0(t)λ .

Here if we knew P0(t) (and we do) from P ′0(t) = −λP0(t) above,
we could solve for P1(t).

P ′1(t) =
dP1(t)

dt
= −λP1(t) + λe−λ·t with P1(0) = 0 .

What solution strategy or technique would we use?



P ′1(t) =
dP1(t)

dt
= −λP1(t) + λe−λ·t with P1(0) = 0 .

What solution strategy or technique would we use?

Integrating factor? Separation of Variables? Mathematica?
Maple? SAGE?

We obtain

P1(t) = e−λ·t(λ · t) .

We can proceed to solve for

P2(t) =
1

2
e−λ·t(λ · t)2 ,

and either through seeing a pattern or formal induction arrive at

Pn(t) =
1

n!
e−λ·t(λ · t)n .



What do these plots of Pn(t)’s tell us? Does this make sense?

0 1 2 3 4 5 6

t0.0

0.2

0.4

0.6

0.8

1.0

Plots of Pn(t) for n = 0, 1, 2, 3, 4 with λ = 3 in the Poisson
process. Thinest plot for n = 0 and thickest for n = 4.



Always touch base with the modeled activity, so consider this.

A kind of reality check. What does F (t) = 1− P0(t) = 1− e−λ·t

represent? Look like?



Always touch base with the modeled activity, so consider this.

A kind of reality check. What does F (t) = 1− P0(t) = 1− e−λ·t

represent? Look like?

F (t) is the probability that we have at least one arrival in our
blotter in the time interval [0, t] and we see that this becomes more
and more likely as the evening moves on. Indeed it approaches 1.



Now we turn to ascertaining several things

1. mean or average state value of our system at time t,

2. the meaning and significance of our λ, and the

3. the long term probability or percentage of time our system
spends in each state, En.

First, consider the expression for the mean or average state value,
M(t), of the system at time t

M(t) =
∞∑
n=0

n · Pn(t) =
∞∑
n=0

n ·
(

1

n!
e−λ·t(λ · t)n

)
.

Using basic series for ex we can show that M(t) = λ · t and more
importantly we can see that M(1) = λ.

So we now see λ is the average number of arrivals per minute.



Let us examine and then use the notion of the long term probability
or percentage of time our system spends in each state, En.

M(t) =
∞∑
n=0

n · Pn(t) =
∞∑
n=0

n ·
(

1

n!
e−λ·t(λ · t)n

)
.

in particular if Pn(t) = 1
n!e
−λ·t(λ · t)n , we can define

pn = Pn(1) =
1

n!
e−λ(λ)n ,

as the the percent of time in a 1 unit time interval that we are in
state En, in the case of the police blotter the percentage of time
we have exactly n = 0, 1, 2, . . . names on the blotter.

VERY IMPORTANTLY, this value of λ can be tabulated for given
data to see if observed phenomena is Poisson, i.e. random.



Consider two dice and event En where n is the sum of the faces of
rolled two six-sided, fair dice. Each number on a die has 1/6
probability of turning up and for each sum value n we give the
probability that the sum of the two dice thrown would be n in table
below. See how each entry in the second column is computed?

Sum of Dice (k) Probability (P(k))
2 1

36

3 2
36

4 3
36

5 4
36

6 5
36

7 6
36

8 5
36

9 4
36

10 3
36

11 2
36

12 1
36

What then is Average or Mean Sum, namely, M =
∑12

k=2 k · P(k)?



V-2 Rocket hits on London in World War II - Real Application!
Source: Clarke, R. D. 1946. An Application of the Poisson
Distribution. Journal of the Institute of Actuaries. 72: 481.

During World War II, London was assaulted with German
flying-bombs on V-2 rockets. The British were interested in
whether or not the Germans could actually target their bomb hits
or were limited to random hits with their flying-bombs.

In [Clarke1946] the analysis which led the British to determine
whether or not the Germans could target their bombs or were
merely limited to random hits is presented. R. D. Clarke, the
author, said,



During the flying bomb attack on London, frequent asser-
tions were made that the points of impact of the bombs
tended to be grouped in clusters. It was accordingly de-
cided to apply a statistical test to discover whether any
support could be found for this allegation.

...
The occurrence of clustering would have been reflected
. . . by an excess of squares containing either a high number
of flying bombs or none at all, with a deficiency in the
intermediate classed.

This analysis is important. For if the Germans could only target
randomly, then deployment throughout the countryside of various
security installations would serve quite well to protect them, as
random bombing over a wide range was unlikely to hit a given
target. However, if the Germans could actually target their
flying-bombs, then the British were faced with a more potent
opponent and deployment of security installations would do little
to protect them.



The British mapped off the central 24 km by 24 km region of
London into 1/2 km by 1/2 km square sectors. They recorded the
number of bomb hits, noting their location.

# bomb hits (k) per area 0 1 2 3 4 5 and over

# areas with k bomb hits 229 211 93 35 7 1

Tally of the number of “flying-bomb” attacks on London in WWII.

There were 576 square sectors in London and λ = 0.929 is the
average number of flying bomb hits per sector.

pn = Pn(1) =
1

n!
eλ(λ)n ,

where pn is the average number of bombs per sector expected if
the process was random.



MISSION: Perform an analysis to determine if the bombing was
random or was capable of targeting. State your assumptions and
offer up a complete analysis.

This is important to Winston Churchill!



pn = Pn(1) =
1

n!
eλ(λ)n .

The theoretical data and the observed data are almost identical
and so the British concluded that the bombings were random
and the Germans were incapable of “strict targeting.” Thus,
they deployed resources widely, not clustered, for over a wide space
the Germans were incapable of targeting small resource areas.



Review the problem and apply the Pure Birth and Death Process
differential equations.

Real Problem

We have a process (human or machine processor or server) which
has an hourly cost to operate (depends on skill and speed) and for
which we make money for each customer process we complete.
Our customer is a human or a machine. Arrivals enter a finite line
to be served and we make money off each service.

We wish to know what level of service we should provide so as
to maximize our profit, knowing that we will lose customers who
turned away when our waiting line is full. We know the hourly
costs of our service, depending on skill and speed, and the charge
for each of our completed services.



Here we have λn = λ (average arrival rate per hour) and µn = µ
(average service rater per hour) for n = 0, 1, 2, . . . ,N.

P ′0(t) =
dP0(t)

dt
= −P0(t)(λ0 + µ0) + P1(t)µ1

P ′0(t) =
dP0(t)

dt
= −P0(t)(λ+ µ) + P1(t)µ .

And from above for integer values 0 < n ≤ N:

P ′n(t) =
dPn(t)

dt
= −Pn(t)(λn + µn) + Pn−1(t)λn−1 + Pn+1(t)µn+1

P ′n(t) =
dPn(t)

dt
= −Pn(t)(λ+ µ) + Pn−1(t)λ+ Pn+1(t)µ .

This is an finite sytem of first order, ordinary differential equations
to solve with P0(0) = 1 and Pn(0) = 0 for 0 < n ≤ N.



One can solve them both for Pn(t) the probability that the system
is in state En at time t and in the discrete case for pn for
0 ≤ n ≤ N, the percentage of time the system is in state En, due
to truncated nature of the processes. Finally, one can find pN and
then proceed to P(µ), our profit function in terms of µ with given
data λ, N, A, and c..

That is we can return to our problem of maximizing revenue with
our new found (or accepted) 1− pN

1− pN =

((
λ
µ

)N (
1− λ

µ

))
1−

(
λ
µ

)N+1



We seek µ to maximize P(µ) for given data λ, N, A, and c.

P(µ) = λ · (1− pN) · A− c · µ

= λ ·

((
λ
µ

)N (
1− λ

µ

))
1−

(
λ
µ

)N+1
· A− cµ .

Calculus here we come!



No-hitters in Baseball - Random Events?

Consider the phenomenon of no-hitters in baseball. A no-hitter for
a pitcher is a 9 inning game in which the pitcher allows no hits!
They are rare, but are they randomly distributed?

We examine the number of no-hitters (k) per season, and the
number of seasons with k no-hitters. Using the Poisson analysis
ascertain if no-hitters are randomly distributed among baseball
seasons. Offer your analysis and defend your conclusions.



The following data relates to the number of no-hitters per season
for Major League Baseball from the years 1876-1989, some 114
years of professional baseball history.

# no-hitters (k)/season 0 1 2 3 4 5 6 7+ and over
# seasons with k no-hitters 26 31 23 19 10 4 1 1

The number of seasons with k no-hitters in MLB from 1876-1989.

Question: Are no-hitters per season a random event? Offer an
analysis and defend your decision on the question.

Offer a rationale for why you think your conclusion might hold, i.e.
if no-hitters are random why? If not, why not?

Other questions: Do they occur more frequently near the end of
the season when pitchers are at peak form or less frequently at the
end of the season when pitchers are weak from throwing all season
and batters or “on to their pitches”?



Rutherford’s Experiments on Radioactive Disintegration

Lord Ernest Rutherford, the famous British physicist who worked in
the early part of the twentieth century, was detecting radioactive
disintegrations in his laboratory. His results are reported in his
book.

Basically Rutherford took N = 2608 time intervals of 7.5 seconds
each and counted the number of particles in each interval which
reached a counter. Here are his data.

# particles (k)/interval 0 1 2 3 4 5 6 7 8 9 10
# intervals with k particles 57 203 383 525 532 408 273 139 454 27 16

The number of time intervals with k particles counted in these
intervals from data compiled by the physicist Ernest Rutherford.

From this data, can you infer that radioactive disintegration is a
random process? Write up your opinion. Defend your conclusion
using the Poisson model approach.



Join us at SIMIODE and
take the lead for modeling with differential equations.

Visit us at www.simiode.org and register.

All is FREE at SIMIODE!

https://www.simiode.org


Discussions and Questions


