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“Qu’ est-ce que le passé, sinon du présent qui est en retard?”

(What is the past, if not the present, which is late?)
(Pierre Dac, a French humorist (1893-1975))
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Motivation

1. A scientist studying the growth of a population, p(t), may
make a very simple assumption that a population grows at
a rate directly proportional to its size.

	

I Malthus model:

dp(t)
dt

= r p(t), t ≥ 0

p(0) = p0
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I The solution of the DE is

p(t) = p0ert

t

p0

p(t)

I lim
t→∞

p(t) =∞whenever r > 0 (”Unlimited growth”)
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2. Limited population growth (Logistic equation)
I In 1838, the Belgian mathematician Pierre Verhulst

introduced a model where the population has some
self-limitation.

I Assume that the per capita growth rate decreases linearly
as a function of population.

I The growth equation is given by

dp
dt

= r
(

1− p
K

)
p = R(p)p; p(0) = p0, (1)

where r(> 0) is the intrinsic growth rate; and K(> 0) is the
carrying capacity; R(p) = r(1− p

K ).
I The Logistic equation (1) assumes that population density

negatively affects the per capita growth rate according to
1
p

dp
dt = r

(
1− p

K

)
due to environmental degradation.
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The solution is p(t) = p0K
p0−(p0−K)e−rt ,

t

K

p0

p(t)
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3. In 1948, G. E. Hutchinson pointed out that negative effects
that high population densities have on the environment
influence birth rates at later times due to developmental
and maturation delays.

I Hutchinson modified the logistic equation to incorporate a
delay into the growth rate, so R(p) becomes R(p(t− τ)):

dp
dt

= r
(

1− p(t− τ)
K

)
p(t) (Hutchinson’s eq or logistic DDE),

(2)
where the constant τ > 0 is the time delay.
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Example

Figure: Transmission Cycle of the Zika virus
http://health.gov.bz/www/images/stories/zika

Incubation period
is the time it takes
for the disease to
develop inside of a
newly infected
being (this is the
delay time).



• Delay Differential Equations • Vector Borne Diseases Model • Numerical Observations

Example

Figure: Transmission Cycle of the Zika virus
http://health.gov.bz/www/images/stories/zika

Incubation period
is the time it takes
for the disease to
develop inside of a
newly infected
being (this is the
delay time).



• Delay Differential Equations • Vector Borne Diseases Model • Numerical Observations

I Definition: Delay differential equation (DDE) is a
differential equations in which the current rate of change
of the system depends not only on the current state but
also on the history of the system.

I Consider a simple linear delay-differential equation:

y′(t) = −ay(t− τ), t > 0, (3)

where a ∈ R, and τ > 0 is the delay or time lag.

I Initial function: y(t) = φ(t) [−τ, 0].

I A single DDE is capable of producing oscillatory motion,
in contrast to a first-order ODE.
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Figure: y′ = −ay(t − τ) with small τ , and
a > 0

Figure: y′ = −ay(t − τ) with larger τ , and
a > 0
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Setting y(τ t) = u(t), we get

u′(t) = −βu(t− 1), (4)

where β = aτ .

I The only equilibrium solution is u∗(t) = 0 for all t.
I We look for solutions of the form: u(t) = ceλt, where c is a

constant and the eigenvalues λ are solutions of the
transcendental equation:

λ+ βe−λ = 0 (Characteristics equation) (5)

⇐⇒ λ = −βe−λ

I Solving and understanding the roots of (5) would be
helpful in studying the stability of the equilibrium and the
oscillatory behavior of the solution.
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STABILITY OF THE ZERO EQUILIBRUIUM
• Proposition: Suppose that λ ∈ R.
(a) If β < 0

 

Then (5) has exactly one positive real root λ0.
⇒ u(t) = ceλ0t →∞ as t→∞, and u∗ = 0 is unstable.

(b) If 0 < β < e−1

 Then it has exactly two negative real roots where λ1 < −1
and −1 < λ2 < 0⇒ u(t)→ 0 as t→∞, and u∗ = 0 is
asymptotically stable.
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(c) If β = e−1

 

then it has one negative real root, λ = −1⇒ u(t)→ 0 as
t→∞, and u∗ = 0 is asymptotically stable.

(d) If β > e−1

 

then there are no real roots.
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• Suppose that λ ∈ C. Set λ = x + i y.
Separating the real part and imaginary parts of the
characteristic equation λ+ βe−λ = 0, we obtain:{

x = −βe−x cos y
y = βe−x sin y

(6)

⇒ x
y
= − cot(y) =⇒ x = −y cot(y)

We get the parametric
equations:x = −y cot(y)

β =
y

ey cot(y) sin y
(7)
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Definition:
The leading roots {λL} = {xL + iyL} of an
equation are those that are such that
xL > x = Re(λ) for all λ = x + iy.
Proposition:

 

1. If β < 0 then there is only one leading real root that is
positive. Therefore, u∗ = 0 is unstable.

2. If 0 < β < e−1 then there is only one leading real root and
it is negative. Therefore, u∗ = 0 is asymptotically stable.

3. If e−1 < β < π/2 then there is only one pair of complex
conjugate leading roots with negative real part. Therefore,
u∗ = 0 is asymptotically stable.

4. If β = π/2 then there is only one pair of complex conjugate
leading roots ±π

2
i. Therefore, u∗ = 0 is unstable.

5. If β > π/2 then there is only one pair of complex conjugate
leading roots with positive real parts. ⇒ u∗ = 0 is unstable.

So, u∗ = 0 is asymptotically stable for β ∈ (0, π/2).
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Oscillatory behavior: We observe that
1. For β small positive then the solution decays exponentially

towards the zero equilibrium without any oscillatory
behavior.

2. When β hits a value round 0.37 (≈ e−1), the solution
becomes oscillatory but it would still decay to the zero
equilibrium.

3. When β hits a value around 1.5 (≈ π/2), oscillations would
still take place but the zero equilibrium would no more be
stable; the amplitude of the oscillations grows indefinitely
as time progress

Theorem: Every Solution of the DDE (4) is oscillatory if and
only if β > e−1.
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VECTOR BORNE DISEASES
I Definition: A vector borne disease is a disease

transmitted to humans through the bites of an infected
arthropod vector (e.g. mosquitoes).

I Malaria and the Zika virus are two well-known examples.
I Understanding the spread of such diseases is vital to their

eventual containment and eradication.

Definition:
Incubation period is the
time it takes for the
disease to develop inside
of a newly infected being
(this is the delay time).
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S = Number of Susceptible Individuals
z = Number of Infected Mosquitoes
E = Number of Exposed Individuals
I = Number of Infected Individuals
β = Biting Rate
c = Disease Recovery Rate

 

We are interested in the dynamics of infected humans.
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Assumptions

1. Upon biting an infectious human I, with a biting rate β, a
susceptible vector becomes infected. And upon biting a
susceptible human S, an infectious vector z infects the
bitten human. Infected humans recover from the disease at
a rate c and they confer no immunity after recovery.

2. The size of the human population N is fixed and each
human can either be susceptible, exposed, or infected (i.e.
S + I + E = N).

3. There is an incubation period τh in humans, that is a delay
between an individual receiving infection and becoming
fully infected.
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4. There is an incubation period τv in vectors, that is a delay
between the vector receiving infection and becoming fully
infected.

5. The infected vector population is proportional to the
infected human population, that is z(t) = pI(t− τv).

6. The exposed human population (population developing
the disease) is proportional to the infected human
population, that is E(t) = qI(t).

•The Model
From the assumptions, we have the equation:

I′(t) = β
S(t− τh)

N
z(t− τh)− cI(t)
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Using assumptions 1, 4, and 5 and normalizing, we get a
two-lag DDE:

I′(t) = [b(1− eI(t− τh))I(t− τh − τv)]− cI(t), (8)

where b = βp, e = q + 1, and I is the proportion of infected
individuals in the population.

When setting τh = 0, q = 0, and τv 6= 0, we get a previously
studied model by Kenneth Cooke (1979):
I′(t) = b[(1− I(t))I(t− τv)]− cI(t).

The equilibria of the model:
I I∗ = 0 (the disease-free equilibrium)

I I∗ =
1
e

(
1− c

b

)
(the endemic equilibrium which exists

when R0 = b
c ≥ 1)
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STABILITY ANALYSIS: APPROACH
• Linearizing around the disease-free zero equilibrium, we
derive the following transcendental characteristic equation:

λ = be(−τv−τh)λ − c (9)

Setting z = (τv + τh)λ, then Eq. (9) becomes:

z + a1 + a2e−z = 0, (10)

where a1 = (τv + τh)c and a2 = −b(τv + τh).

• Linearizing around the endemic equilibrium, we derive the
equation:

λ+ c = ce(−τh−τv)λ + (c− b)e−τhλ (11)

Assuming τv = 0 and setting z = τhλ, then Eq. (11) becomes:

z + a1 + a2e−z = 0, (12)

where a1 = τhc and a2 = −(2c− b)τh
The stability results follow from the study of the real parts of
the roots λ.
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STABILITY ANALYSIS: RESULTS

I The disease-free equilibrium is stable if R0 = b
c ≤ 1 and

unstable if R0 > 1.

I The endemic equilibrium is unstable if 0 ≤ R0 < 1.
Moreover, if τv = 0 and R0 > 1, then there exists a specific
b0 such that 3c < b0 <

1
τh

[
(π2 + τ 2

h c2)
1
2 + 2τhc

]
and a

change in stability occurs when R0 = b0
c .
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NUMERICAL OBSERVATIONS

Figure: Stable disease
free equilibrium for
small values of,
transmission rate, b

Figure: Stable endemic
equilibrium for
realistic parameters.
(From Zika paper by
Agusto et al.)

Figure: Unstable
Equilibria and
Unbounded Solution
for even larger values
of b
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Thank you!
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