"When can I use this in real life?"
Modelling Project Based Differential Equations
Mission
The mission of Ashesi University is to educate a new generation of ethical, entrepreneurial leaders in Africa; to cultivate within our students the critical thinking skills, the concern for others and the courage it will take to transform a continent.
Meet Ashesi University

STUDENTS
- 1253 students
- 89% graduation rate in last 3 years.
- 47% of students are women
- 42% of students are on scholarships
- 52% of students on scholarships are women
- 17% are international students
- 1:21 student to faculty ratio
- 31 countries represented

FACULTY
- 36 full-time faculty
- 27 adjunct faculty
- 15 visiting faculty
- 10 academic support staff
- 42% women on university team
- 50% women on University Executive Team
- 55% women on the Board of Directors

CAMPUS
- 100 acres
- 13% solar-powered
- Rain water storage
- Wi-Fi in all academic buildings and residence halls
- 50% On campus housing
- On campus Health Centre

https://www.ashesi.edu.gh/about/campus-tour.html
Train ethical entrepreneurial leaders in engineering
To train engineers who are **ethically grounded, technically strong and have the audacity** and empathy needed to solve the continent’s most pressing challenges
- Interactive lessons with working out problems in groups and presenting
- Homework and some quizzes are completed in groups
- Identify current research articles that deal with a real-life application through modelling using ode(s)
- Understand the content of the paper, how the equations are derived and what they mean
- Understand the main points of the paper
Susceptibles (S) - have no immunity from the disease
Infecteds (I) - have the disease and can spread it to others
Recovereds (R) - have recovered from the disease and are immune to further infection

Assumptions
- Closed environment: No births
 No deaths
 No immigration
 No emigration

Assume that after a certain amount of time, an individual with the disease recovers
Modelling practice

- Students take previous concepts to develop the equations
- Work with previous model to develop a Matlab script that they can use to investigate the behaviour of each group and discuss overall trends and behaviours
Identify current research articles that deal with a real-life application through modelling using ode(s)

- Understand the content of the paper, how the equations are derived and what they mean
- Understand the main points of the paper
Project Stages

1. Find a paper
2. Develop a creative representation of your project
3. Introduce a modification or identify parameters for sensitivity analysis
4. Develop code and reproduce a figure
5. Investigate the effects of the new model changes or discuss the parameter sensitivity
6. Create one slide presentation with voice note introducing the paper and some brief notes to what you plan to do
ABSTRACT: We study a simple realistic model for describing the diffusion of an infectious disease on a population of individuals. The dynamics is governed by a single functional delay differential equation, which, in the case of a large population, can be solved exactly, even in the presence of a time-dependent infection rate. This delay model has a higher degree of accuracy than that of the so-called SIR model, commonly used in epidemiology, which, instead, is formulated in terms of ordinary differential equations. We apply this model to describe the outbreak of the new infectious disease, COVID-19, in Italy, taking into account the containment measures implemented by the government in order to mitigate the spreading of the virus and the social costs for the population.
Simulation and Analysis of COVID-19 Delay and SIR Model

Mathematical Model of the Spread of the COVID-19 Virus: A case study of Italy
Equations & Parameters used for SIR model

In defining, the model, some assumptions were made. For instance, it was assumed that the total population remains unchanged, uniform and homogeneously mixed.

The total population, N, was divided into three categories namely Susceptible(S), Infected(I) and Recovered(R). The population of these categories for any time(t), is given by $S(t)$, $I(t)$ and $R(t)$. It is also assumed the infected recover at a constant rate.

This equation describes the rate of change of the number of susceptible people with respect to time. α represents the infection rate and N is the total population. $S(t)$ and $I(t)$ represent the number of susceptible and number of infected at any given time respectively. The multiplication of $S(t)$ & $I(t)$ shows there is contact between the infected people and the number of susceptibles. The negative sign in front of the equation implies that the rate of susceptible people decreases with time as more people get infected by the virus.
EFFECT OF PARAMETER ANALYSIS ON INFECTED

SIR Model

Delay Model
EFFECT OF PARAMETER ANALYSIS ON RECOVERED

SIR Model

Delay Model
Parameter Analysis on a Model of the Viral Propagation of Memes Based on the SIR Model.

Felicity Ibukunoluwa Oguntolu1, Obencwa Esselba Akuffo2, Olaseni Towobola1, Yooku Obiri4
Engineering Faculty, Asbessi University,
1felicity_oguntolu@asbessi.edu.gh
2obencwa.aakufo@asbessi.edu.gh
3olaseni.towobola@asbessi.edu.gh
4yooku.obiri@asbessi.edu.gh

Abstract — Internet memes, be it a joke or a piece of text, tend to go viral in a trend similar to some infectious diseases. Using data from Google Trends as a check, Lin Wang and Brenda a “viral memetic model” based on the SIR model to predict the trend in the viral spread of memes focuses on a parameter analysis of two memes modelled in Wang and Wood’s paper “meme joke and the term “blog.” For the “O RLY” meme the transmission rate parameter observes its effects on the solution. It is observed that increasing the transmission rate by 0.002 provides a solution in a shorter number of days and vice versa for the term “blog.” The proportional constant of loss of interest is varied to obtain a solution of the viral memetic model. Here, increasing the value of the loss of interest prop results in a decreased peak value which occurs at a higher number of days; the opposite. This study reinforces the idea that the spread of ideas and concepts on the internet can be modelled in the form of infectious diseases.

Keywords — Memetic modelling, search volume index, meme, O RLY, blog, interest, peak

1. INTRODUCTION

According to Merriam-Webster [1], a meme is an idea, behavior, style or usage that spreads between persons within a culture. This paper discusses the viral propagation of memes. More specifically, Davison [2], explains an internet meme as an element of culture which becomes popular through online interaction and circulation.

In the viral memetic model, the people who have not yet interacted infectious represent the people who a particular meme, have taken an active role in sharing it to others. For the people who have previously specific meme and have lost interest recovered do not necessarily spread.

Fig 3. A spread of “O RLY” using varied α values from August 2005 to October 2009.

As seen in Fig3., using a smaller value of α (=0.00338), the peak of the graph drops by about 1, for the search volume index. This implies that the number of susceptible to get infected has reduced. The meme also gathers more interest than the original model, peaks for a longer period of 148 days, compared to 118 days. However, after it peaks there is still a gradual loss of interest in the “O RLY” meme over a period.

Considering the inverse, for a greater value of α (=0.00343), the peak increases by 1. The susceptible to get infected increases but with this increase, the graph peaks for a shorter time, 102 days and then interest dies.

Fig 4 Optimal parameters on “blog” from January 2004 to October 2009.
I noticed something similar to when we did Stats...my understanding of concepts became a lot better and more grounded with projects. So maybe a lot more of looking into research papers and trying to make meaning of concepts taught in class for the next Differential Equations and Numerical Methods class.

I enjoyed this class so much especially the part where we worked on the project of analyzing the scientific papers which were about ODEs. The more we applied the concepts through this project, the more I understood them. It was such a great experience to learn how these concepts in class are being used out there. I hope to see such situations in my future career.

I like how although classes are virtual you made the concepts as practical as possible.

Dr Rosca is one of the few lecturers who make me feel I can apply the things taught in class to real life applications. This course, I'm not just studying to get good grades but I am given insight on how the topics taught are applicable to real life scenario and my career path. Right from statistics and engineering to differential equations, she teaches in a way to ensure we understand and she ensures to chip in the applications. I really like the way she teaches and the way the course is designed. Thank you Dr Rosca!
Elena Rosca
erosca@ashesi.edu.gh

Deborah Enya Esi Debre, Computer Engineering, Ashesi University, Accra GHANA

Modelling Malaria Propagation: A Factor Significance Analysis