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Motivation

Diverse students taking ODEs at KSU
Wanted more than just standard application problems (e.g.
mass-spring, predator-prey, ...)
No chemical engineering program at KSU, but problems
introduce students to some basic ideas
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The problem

The goal is for students to work through a classical problem in
chemical engineering: to calculate the concentration profile of
cyclohexane within a catalyst pellet.

In doing so they will explore a second order ODE model, and solve
the resulting differential equation.

A related problem on a hydrogel model for knee replacements is
included as well (students will use similar mathematical
techniques).
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Scaffolding

Since this problem is expected to be unfamiliar to most students,
plenty of scaffolding and background is provided, starting from:

A catalyst is a material which is capable of accelerating a chemical
reaction without being consumed during the reaction process.
Catalysts often consist of a porous material with high surface area,
in which particles of a precious metal have been dispersed.
Catalytic particles are often referred to as pellets. Surrounding
each pellet, there is a thin gas film that contains a mix of reactants
and products.
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Catalyst pellet pictures

Catalyst Pellet

Gas Film

Figure: Catalyst pellet with a thin gas film surrounding it.
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Catalyst pellet pictures

catalyst
surface

gas film

pores
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Figure: 2D slice of catalyst surface with reactants and products.
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What is a porous medium?

Intuitively, such a medium has “pores", or voids, which are
typically filled with a fluid. Examples include sponges, rocks, soil,
biological tissues, etc. Imagine something as the figure below.

Figure: A porous medium.
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Porous media and differential equations: a sidebar

As an example, we will derive a model for the flow of water under
gravity through a homogeneous, isotropic, porous medium.

Let us define:
u(x , t) to be the volume of water per unit volume of the
porous media;
q(x , t) to be the volume of water flowing across a unit area
per unit time

If the density of water is assumed to be constant, which we will
assume, then the moisture content u(x , t) and the seepage velocity
q(x , t) of the water are governed by the continuity equation

∂u
∂t + ∂q

∂x = 0 (1)
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Porous media and differential equations: a sidebar

as well as Darcy’s Law

q(x , t) = −K (u)∂G
∂x (2)

where G is some potential function and K (u) is called the
hydraulic conductivity.

If chemical and thermal effects are ignored, then for unsaturated
flow, G can be expressed as a sum of a gravitational potential and
a potential due to capillary suction:

G = H(u) + x

where H(u) is called a hydrostatic potential.
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Porous media and differential equations: a sidebar

Combining all of this we obtain the equation

∂u
∂t = ∂

∂x

(
K (u)∂H

∂x

)
+ ∂

∂x K (u) (3)

Empirical expressions are known for D(u) := K (u)dHdu , and in
particular, we have D(u) = D0um−1 and K (u) = K0un, for
D0,K0,m, n positive constants.

Substituting these values into (3)
and rescaling, we obtain the main model:

∂u
∂t = ∂un

∂x + ∂2um

∂x2 , n,m ≥ 1, x ∈ R, t > 0 (4)

Can have students discuss various types of solutions (i.e. traveling
waves), but ok, back to the main point...
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Reactant diffusion

The reactant must diffuse through the pellet pores to reach the
metal atoms that are dispersed through the pellet:

catalyst
surface

gas film

����� �����

Figure: Reactants must penetrate the pores of the surface in order for the
reaction to occur.
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Will a reaction occur?

In order for a reaction to occur, the reactant must reach the pellet
surface after being transferred through the gas film. Similarly, after
the reaction takes place and the product is formed, that product
must transfer from the metal back to the pellet surface through the
pore, and then out into the reaction medium through the gas film:

catalyst
surface

gas film

Figure: Products must be transferred back to the surface through the
pore.
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The model

An important problem in chemical engineering is to predict the
diffusion and reaction in a porous catalyst pellet. The goal is to
predict the overall reaction rate on the catalyst pellet surface.

Conservation of mass expressed mathematically for c, the
concentration of a given chemical, in a spherical pellet with radius
rp gives a second order differential equation:
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The main equation

D
( 1
r2

d
dr

(
r2 dc

dr

))
= kR(c), 0 < r < rp (5)

where:
D is the diffusivity constant, in units of cm2/s;
k is the rate constant;
R(c) is the reaction rate function (could be nonlinear), in
units of moles per volume per time (mol/L/s)

The boundary conditions are:
dc
dr = 0 at r = 0,

c = c0 at r = rp (concentration is fixed at the surface)
Note that the units of k actually depend on the order of the
reaction! For example, in a first order reaction, the units of k are
1/s
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Application: catalytic reaction

A useful catalytic chemical reaction is the dehydrogenation of
cyclohexane. This industrial process requires the use of
γ−alumina, a porous catalyst pellet with spherical shape. On this
sphere, having diameter 5 mm, particles of platinum (a precious
and very expensive metal) have been dispersed to catalyze
chemical reaction.

As the name suggests, dehydrogenation involves the removal of
hydrogen atoms, a process that usually requires high temperatures.
The catalyst γ-alumina is a popular choice of catalyst for this
reaction due to its chemical properties, which make it resistant to
the extreme reaction conditions.
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Dehydrogenation

Below is a depiction of this chemical reaction process. It is a 3
stage process, and in each stage a hydrogen molecule is released.

Figure: Dehydrogenation process.
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Main question

Suppose that at 700 K, the rate constant for this reaction is
k = 4 s−1 and the diffusivity D = 5× 10−2cm2/s. Our goal is to
calculate the concentration profile of cyclohexane within the
pellet.

We define the concentration profile as

C := concentration of cyclohexane inside the pellet
concentration of cyclohexane at the surface of the pellet
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The differential equation

Mass conservation for cyclohexane gives the following model:

d2C
dR2 + 2

R
dC
dR = Φ2R(C)

c0
, 0 < R < 1 (6)

where R is the re-scaled radial coordinate, i.e R = r/rp. The
constant Φ is called the Thiele modulus and is given by

Φ = rp

√
k
D .

This quantity was introduced by E. W. Thiele in 1939 and came to
describe the relationship between diffusion and reaction rates in
porous catalyst pellets.
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Boundary condition

The boundary conditions are:

dC
dR = 0 at R = 0

and

C = 1 at R = 1 (this is by definition–we take c0 = 1)

We will assume that R(c) = kC so we have a linear reaction
function. With this we will solve (6).
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Solving the ODE

Making the substitution z = CR (a hint is useful here) yields the
equation

d2z
dR2 = Φ2z

whose solution is

z(R) = c1eΦR + c2e−ΦR

Now we apply the boundary conditions to obtain that

C = z
R = sinh(ΦR)

R sinh(Φ) .
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Hydrogel model

The equations describing diffusion and reaction in porous catalysts
can also be used to derive rates of tissue growth. Over 200,000
patients each year receive knee joint replacements. One approach
to growing cartilage to repair damaged knees is to deliver cartilage
forming cells in a hydrogel at the damaged area. The design of the
gel must be so that the gel can maintain the necessary rates of
diffusion of nutrients in the hydrogel. In particular, the gel
thickness needs to be designed in such a way so as to allow for
rapid transport of oxygen.

Figure: Hydrogel model.
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Finding gel thickness

Goal: find the gel thickness at which the minimum oxygen
consumption rate is 10−13 mol/cell/h, where h stands for hours.

The cell density is 1010 cells/dm3, the bulk concentration of
oxygen is 2× 10−4 mol/dm3, and the diffusivity is 10−5cm2/s.
Physical considerations imply that the equation satisfied by the
dimensionless concentration C satisfies

d2C
dz2 = 2Φ0, Φ0 = k

2DC0
L2

with boundary conditions

C(z) = 1 at z = 0

and
dC
dz = 0 at z = 1.
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Finding C

Integrating the second order equation once yields

dC
dz = 2Φ0z + K1

for some constant K1. The second boundary condition implies that
K1 = −2Φ0. Integrate the resulting first order equation once more
to get

C(z) = Φ0z2 − 2Φ0z + K2

for some constant K2. Using the other boundary condition, we get
K2 = 1, so the concentration profile is

C(z) = Φ0z(z − 2) + 1 (7)
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Validity of the solution

Note that the dimensionless concentration profile (7) is only valid
for values of Φ0 ≤ 1. Indeed, we can see this by setting Φ0 = 10
and z = 0.1 we find that C(z) = −0.9, a negative concentration
profile! Thus, mathematically we should actually restrict ourselves
to positive solutions. Physically, negative concentration values are
not useful.

Can ask further questions using dimensional analysis, e.g. find the
rate constant k and calculate the Thiele modulus Φ, etc.
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Project implementation

Assign as group project
Collect drafts to assess progress
Provide detailed rubric to students
Have students grade themselves and their group

Concrete assessments keep students accountable
Based on rubrics/group work assessments: Felder, R. M., &
Brent, R. (1994). Cooperative learning in technical courses:
Procedures, pitfalls, and payoffs. Report to the National
Science Foundation. (ERIC Document Reproduction Service
No. ED 377 038). http://www.ncsu.edu/felder-public/
Papers/Coopreport.html
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Thank you!
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