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“Qu’ est-ce que le passé, sinon du présent qui est en retard?”

(What is the past, if not the present, which is late?)
(Pierre Dac, a French humorist (1893-1975))
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Motivation

1. A scientist studying the growth of a population, p(t), may
make a very simple assumption that a population grows at
a rate directly proportional to its size.

» Malthus model:

dp(t) _
dt - Vp(t), t Z 0

p(0) = po
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» The solution of the DE is

p(t) = poe”
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» The solution of the DE is

p(t) = poe”

t—o00

» lim p(t) = oo whenever r > 0 (“Unlimited growth”)
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2. Limited population growth (Logistic equation)

» In 1838, the Belgian mathematician Pierre Verhulst
introduced a model where the population has some
self-limitation.
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2. Limited population growth (Logistic equation)
» In 1838, the Belgian mathematician Pierre Verhulst

introduced a model where the population has some
self-limitation.

> Assume that the per capita growth rate decreases linearly
as a function of population.

» The growth equation is given by

d
JZ (1‘B)P R(p)p;  p(0) = po, 1)

where r(> 0) is the intrinsic growth rate; and K(> 0) is the
carrying capacity; R(p) = r(1 — ).
» The Logistic equation (1) assumes that population density

negatively affects the per capita growth rate according to
1dp _

s =7 (1 — £) due to environmental degradation.
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The solution is

p(t)

po—(po—K)e="?
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The solution is p(t)

po—(po—K)e="?

Po

N
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3. In 1948, G. E. Hutchinson pointed out that negative effects
that high population densities have on the environment
influence birth rates at later times due to developmental
and maturation delays.
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3. In 1948, G. E. Hutchinson pointed out that negative effects
that high population densities have on the environment
influence birth rates at later times due to developmental
and maturation delays.

» Hutchinson modified the logistic equation to incorporate a
delay into the growth rate, so R(p) becomes R(p(t — 7)):

% =7 <1 - p(tK—7')> p(t) (Hutchinson’s eq or logistic DDE),
@)

where the constant 7 > 0 is the time delay.
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HOW ZIKA IS TRANSMITTED

That person gaes SegyoN Bites Zika
gets zika mosquito infected person
3 - 12dlays later @

Mosqu'rtp ingests
Zika infected mosquito 5’.’&? ‘F:I?;sz:%a-w
bites another person days for Zika,

virus to incubate.

Figure: Transmission Cycle of the Zika virus
http:/ /health.gov.bz/www /images/stories/zika
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Example

Incubation period

is the time it takes
HOW ZIKA IS TRANSMITTED .
for the disease to

% develop inside of a
newly infected

Aedes aegypti , (1)— - . P
T ceon et peay g being (this is the
3 - 12days later @

delay time).

Mosquito ingests
blood with Zika
virus. Takes 10-12
days for Zika,
virus to incubate.

Zika infected mosquito
bites another person

Figure: Transmission Cycle of the Zika virus
http:/ /health.gov.bz/www /images/stories/zika
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» Definition: Delay differential equation (DDE) is a
differential equations in which the current rate of change
of the system depends not only on the current state but
also on the history of the system.
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» Definition: Delay differential equation (DDE) is a
differential equations in which the current rate of change
of the system depends not only on the current state but
also on the history of the system.

» Consider a simple linear delay-differential equation:
() =—ay(t=7), >0, ®)

where a € R, and 7 > 0 is the delay or time lag.
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» Definition: Delay differential equation (DDE) is a
differential equations in which the current rate of change
of the system depends not only on the current state but
also on the history of the system.

» Consider a simple linear delay-differential equation:
() =—ay(t=7), >0, ®)

where a € R, and 7 > 0 is the delay or time lag.

» Initial function: y(t) = ¢(t) [—7,0].
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» Definition: Delay differential equation (DDE) is a
differential equations in which the current rate of change
of the system depends not only on the current state but
also on the history of the system.

» Consider a simple linear delay-differential equation:

y/(t) - —a]/(t - T)? t> Oa (3)

where a € R, and 7 > 0 is the delay or time lag.
» Initial function: y(t) = ¢(t) [—7,0].

» A single DDE is capable of producing oscillatory motion,
in contrast to a first-order ODE.
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Delay Differential Equations (Delay = 1)

Figure: y' = —ay(t — 7) with small 7, and
a>0

Delay Differential Equations (Delay = 1)

AAAA

Juy

a>

Figure: y' = —ay(t — 7) with larger 7, and
0
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uw'(t) =
where 5 = ar.

_Bu(t - 1)7

(4)
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uw'(t) =
where 5 = ar.

_Bu(t - 1)7

(4)
» The only equilibrium solution is u*(t) = 0 for all ¢
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Setting y(7t) = u(t), we get

uw'(t) = —pu(t — 1), (4)

where 5 = ar.
» The only equilibrium solution is u*(¢) = 0 for all ¢.

» We look for solutions of the form: u(t) = ce’, where cis a
constant and the eigenvalues A are solutions of the
transcendental equation:
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Setting y(7t) = u(t), we get

W (t) = —Bu(t 1), 4)

where 5 = ar.
» The only equilibrium solution is u*(¢) = 0 for all ¢.

» We look for solutions of the form: u(t) = ce’, where cis a
constant and the eigenvalues A are solutions of the
transcendental equation:

A+ Be > =0 (Characteristics equation) 5)

= A= —pe?

» Solving and understanding the roots of (5) would be

helpful in studying the stability of the equilibrium and the
oscillatory behavior of the solution.
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e Proposition: Suppose that A € R.
@) If B <0

9
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e Proposition: Suppose that A € R.
(@ Ifp <0

\ >
\

\k

Then (5) has exactly one positive real root Ag.
= u(t) = ceM!

— o0 ast — oo, and u* = 0 is unstable
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e Proposition: Suppose that A € R.
(@ Ifp <0

\ >
\

\k

Then (5) has exactly one positive real root Ag.
= u(t) = ceM!

(b) f0< B <e?

— o0 ast — oo, and u* = 0 is unstable
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STABILITY OF THE ZERO EQUILIBRUIUM
e Proposition: Suppose that A € R.
(@ Ifp <0

Then (5) has exactly one positive real root Ag.
= u(t) = ce® — coast — oo, and u* = 0 is unstable.
(b) f0< B <e?

///'

/
Then it has exactly two negative real roots where A\; < —1
and -1 < A <0=u(t) - 0ast — oo, and u* =01is
asymptotically stable.
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Lambda

then it has one negative real root, A\ = —1 = u(t) — 0 as

t — oo, and u* = 0 is asymptotically stable.
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Lambda

then it has one negative real root, A\ = —1 = u(t) — 0 as
t — oo, and u* = 0 is asymptotically stable.
(d) Ifg>e!

Lambda

N
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Lambda

then it has one negative real root, A\ = —1 = u(t) — 0 as
t — oo, and u* = 0 is asymptotically stable.
(d) Ifg>e!

Lambda

then there are no real roots.
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e Suppose that A € C. Set A = x +iy.

e Numerical Observations
Separating the real part and imaginary parts of the
characteristic equation A + Be~* = 0, we obtain:

x = —fe *cosy
y = Pe *siny

(6)
—ycot(y)

:>§:—cot(y)2>x
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e Suppose that A € C. Set A = x +iy.
Separating the real part and imaginary parts of the
characteristic equation A + Be~* = 0, we obtain:

x=—pe*
{ e ©)
Yy = Pe *siny
= ; = —cot(y) = x = —y cot(y)
We get the parametric .
equations: 2
x = —ycot(y)
P )

¥ cot(y) sin y
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Definition:
The leading roots { A1} = {x; +iy.} of an
equation are those that are such that
x; > x = Re(\) forall A = x + iy.
Proposition:
1. If B < 0 then there is only one leading real root that is
positive. Therefore, u* = 0 is unstable.
2. If 0 < 3 < e ! then there is only one leading real root and
it is negative. Therefore, u* = 0 is asymptotically stable.
3. Ife™! < 3 < m/2 then there is only one pair of complex
conjugate leading roots with negative real part. Therefore,
u* = 0 is asymptotically stable.
4. If p = m/2 then there is only one pair of complex conjugate

leading roots j:gi . Therefore, u* = 0 is unstable.
5. If > ©/2 then there is only one pair of complex conjugate
leading roots with positive real parts. = u* = 0 is unstable.
So, u* = 0 is asymptotically stable for 3 € (0, 7/2).
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Oscillatory behavior: We observe that

1. For /3 small positive then the solution decays exponentially
towards the zero equilibrium without any oscillatory
behavior.

2. When f hits a value round 0.37 (= ¢~ 1), the solution
becomes oscillatory but it would still decay to the zero
equilibrium.

3. When § hits a value around 1.5 (= 7/2), oscillations would
still take place but the zero equilibrium would no more be
stable; the amplitude of the oscillations grows indefinitely
as time progress

Theorem: Every Solution of the DDE (4) is oscillatory if and
only if 8 > e 1.
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(a) Small Rate: = 0.2

-

(b) Small Rate: g =0.2
$(t) = et

/\/\/\/\/\/\f —

(c) Oscillations Observed: 3 = 0.5

(d) Decaying Oscillations: g =1

| \4\,\/\/\/\/

(e) Stable Oscillation: 8 = 1.57

(f) Unstable Oscillation: = 1.8
Different Vertical Scaling

&

RN Ge
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VECTOR BORNE DISEASES
» Definition: A vector borne disease is a disease
transmitted to humans through the bites of an infected
arthropod vector (e.g. mosquitoes).
» Malaria and the Zika virus are two well-known examples.
» Understanding the spread of such diseases is vital to their
eventual containment and eradication.

Definition: HOW ZIKA IS TRANSMITTED
Incubation period is the

time it takes for the % EY)

disease to develop inside Tratperson kg g E m,mz;k;mn
of a newly infected being I :

(this is the delay time). [i!

a —
o/
Q 9 Mosquilp ingests
_ Zika infected mosquito \?irus. “r:ll(:sz;g‘lz
bites another person days for Zika_
virus to incubate.
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HOW ZIKA IS TRANSMITTED

Aedes aegypti , @,

e v

Totoan o’ R Vo S z

0

@

—
s e
days

S = Number of Susceptible Individuals
z = Number of Infected Mosquitoes

E = Number of Exposed Individuals

I = Number of Infected Individuals

B = Biting Rate

¢ = Disease Recovery Rate

We are interested in the dynamics of infected humans.

u]
]
I
w
i
N
yel
?
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Assumptions

1. Upon biting an infectious human I, with a biting rate 3, a
susceptible vector becomes infected. And upon biting a
susceptible human S, an infectious vector z infects the
bitten human. Infected humans recover from the disease at
a rate c and they confer no immunity after recovery.

2. The size of the human population N is fixed and each
human can either be susceptible, exposed, or infected (i.e.
S+I+E=N).

3. There is an incubation period 7, in humans, that is a delay
between an individual receiving infection and becoming
fully infected.
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4. There is an incubation period 7, in vectors, that is a delay
between the vector receiving infection and becoming fully
infected.

5. The infected vector population is proportional to the
infected human population, that is z(t) = pI(t — 7).
6. The exposed human population (population developing

the disease) is proportional to the infected human
population, that is E(t) = gI(t).
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4. There is an incubation period 7, in vectors, that is a delay
between the vector receiving infection and becoming fully
infected.

5. The infected vector population is proportional to the
infected human population, that is z(t) = pI(t — 7).

6. The exposed human population (population developing
the disease) is proportional to the infected human
population, that is E(t) = gI(t).

e The Model

From the assumptions, we have the equation:

S(t—m)

I(t) = 52 2(t — ) - el(t)
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Using assumptions 1, 4, and 5 and normalizing, we get a
two-lag DDE:

I'(t) = [b(1 —el(t — 7))I(t = 7 — 70)] — cI(t), 8)

where b = p, e = ¢+ 1, and [ is the proportion of infected
individuals in the population.

When setting 7, = 0, ¢ = 0, and 7, # 0, we get a previously
studied model by Kenneth Cooke (1979):
I'(t) = b[(1 = I()I(t — 7)] — cI(t).
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Using assumptions 1, 4, and 5 and normalizing, we get a
two-lag DDE:

I'(t) = [b(1 — el (t — m))I(t — 7 — 70)] — cI(t), 8)

where b = p, e = ¢+ 1, and [ is the proportion of infected
individuals in the population.

When setting 7, = 0, ¢ = 0, and 7, # 0, we get a previously
studied model by Kenneth Cooke (1979):

I'(t) =b[(1 = I(t)I(t — 7)) — cI(t).

The equilibria of the model:

» [* = 0 (the disease-free equilibrium)

1
> I = " (1 - g) (the endemic equilibrium which exists

when Ry = % >1)
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STABILITY ANALYSIS: APPROACH

e Linearizing around the disease-free zero equilibrium, we
derive the following transcendental characteristic equation:

A =belmmmA ¢ 9
Setting z = (7, + 7,) A, then Eq. (9) becomes:
z+ay1 +ae * =0, (10)

where a1 = (7, + 7,)cand ap = —b(7y + 7).
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STABILITY ANALYSIS: APPROACH

e Linearizing around the disease-free zero equilibrium, we
derive the following transcendental characteristic equation:

A =belmmmA ¢ 9
Setting z = (7, + 7,) A, then Eq. (9) becomes:

z+a; +ae " =0, (10)
where a1 = (7, + 7,)c and ay = —b(1, + 7).
e Linearizing around the endemic equilibrium, we derive the
equation:

A+c =TT 4 (¢ — b ™A (11)

Assuming 7, = 0 and setting z = 7;,A, then Eq. (11) becomes:

z4+a; +ae * =0, (12)
where a1 = mcand ap = —(2¢ — b)7y,

The stability results follow from the study of the real parts of
the roots A.
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» The disease-free equilibrium is stable if Ry = % <1and
unstable if Ry > 1.
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STABILITY ANALYSIS: RESULTS

» The disease-free equilibrium is stable if Ry = % <1and
unstable if Ry > 1.

» The endemic equilibrium is unstable if 0 < Ry < 1.
Moreover, if 7, = 0 and Ry > 1, then there exists a specific
bp such that 3¢ < by < %h [(772 + chz)% + 27| and a

bo

change in stability occurs when Rg = 2
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Figure: Stable disease Figure: Stable endemic ~ Figure: Unstable
free eqﬁilibrium for equilibrium for Equilibria and
small values of realistic parameters. Unbounded Solution
transmission ral te b (From Zika paper by for even larger values

Agusto et al.) of b
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