Using differential equations to model prion growth

Jakob Kotas

Menlo College
Atherton, California

SIMiode Expo
February 10, 2022
Goals of this talk

- Give high-level overview of one of my research topics
- Identify connections between my research and typical undergraduate courses
 Intro to ODEs Numerical methods
- Get students excited about research and ODEs!
Equilibria

▶ System of autonomous ODEs:

\[
\begin{align*}
\frac{dx}{dt} &= f(x, y) \\
\frac{dy}{dt} &= g(x, y)
\end{align*}
\]
Equilibria

▶ System of autonomous ODEs:

\[
\begin{align*}
\frac{dx}{dt} &= f(x, y) \\
\frac{dy}{dt} &= g(x, y)
\end{align*}
\]

▶ Equilibrium point: \(\dot{x} = \dot{y} = 0 \)
For systems of differential equations involving $x(t)$ and $y(t)$

- Shows trajectories for different initial conditions
- Allows for quantitative understanding of evolution of x and y with time

Image source: http://faculty.sfasu.edu/judsontw/ode/html-snapshot/systems01.html
Stiff equations

- Dynamics occur over widely different time scales
- Difficult to solve numerically (choosing time-step)
Prions: Misfolded proteins in the brain that lead to a class of neurodegenerative diseases called transmissible spongiform encephalopathies (TSEs)
Prions: Misfolded proteins in the brain that lead to a class of neurodegenerative diseases called **transmissible spongiform encephalopathies** (TSEs)

Examples of TSEs include bovine spongiform encephalopathy (mad cow disease) in cattle, scrapie in sheep, Creutzfeld-Jakob disease in humans
Prion growth

- **Prions**: Misfolded proteins in the brain that lead to a class of neurodegenerative diseases called **transmissible spongiform encephalopathies** (TSEs)
- Examples of TSEs include bovine spongiform encephalopathy (mad cow disease) in cattle, scrapie in sheep, Creutzfeld-Jakob disease in humans
- Unlike other pathogens, prions do not contain DNA or RNA
Prions: Misfolded proteins in the brain that lead to a class of neurodegenerative diseases called **transmissible spongiform encephalopathies** (TSEs)

- Examples of TSEs include bovine spongiform encephalopathy (mad cow disease) in cattle, scrapie in sheep, Creutzfeld-Jakob disease in humans
- Unlike other pathogens, prions do not contain DNA or RNA
- Prions self-assemble into linear amyloid fibrils
Prion growth

- **Prions**: Misfolded proteins in the brain that lead to a class of neurodegenerative diseases called **transmissible spongiform encephalopathies** (TSEs)
- Examples of TSEs include bovine spongiform encephalopathy (mad cow disease) in cattle, scrapie in sheep, Creutzfeld-Jakob disease in humans
- Unlike other pathogens, prions do not contain DNA or RNA
- Prions self-assemble into linear amyloid fibrils
- Leading theory for replication process is **nucleated polymerization**: healthy proteins converted to infectious
Seminal model for nucleated polymerization developed by Masel et al.
Seminal model for nucleated polymerization developed by Masel et al.

A coupled set of differential equations (dynamical system) describing the time-dependence of populations of prion assemblies of varying lengths

Need for a New Model

- At the heart of the Masel model is the assumption that monomers form the basis for fibril assembly.
At the heart of the Masel model is the assumption that monomers form the basis for fibril assembly.

Recent experimental evidence has challenged that assumption.

At the heart of the Masel model is the assumption that **monomers form the basis** for fibril assembly.

Recent experimental evidence has **challenged** that assumption.

The Protein Macro-Assembly and Prion Diseases research group at the French National Institute for Agricultural Research (INRA) has found that fibrils are formed from **oligomeric** (several monomers) **building blocks**.

Need for a New Model

- At the heart of the Masel model is the assumption that **monomers form the basis** for fibril assembly.
- Recent experimental evidence has **challenged** that assumption.
- The Protein Macro-Assembly and Prion Diseases research group at the French National Institute for Agricultural Research (INRA) has found that fibrils are formed from **oligomeric** (several monomers) **building blocks**.
- These findings carry repercussions for our understanding of fibril growth, and a **new mathematical model** is needed.
At the heart of the Masel model is the assumption that monomers form the basis for fibril assembly.

Recent experimental evidence has challenged that assumption.

The Protein Macro-Assembly and Prion Diseases research group at the French National Institute for Agricultural Research (INRA) has found that fibrils are formed from oligomeric (several monomers) building blocks.

These findings carry repercussions for our understanding of fibril growth, and a new mathematical model is needed.

$x(t)$: concentration of cellular prion protein \PrP^C monomers
Masel Model: Variables

- $x(t)$: concentration of cellular prion protein PrPC monomers
- $y_i(t)$: concentration of prion protein PrPSc polymers of length i
Masel Model: Variables

- $x(t)$: concentration of cellular prion protein PrPC monomers
- $y_i(t)$: concentration of prion protein PrPSc polymers of length i
- $y(t) = \sum_i y_i(t)$: total concentration of PrPSc polymers
Monomers are produced at a constant rate λ.
Masel Model: Monomer/Polymer Creation/Destruction

- Monomers are produced at a constant rate λ.
- Monomers degrade at a rate proportional to their population with constant of proportionality d.

Monomers degrade much more easily than polymers; thus $a \ll d$.
Masel Model: Monomer/Polymer Creation/Destruction

- Monomers are produced at a constant rate λ
- Monomers degrade at a rate proportional to their population with constant of proportionality d
- Polymers of length i degrade at a rate proportional to their population with constant of proportionality a

Monomers degrade much more easily than polymers; thus $a \ll d$.
Masel Model: Monomer/Polymer Creation/Destruction

- Monomers are produced at a constant rate λ
- Monomers degrade at a rate proportional to their population with constant of proportionality d
- Polymers of length i degrade at a rate proportional to their population with constant of proportionality a
- Monomers degrade much more easily than polymers; thus $a \ll d$
Monomers attach directly to a polymer of length i at a rate proportional to the product of their populations with constant of proportionality β. Therefore monomer concentration decreases at a rate βy_i, concentration of polymers of length i increases at a rate $\beta y_i - 1 (y_i - 1 \rightarrow y_i)$, and decreases at a rate $\beta y_0 (y_i \rightarrow y_i + 1)$.
Mason Model: Monomer Attachment

- Monomers attach directly to a polymer of length i at a rate proportional to the product of their populations with constant of proportionality β.
- Therefore monomer concentration decreases at a rate βxy.

β
Monomers attach directly to a polymer of length i at a rate proportional to the product of their populations with constant of proportionality β.

Therefore monomer concentration decreases at a rate βxy.

Concentration of polymers of length i increases at a rate $\beta xy_{i-1} (y_{i-1} \rightarrow y_i)$.
Masel Model: Monomer Attachment

- Monomers attach directly to a polymer of length i at a rate proportional to the product of their populations with constant of proportionality β
- Therefore monomer concentration decreases at a rate βxy
- Concentration of polymers of length i increases at a rate βxy_{i-1} ($y_{i-1} \rightarrow y_i$)
- Concentration of polymers of length i decreases at a rate βxy_i ($y_i \rightarrow y_{i+1}$)
Masel Model: Polymer Fragmentation

- n: critical size below which polymers are unstable and instantly disintegrate into PrPC monomers
Masel Model: Polymer Fragmentation

- n: critical size below which polymers are unstable and instantly disintegrate into PrPC monomers
- Polymers of length $i \geq n$ fragment into two pieces of size j and $i - j$ at a rate proportional to their population with constant of proportionality b
- \(n \): critical size below which polymers are unstable and instantly disintegrate into \(\text{PrP}^C \) monomers
- Polymers of length \(i \geq n \) fragment into two pieces of size \(j \) and \(i - j \) at a rate proportional to their population with constant of proportionality \(b \)
- As chains fragment, more infectious assemblies onto which \(\text{PrP}^C \) monomers can attach are created
Masel Model: Dynamics

\[
\begin{align*}
\dot{x} &= \lambda - dx - \beta xy + 2b \sum_{i=1}^{n-1} \sum_{j=i+1}^{\infty} iy_j \\
\dot{y}_i &= -ay_i + \beta x(y_{i-1} - y_i) - b(i - 1)y_i + 2b \sum_{j=i+1}^{\infty} y_j, \quad i \geq n \\
y_i &= 0, \quad i < n
\end{align*}
\]

J. Kotas (Menlo College)
SuPrP Model: Assumptions

- PrPSc polymers are made up of suPrP oligomeric subunits
SuPrP Model: Assumptions

- PrPSc polymers are made up of suPrP oligomeric subunits
- suPrP oligomers are themselves made up of PrPC monomers (assume 3)
SuPrP Model: Assumptions

- PrP_{Sc} polymers are made up of suPrP oligomeric subunits
- suPrP oligomers are themselves made up of PrP_C monomers (assume 3)
- suPrP is highly stable and does not degrade
SuPrP Model: Assumptions

- PrP^{Sc} polymers are made up of suPrP oligomeric subunits
- suPrP oligomers are themselves made up of PrPC monomers (assume 3)
- suPrP is highly stable and does not degrade
- PrPC do not form isolated suPrP
SuPrP Model: Assumptions

- PrPSc polymers are made up of suPrP oligomeric subunits
- suPrP oligomers are themselves made up of PrPC monomers (assume 3)
- suPrP is highly stable and does not degrade
- PrPC do not form isolated suPrP
- No critical size n below which PrPSc is unstable
SuPrP Model: Variables

- $x(t)$: concentration of PrPC monomers
SuPrP Model: Variables

- $x(t)$: concentration of PrPC monomers
- $y_1(t)$: concentration of isolated suPrP oligomers
SuPrP Model: Variables

- $x(t)$: concentration of PrPC monomers
- $y_1(t)$: concentration of isolated suPrP oligomers
- $y_i(t)$: concentration of PrPSc polymers made up of i suPrP oligomers
SuPrP Model: Variables

- $x(t)$: concentration of PrPC monomers
- $y_1(t)$: concentration of isolated SuPrP oligomers
- $y_i(t)$: concentration of PrPSc polymers made up of i SuPrP oligomers
- $y(t) = \sum_i y_i(t)$: total concentration of PrPSc polymers
SuPrP Model: Processes

▶ Monomers PrPC
 ▶ Created at a constant rate λ
 ▶ Degrade proportionally to their population with constant d
 ▶ Attach to a polymer of length i proportionally to the product of those populations with constant 3β
SuPrP Model: Processes

- **Monomers PrP\(^c\)**
 - Created at a constant rate \(\lambda\)
 - Degrade proportionally to their population with constant \(d\)
 - Attach to a polymer of length \(i\) proportionally to the product of those populations with constant \(3\beta\)

- **Isolated oligomers suPrP**
 - Attach to a polymer of length \(i\) proportionally to the product of those populations with constant \(p\)
SuPrP Model: Processes

- **M**onomers PrPC
 - Created at a constant rate λ
 - Degrade proportionally to their population with constant d
 - Attach to a polymer of length i proportionally to the product of those populations with constant 3β

- **Is**olated oligomers suPrP
 - Attach to a polymer of length i proportionally to the product of those populations with constant p

- **P**olymers PrPSc
 - Depolymerize into isolated suPrP proportionally to their population with constant k
SuPrP Model: Illustration of Processes

Modeling prion growth
SuPrP Model: Dynamics

\[
\begin{align*}
\dot{x} &= \lambda - dx - 3\beta xy \\
\dot{y}_1 &= k(y - y_1 + y_2) - py_1 y \\
\dot{y}_i &= -ay_i + k(y_{i+1} - y_i) + py_1 (y_{i-1} - y_i) + 3\beta x(y_{i-1} - y_i), \quad i > 1 \\
\dot{y} &= (y - y_1)(k - a) - py_1 y + 3\beta xy_1
\end{align*}
\]
SuPrP Model: Dynamics

\[
\begin{align*}
\dot{x} &= \lambda - dx - 3\beta xy \\
\dot{y}_1 &= k(y - y_1 + y_2) - py_1y \\
\dot{y}_i &= -ay_i + k(y_{i+1} - y_i) + py_1(y_{i-1} - y_i) + 3\beta x(y_{i-1} - y_i), \quad i > 1 \\
\dot{y} &= (y - y_1)(k - a) - py_1y + 3\beta xy_1
\end{align*}
\]

Dynamical system is infinite-dimensional (no limit on length of polymers)
Case where $\lambda = 0$:

- Recall that λ represents formation of monomers by the cell and thus $\lambda = 0$ could occur in an *in vitro* sample where the initial concentration of PrPC is fixed.
Case where $\lambda = 0$:

- Recall that λ represents formation of monomers by the cell and thus $\lambda = 0$ could occur in an *in vitro* sample where the initial concentration of PrPC is fixed.
- Equilibria are the origin and:

\[
\begin{align*}
 x^* &= 0 \\
 y_i^* &= \frac{p^{i-1}}{k^{i-1}} y_1 \quad \text{for } i \geq 2
\end{align*}
\]
Truncated SuPrP Model: Dynamics

Assume $y_i = 0$ for $i > N$, N large
Truncated SuPrP Model: Dynamics

Assume $y_i = 0$ for $i > N$, N large

\[
\begin{align*}
\dot{x} &= \lambda - dx - 3\beta xy \\
\dot{y}_1 &= k(y - y_1 + y_2) - py_1 y \\
\dot{y}_i &= -ay_i + k(y_{i+1} - y_i) + py_1(y_{i-1} - y_i) + 3\beta x(y_{i-1} - y_i), \text{ for } 1 < i < N \\
\dot{y}_N &= -ay_N - ky_N + py_1 y_{N-1} + 3\beta xy_{N-1} \\
\dot{y} &= (y - y_1)(k - a) - py_1(y - y_N) + 3\beta xy_1
\end{align*}
\]
Case where $\lambda = a = 0$:

- $a = 0$ is assumed for simplicity, since degradation of polymers is usually negligible compared to other terms.
- Equilibria are the origin and the one-parameter family given by:

 $x^* = 0$

 $y_i^* = \frac{p_i^{i-1}}{k_i^{i-1}} y_1^i$, for $2 \leq i \leq N$
Simulation: Parameters

\[
\begin{align*}
\lambda &= 0 \text{ Ms}^{-1} \\
d &= 10^{-9} \text{ s}^{-1} \\
a &= 0 \text{ s}^{-1} \\
\beta &= 10^2 \text{ M}^{-1}\text{s}^{-1} \\
k &= 1/3 \times 10^{-1} \text{ s}^{-1} \\
p &= 10^5 \text{ M}^{-1}\text{s}^{-1} \\
x(0) &= 0 \text{ M} \\
y_i(0) &= \text{discretized, truncated Gaussian distribution with } \mu = 28, \sigma = \sqrt{5} \\
&\text{and normalized such that } \sum_i iy_i(0) = 10^{-6} \text{ M} \\
N &= 200
\end{align*}
\]
Initial conditions simulate a sample where PrPSc polymer of length ≈ 28 have been isolated at $t = 0$
Initial conditions simulate a sample where PrP\(^{Sc}\) polymer of length \(\approx 28\) have been isolated at \(t = 0\).

Parameters vary over many orders of magnitude \(\Rightarrow\) dynamics occur on widely varying time scales.
Simulation: Parameters

- Initial conditions simulate a sample where PrP\textsubscript{Sc} polymer of length \(\approx 28\) have been isolated at \(t = 0\).
- Parameters vary over many orders of magnitude \(\Rightarrow\) dynamics occur on widely varying time scales.
- Thus, equations are numerically stiff.
Simulation: Parameters

- Initial conditions simulate a sample where PrP^{Sc} polymer of length ≈ 28 have been isolated at $t = 0$
- Parameters vary over many orders of magnitude \Rightarrow dynamics occur on widely varying time scales
- Thus, equations are numerically stiff
- Matlab’s ODE solver “ode23s” is used
Initial distribution at $t = 0$: blue
Final distribution at $t = 2 \times 10^3$: red
Equilibrium point: green
Simulation: Sensitivity Analysis on p

Numerical validation of equilibria found analytically
Simulation: Sensitivity Analysis on p/k

$p/k = 3 \times 10^4$

$p/k = 3 \times 10^6$

$p/k = 3 \times 10^8$

Sensitivity analysis on parameters k and p.

$p = 10^3$ (first row), 10^5 (second row), 10^7 (third row)

Initial time: blue; final time: red
Conclusions

- Lots of real-world phenomena can be described with mathematics!
- Applied mathematicians use math for better decision-making and understanding of complex systems
- Your math skills are useful in a wide variety of applications
Conclusions

- Lots of real-world phenomena can be described with mathematics!
- Applied mathematicians use math for better decision-making and understanding of complex systems
- Your math skills are useful in a wide variety of applications

Thank you! :)
Contact: jakob.kotas@menlo.edu