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This paper give a brief overview of the Polish attack on Enigma and presents an 

undergraduate class project that lets students experience the type of cryptanalytic 

work that the Polish codebreakers performed on a daily basis.  The project can be 

tailored to a variety of difficulty levels depending on the number of hints and the 

type of scaffolding provided. Additionally, three curricular frameworks that 

allow for the teaching of the Polish attack on Enigma will be presented.    
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Introduction 

The story of the breaking of Enigma offers one a rich, complex, and intriguing context 

to teach a variety of cryptologic techniques and explore historical cryptology.  A course 

that covers the details of the complete story of Enigma would clearly take an enormous 

amount of time.  However, a course, or a module in a course, focusing on the work of 

the early Polish codebreakers is accessible to a wide audience of students, tells a 

forgotten story in which mathematicians are war heroes, and allows students to see how 

clever and careful thinking can solve seemingly unsolvable problems.  I have taught this 

topic to undergraduates using a variety of course structures (see below) and have 

recently created a culminating project that allows students to experience the daily 

process the Polish codebreakers used for deducing the daily Enigma keys.  This paper’s 

main goal is to share this project along with some course structures where the Polish 

codebreaker’s story can be explored and appreciated.  However, in order to understand 

the mechanics of the project, one must understand some of the details surrounding the 

codebreaking techniques developed by Marian Rejewski, Jerzy Różycki, and Henryk 



 

 

Zygalski in the 1930s. 

The next section of the paper will present three different curricular settings in 

which this author has introduced students to the story of the Polish breaking of Enigma.  

The section “Polish Codebreaking” will give some of the details of the codebreaking 

techniques developed and used in the 1930s by the Poles and how these techniques are 

incorporated into the Enigma Project.  The section “Project Logistics” will provide 

logistics for implementing this project in a class and provide readers with suggestions 

for increasing or decreasing the difficulty level of the Enigma Project. 

 

Innovative Cryptology Curricula 

Enigma in the Classroom 

The story of the Polish codebreakers is appealing to many students.  The complexity of 

the Enigma machine can be explored in many lower-level mathematics courses and the 

mathematical details can be carefully investigated in an upper-level mathematics course.  

However, the historical story of Enigma is naturally interdisciplinary and many of the 

details can be explored and understood by students without any significant 

undergraduate mathematical background. The full story of the Polish codebreakers 

includes classic espionage, secret agents, daring escapes, and, sadly, some unfortunate 

deaths.  It is a story that deserves to be told and cryptologists and mathematicians are 

perfectly suited for bringing the details of this adventure to our students. 

I have taught about Enigma and the work of the Polish codebreakers in three 

different curricular settings:   

(1) A 10-week seminar meeting once a week.  



 

 

(2) A two-week module in an upper level undergraduate mathematics class covering 

the broad historical development of cryptology. 

(3) A two-week module in a Cryptology and Privacy course for non-STEM students 

offered through [author’s  University]’s Honors College. 

10-week seminar 

For those who teach in a department that offers regular seminars with varying topics, 

consider offering one on Enigma!  Such a seminar can attract mathematics majors or 

bring an exciting topic to mathematics majors, computer science majors, or any other 

interested students.  While this author’s seminar did not assume any specific 

mathematical preparation, the audience consisted of mathematics majors from first-year 

students up through seniors.  The class met once a week over Zoom for 50 minutes.  

The Enigma Project, described later in this paper, was used as a culminating activity for 

this seminar in Spring 2021. Table 1 shows a brief outline of topics covered each week. 

 

Week During Class After Class 

1 Build a Pringle can 
Enigma. 
 
Learn about the 
components of Enigma. 
 
Practice using Pringle can 
Enigma 

Observe similarities/differences 
between the wirings of the rotors 
and reflector. 
 
Use Pringle can Enigma to encrypt 
a short word. 
 
Notice that the same setting 
appears to both encrypt and 
decrypt. 

2 Small group activities to 
count the number of ways 
to wire a rotor and a 
reflector. 
 
Determine how many 
ways one could build an 

Students practice encrypting and 
decrypting short words with 
Pringle can Enigma. 



 

 

Enigma with three rotors 
and a reflector. 

3 Create a simple 
mathematical model of 
Enigma and state theorem 
which claims conjugate 
permutations have the 
same cycle structure.  
Thus, every Enigma 
permutation simply swaps 
13 pairs of letters. 
 
Small group activity to 
count the number of 
plugboard connections. 
 
Count the number of 
possible daily keys. 

Students use standard frequency 
analysis techniques to break a 
MASC (preserving word length). 

4 Finish counting the 
number of daily keys and 
look at the effectiveness 
of a brute force attack on 
Enigma. 
 
If all messages for a single 
day were sent with the 
same key, an "in depth" 
attack is possible (much 
like a MASC). 
 
Introduce the early 
German "indicator" 
method of encrypting a 
randomly chosen session 
key twice. 

Students practice using the 
indicator method to encrypt and 
decrypt messages to/from each 
other or the instructor. 
 

5 Introduce cycle notation 
for writing permutations. 
 
Begin following the Polish 
method of identifying the 
three product 
permutations using a 
collection of encrypted 
session keys. 

Use encrypted session keys to 
determine the three product 
permutations. 

6 Learn how to factor 
permutations and count 

Practice factoring permutations. 
 



 

 

the number of possible 
factorizations. 

7 Learn about the Poles 
construction of a catalog 
of rotor positions and 
cycle structures. 
 
Practice identifying certain 
session keys from a large 
collection of encrypted 
session keys. 

Begin final Enigma Project 
 

8 Use crib dragging to 
identify possible crib 
placement.   
 
Use cribs to deduce 
plugboard connections. 

Continue work on Enigma Project. 

9 Brief overview of 
Rejewski's work on solving 
the wiring of the "fast" 
rotor. 

Continue work on Enigma Project. 

10 Brief historical wrap up of 
Enigma: Germany 
abandoning the indicator 
method; Poles devising 
new methods to recover 
keys. 
 
Turing and Bletchley Park. 
 
Elizebeth Smith 
Friedman's work in South 
America. 

Finish Enigma Project 

 

Table 1: Brief outline of 10-week seminar 

 

Mathematics Major Course 

While not common, some mathematics departments are able to offer a Cryptology 

course on a regular basis.  Central Washington Univeristy offers a junior-level 

Cryptology course every two or three years that satisfies an elective credit towards the 

mathematics major.  This course covers the broad historical development of cryptology 



 

 

from Caesar ciphers up through RSA and Elliptic Curve Cryptography using (Bauer, 

2013) as the textbook.  This course spends about ten days on Enigma and the Polish 

codebreaking efforts.  Unlike the 10-week seminar, since the students are more 

advanced mathematics majors, we are able to study Rejewski’s algebraic approach to 

deducing the wiring of the “fast” rotor in addition to all the topics covered in the 10-

week seminar. 

Non-STEM Honors Course 

The Honors College at Central Washington University offers a few variable topics 

courses in their curriculum.  One such course, Integrated Learning, is tasked with taking 

an interdisciplinary approach to examining social, economic, technological, ethical, 

cultural, or aesthetic implications of knowledge.  I designed a course titled “Ciphers, 

Secret Communication, and Personal Privacy” which examines the historical 

development of ciphers and other forms of secret communication. Throughout the 

course, students learn how linguists, mathematicians, and computer scientists have 

broken “unbreakable” ciphers and how technology has given us tools to encrypt all our 

thoughts while simultaneously exposing our private lives across social media.  One 

component of this course requires students to conduct a small independent research 

project on an approved topic related to cryptology and privacy.  Some topics that 

students have explored include Herbert Yardley and the Black Chamber, Philip 

Zimmermann and PGP, the Clipper Chip, the Snowden disclosures, the right to privacy 

and the 4th amendment, privacy under the Trump administration, and the Signal app.  Of 

course, one component of this course is also the study of Enigma and the story of the 

Polish codebreakers.  While this course does not have any specific mathematical 

prerequisites, students are still able to master many of the skills that the Polish 

codebreakers used on a daily basis: identifying the product permutations, factoring 



 

 

permutations, identifying possible crib placements, and using online Enigma simulators 

to encrypt and decrypt messages.  The next time this course is offered, the Enigma 

Project will be integrated into this module. 

The exciting and unbelievable story of the Polish codebreakers can be woven 

into a variety of college courses and used to bring the study of cryptology to a broader 

audience. 

Polish Codebreaking 

This section of the paper will primarily focus on the techniques developed by the Polish 

Cipher Bureau from 1932 to 1938 and are largely attributed to Marian Rejewski, Jerzy 

Różycki, and Henryk Zygalski.  For more details on the individual contributions of each 

of these three codebreakers, please refer to a more comprehensive history of the 

breaking of Enigma such as (Hugh, 2000) or (Kahn, 2012). 

The following sections will provide enough information about the Polish 

codebreaking techniques so one can understand the Enigma Project.  However, readers 

are encouraged to consult (Christensen, 2007) and (Bauer, 2013) for more mathematical 

details regarding the Polish breaking of Enigma as well as a more complete description 

of the Enigma machine. 

This paper will be discussing the techniques used by the Poles to break the early 

three-wheel Enigma (with plugboard) developed for use by the German Military.  

Marian Rejewski started working on breaking Enigma in 1932 (Rejewski, 1981).  We 

will assume readers are familiar with the basic workings of an Enigma machine.  That 

is, the rotors essentially turn over in a manner similar to a car’s odometer each time a 

letter is encrypted, thereby ensuring that each letter of a message is being encrypted 

using a different mono-alphabetic substitution cipher (MASC) than any other letter in 

the message.  Ultimately, each MASC that the Enigma performs is a product of 



 

 

transpositions.  That is, every Enigma cipher swaps 13 pairs of letters.  This has the 

advantage that the same Enigma settings (initial rotor positions, plugboard settings, etc.) 

work both for encryption and decryption.  If a sender and a receiver both have their 

Enigma machines set up the same way, the sender can type in plaintext to produce 

ciphertext and the receiver can type in the resulting ciphertext to recover the plaintext.  

In order to make sure all Enigma operators could send and receive messages, a 

codebook was distributed every month with daily keys.  Each Enigma operator could 

look up the correct daily key and be sure that their Enigma machine was set up the same 

way as any other Enigma machine, thereby allowing for distant parties to securely 

communicate with each other.  If one is teaching about Enigma in a mathematics 

course, counting the number of possible daily keys makes for a great assignment when 

studying permutations and combinations. A daily key is determined by the order the 

three rotors are placed into Enigma, the initial positions of each rotor, the ring settings, 

and the plugboard settings.  In the end, there are over 7 × 1018 possible daily keys, 

which clearly makes any brute force attack on Enigma unlikely to succeed.  

Of course, if hundreds of messages were being sent across Germany on any 

given day and all these messages were being encrypted using the same daily key, then 

an in-depth attack is certainly possible.  If a hundred messages were all encrypted using 

the same daily key, then that means the first letter of each message was encrypted using 

the same MASC.  The second letter of each message would be encrypted using a second 

MASC, and so on.  Thus, one could conceivably use a frequency analysis attack to 

uncover the cipher alphabet used to encrypt the first letter of each message, and then the 

second letter, and so on.  Thus, the Germans needed a way to make sure that 1) all 

Enigma operators could set up their machines to agree with all other operators and 2) 



 

 

different messages sent on the same day were encrypted with different keys!  The 

Germans solved this problem by using the “Indicator Method”. 

Indicator Method: 

To encrypt a message on a given day, an Enigma operator would 

(1) Set up their machine according to the daily key. 

(2) Pick three random letters, like CWU, called the session key. 

(3) Type the session key into Enigma, twice, thereby encrypting the session key, 

twice. 

(4) Adjust the three rotors of their machine so the session key appears through the 

windows at the top. 

(5) Use this unique setting to encrypt the message. 

(6) The operator would then send (via Morse Code using a radio transmitter) the six 

letters of the session key twice encrypted followed by the encrypted message. 

 

Of course, a receiving operator could reverse this process: 

(1) Set up their machine according to the daily key. 

(2) Type in the first six letters they receive.  In this example they should get 

CWUCWU.  The session key was likely encrypted twice to make it apparent if 

there were any transmission errors at this stage. 

(3) Reset the rotors to CWU. 

(4) Type in the ciphertext to recover the plaintext. 

The Polish codebreakers were aware of the above protocol developed by the Germans 

and were able to exploit the fact that the session key was encrypted twice to break 

Enigma!  To see the unintended weaknesses of the Indicator Method, we first need to 



 

 

introduce some notation. 

When an Enigma machine is set up according to the daily key, the first letter 

will be encrypted according to some permutation (of the 26 letters).  We will call this 

permutation 𝐴.  The second letter will be encrypted with a different permutation, call it 

𝐵.  Proceeding similarly we have: 

𝐴 : first permutation 

𝐵 : second permutation 

𝐶: third permutation 

𝐷: fourth permutation 

𝐸: fifth permutation 

𝐹: sixth permutation 

 

Suppose Marian Rejewski intercepted the following first six letters of a message: QGF 

BQP.  What does he know?  Recall that QGF comes from three randomly chosen letters, 

each being encrypted with three different MASCs. We also know that those three 

randomly chosen letters were encrypted a second time with, again, three different 

MASCs to produce BQP.  While it appears that one does not know much in this 

situation, a little clever thinking begins to unravel the secrets of Enigma! 

Marian Rejewski does not know what the operator picked as his first letter, but 

permutation 𝐴 sent it to the letter Q.  Let us denote this fact by 

𝐴: ? → 𝑄. 

We also know that permutation 𝐷 sent this same unknown letter to B: 

𝐷: ? → 𝐵. 

Now comes the clever part!  Permutation 𝐴 is an Enigma cipher, so it must swap 13 

pairs of letters.  Therefore, we also know 



 

 

𝐴: 𝑄 → ? 

That is, if the operator had typed a Q, his first randomly chosen letter would appear 

(remember that the same Enigma settings can be used for encryption or decryption).  

While we do not know very much about permutation 𝐴 or permutation 𝐷, we do know 

something about the product (or composition) 𝐷𝐴.  𝐷𝐴 refers to the permutation that 

results by first performing 𝐴 and then performing 𝐷.  Since 𝐴 sends Q to the unknown 

letter ?, and 𝐷 sends this unknown letter to B, we ultimately know 

𝐷𝐴: 𝑄 → 𝐵. 

Similarly, we also know 

𝐸𝐵: 𝐺 → 𝑄 

𝐹𝐶: 𝐹 → 𝑃. 

We have extracted quite a bit of information from random letters being 

encrypted in essentially random ways!  Intercepting another message and just focusing 

on the first six letters would likely give us more information about the three product 

permutations 𝐷𝐴, 𝐸𝐵, and 𝐹𝐶.  The first part of the Enigma Project tasks students with 

determining these three product permutations from the first six letters of forty-seven 

intercepted messages.  In the Enigma Project, students are given a one page Intelligence 

Briefing.   The first section of this page is reproduced in Figure 1.  Looking at the 

information in this portion of the Intelligence Briefing, one can determine: 

𝐷𝐴 = (AYKRBXHFSWDC) (EZGIOPNUQJTM)(L)(V) 

    𝐸𝐵 = (ASUGKHC)(DFYTZVR)  (EOJM) (IQLX) (B) (N) (P) (W) 

   𝐹𝐶 = (BNQRFES) (GKHPLMY) (CWJ) (OTV) (DU) (AI) (X) (Z) 

where the three permutations are written as products of disjoint cycles.  For example, 

under 𝐷𝐴 we have: 𝐴 → 𝑌, 𝑌 → 𝐾, 𝐾 → 𝑅, …, 𝐸 → 𝑍, 𝑍 → 𝐺, 𝐺 → 𝐼, … , 𝐿 → 𝐿, and 𝑉 →

𝑉. 



 

 

 

 

Figure 1: First section of Intelligence Briefing 

 

 

The first time students work out these product permutations, some patterns are 

clearly noticeable.  The product 𝐷𝐴 is composed of two twelve-cycles and two one-

cycles.  The product 𝐸𝐵 is composed of two seven-cycles, two four-cycles and four 

one-cycles.  Product 𝐹𝐶 is composed of two seven-cycles, two three-cycles, two two-

cycles, and two one-cycles.  A theorem guarantees that these product permutations will 

always be composed of pairs of cycles of the same length.  If one is teaching a course to 

students with a background in Abstract Algebra, one might consider proving this 

theorem.  If one is teaching to students without such a background, it can still be stated 

that mathematicians, such as Marian Rejewski, knew this result.  And, even more 

important, they knew how to use this result to help them factor the product permutations 

and recover the original Enigma permutations 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹! 



 

 

However, before moving on to factoring permutations, there are a few important 

consequences about the cycle structure of these product permutations one should note.  

As one might expect, Enigma machines set up according to different daily keys will 

produce product permutations that have different cycle structures.  For each product 

permutation, these cycles will always come in pairs, but the lengths will vary depending 

on the corresponding daily key.  While we pointed out earlier that there are over seven 

quintillion daily keys, it turns out that the plugboard settings do not affect the cycle 

structure of these product permutations!  That is, if the plugboard settings on the 

Enigma were changed in the above example, it would still be the case that the 

permutation 𝐷𝐴 would be composed of two twelve-cycles and two one-cycles (the 

actual cycles would likely be different, but there would still be two twelve-cycles and 

two one-cycles).  This is because conjugate permutations have the same cycle structure, 

a fact that is sometimes proven in an Abstract Algebra course at the undergraduate 

level.  If we ignore the effect of the plugboard, instead of having seven quintillion 

settings to worry about, there are only 105,456 different settings!  Furthermore, there 

exist 21,230 different cycle structures that might result (Bauer, 2013, 274).  Being a 

roughly 1:5 ratio, determining the cycle structure of the three product permutations 

might give one around five possible daily keys (minus the plugboard) to try.  Now, that 

is manageable!  In reality, these cycle structures are not uniformly distributed among 

the different daily keys.  In fact, about 54% of the cycle structures correspond to unique 

rotor settings (Bauer, 2013, p274). That means, once these three product permutations 

are found, there is a greater than 50% chance that one has the daily key (minus the 

plugboard) for that day!  The Poles spent several months creating a catalog that would 

list which daily keys corresponded to which cycle structures.  



 

 

Factoring Permutations 

Again, for more mathematical detail on factoring permutations refer to (Bauer, 2013) 

and (Christensen, 2007).  When teaching this to students, one can avoid much of the 

abstract notation and use the “Finger Theorem”.  The Finger Theorem may be a bit 

cumbersome to describe in writing but it can quickly be described in a classroom (or on 

Zoom!) and students have little trouble mastering its use.   

Suppose we wish to factor 

𝐷𝐴 = (AYKRBXHFSWDC) (EZGIOPNUQJTM)(L)(V). 

Start by identifying two cycles of the same length (we will pick the two twelve-cycles). 

Place a finger from your left-hand on the A in the first cycle and a finger from your 

right hand on the M on the second cycle: 

𝐷𝐴 = (AYKRBXHFSWDC) (EZGIOPNUQJTM)          (L)(V) 

 

 

 

This tells us that permutation 𝐴 sends 𝐴 → 𝑀, which we will write as the two-cycle 

(AM). 

Now, move your left finger to the right and your right finger to the left: 

𝐷𝐴 = (AYKRBXHFSWDC) (EZGIOPNUQJTM)          (L)(V) 

 

 

 

This gives us another two-cycle (YT).  Continue in this manner until one’s fingers run 

through all the pairings in the two twelve-cycles.  Repeat this process for the two one-

cycles.  The resulting two-cycles form permutation 𝐴: 

Left finger 

Left finger Right finger 

Right finger 



 

 

𝐴 = (𝐴𝑀)(𝑌𝑇)(𝐾𝐽) … (𝐶𝐸)  (𝐿𝑉). 

To get permutation 𝐷, start with your original finger configuration, except move 

your left finger one position to the right: 

𝐷𝐴 = (AYKRBXHFSWDC) (EZGIOPNUQJTM)          (L)(V) 

 

 

 

This yields the two-cycle (YM).  As before, start moving your left finger to the right 

and your right finger to the left to recover the rest of permutation 𝐷: 

𝐷 = (𝑌𝑀)(𝐾𝑇)(𝑅𝐽) … (𝐴𝐸)  (𝐿𝑉). 

If your finger ever gets to the “end” of a cycle, just move it back to the beginning of the 

cycle when it needs to be moved again. 

At this point, one can check that the composition of 𝐴 and 𝐷, as written above, 

agrees with 𝐷𝐴.  For example, under 𝐴, 𝐴 → 𝑀 and under 𝐷, 𝑀 → 𝑌.  Thus, under 𝐷𝐴, 

𝐴 → 𝑌, which agrees with what we found earlier.  Unfortunately, as with factoring 

integers, other factorizations are also possible.  Essentially, one can apply the Finger 

Theorem with one’s fingers in any starting position and produce a correct factorization.  

Thus, there are actually 11 different ways to factor 𝐷𝐴 in such a way that 𝐴 and 𝐷 are 

legitimate Enigma permutations (permutations which swap 13 pairs of letters).  

Similarly, since 𝐹𝐶 is composed of pairs of seven-, three-, two-, and one-cycles, there 

are 7 × 3 × 2 × 1 = 42 ways to factor 𝐹𝐶.  In terms of factoring 𝐷𝐴, 𝐸𝐵, and 𝐹𝐶, this 

is about as far as mathematics will take us.  One now has to use what Bauer (2013, 261) 

refers to as the “psychological method”.   

The cryptographic flaw in the German’s Indicator Method was encrypting the 

randomly chosen session key a second time.  The human flaw in this method is asking a 

Left finger Right finger 



 

 

soldier to pick three random letters every time he needs to send a message!  If time was 

of the essence, this task would be even harder.   “It is well known that a human being 

gifted with consciousness and memory does not have the ability to imitate chance in a 

faultless manner” (Rejewski, 1981, 219). While all humans are bad at picking random 

letters, it appears that some are worse than others.  There are many stories of Enigma 

operators picking letters grouped together on the keyboard or, perhaps, initials of loved 

ones.  In many cases, operators would just pick the same letter three times!  If an 

operator picks YYY as his session key and Enigma encrypts it as, say, GCK, one can 

understand how that looks pretty random!  Rejewski (1981, 219) mentions that “it is the 

task of a cryptologist to uncover and suitably make use of these deviations from 

chance.” 

 

 

Figure 2: Second half of the Intelligence Briefing. 

 

 

At this point, one might have to make a few educated guesses about likely 

session keys chosen by operators.  Or, maybe it is known that certain operators tend to 



 

 

use some of the same poorly chosen session keys day after day.  In the Enigma Project, 

we assume we have some additional intelligence which tells us that three of the 47 

operators used the session keys WWW, AAA, and QQQ.  The second half of the 

Intelligence Briefing in the Enigma Project contains this additional information as well 

as some additional information that will be used later (see Figure 2). Of course, if this 

was not known, one could try to check certain triple letter session keys or keys such as 

QWE or ASD.  Rejewski (1981, 218) comments on guessing such session keys: “When 

I first assumed that there would be many keys of the sort aaa, bbb, etc. it was only a 

hypothesis that luckily turned out to be true.”  It turns out that one can often tell from 

examining the 47 six-letter encrypted session keys whether a given session key was 

chosen or not and, if it was chosen, which operator chose it!  

For example, let us assume that one operator chose WWW for his session key. 

Since 

 𝐸𝐵 = (ASUGKHC)(DFYTZVR)  (EOJM) (IQLX) (B) (N) (P) (W), 

the Finger Theorem would tell us to put one finger on W and one finger on either B, N, 

or P.  That tells us that under permutation 𝐵, W must be sent to B, N, or P.  Similarly, 

examining 

𝐹𝐶 = (BNQRFES) (GKHPLMY) (CWJ) (OTV) (DU) (AI) (X) (Z), 

one concludes that under permutation 𝐶, W must get sent to O, T, or V.  Thus, we are 

looking for an operator whose encrypted session key has a B, N, or P as the second 

letter and an O, T, or V as the third letter.  Operator 12 is the only candidate!  

Furthermore, this also tells us that under permutation 𝐴, 𝑊 → 𝑁.  This means that when 

we factor 𝐷𝐴, we want to start with our fingers on W and N.  We can now uniquely 

factor 𝐷𝐴.  One can similarly deduce which operators typed AAA and QQQ as their 



 

 

session keys.  The resulting information allows one to uniquely factor 𝐸𝐵 and 𝐹𝐶 and 

decrypt all of the 47 session keys! 

Let us pause and review where we are.  To break Enigma on any given day, we 

start by examining a bunch of encrypted session keys (six-letter snippets).  This allows 

us to form the products 𝐷𝐴, 𝐸𝐵, and 𝐹𝐶.  Thanks to the work of the early polish 

codebreakers in building their catalog, the cycle structure of these three products may 

yield the daily key (minus the plugboard settings) or give us a few possible daily keys to 

try.  Using a little extra intelligence or some educated guesswork, the Finger Theorem 

and the psychological method will allow us to factor the three products and uniquely 

determine the six permutations 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 as well as the unencrypted session keys.  

In order to read any Enigma message for the day, one needs two additional items: 1) the 

plugboard settings and 2) a working Enigma machine. 

Before attacking Enigma on a daily basis, Marian Rejewski used the flaws in the 

Indicator Method that have already been pointed out, some recovered codebooks with 

daily keys, and the mathematics of permutations to set up a system of equations which, 

when solved, yielded the internal wirings of the Enigma rotors.  This allowed the Poles 

to construct their own working Enigma machine.  While the Pringle can Enigma is 

wonderful for teaching about Enigma (Franklin Heath Ltd, 2021), for this project 

students may wish to use an online simulator.  Care should be taken when choosing a 

simulator as not all of them are accurate!  This author recommends students use the 

simulator written by Daniel Palloks (Palloks, 2021).  For this project, if you are using 

Palloks’ simulator, keep the default Enigma model set at “M3 (Army; Navy)”. 

Plugboard Settings 

As with many puzzles, there is no one right way to break a cipher.  In Cryptanalysis 

there are often many paths that lead to a successful break.  While there may be several 



 

 

interesting ways to recover the plugboard settings for the daily key, the Enigma Project 

is designed to make use of cribs, which accurately reflects the historical break of 

Enigma.  In the Enigma Project, students are given a very long crib.  Also, to make this 

project go a little faster, students are also told where the crib should be placed.  

Alternatively, since Enigma never encrypts a letter to itself, one can employ the process 

of “crib dragging” to help determine the correct placement of a crib.  However, this 

extra step was not required during the Spring 2021 implementation of this project. 

The Intelligence Report (see Figure 2) gives the complete message sent by 

Operator 1: IVI ORA RINXJ PANCL BYNDT CMBHK OJDEG TBVYF IRCTA 

FCAWX VTFDU QXWXN MSLZL MZNGF CFAHS XKBDD. Using what we know 

about permutations 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹, we can decrypt the first six letters: ASD ASD 

to recover Operator 1’s session key.   The Poles would use the cycle structure of 

𝐷𝐴, 𝐸𝐵, and 𝐹𝐶 together with the catalogue to, hopefully, determine that the daily key 

consisted of placing rotors III, I, II (left to right) in the machine. (For the purpose of this 

classroom project, and this discussion, we are simplifying the situation by assuming the 

ring settings are A,A,A.  We are also assuming that reflector B was being used.)  For 

this project, the instructor can play the role of the “catalog”.  Any students who 

correctly determine the cycle structure of the three product permutations are given the 

correct rotor order (and ring settings).  One can now set the rotors to the session key 

ASD and type in the known plaintext: “weather report is as follows”.  This produces the 

ciphertext: RTDKJ PSNMG BYUHO NBBHW SJDD. This does not match the 

ciphertext that Operator 1 sent, because we do not have the correct plugboard settings.  

If we compare the two ciphertexts we might get some clues as to the correct plugboard 

settings: 

Our CT: RTDKJ PSNMG BYUHO NBBHW SJDD 



 

 

OP1 CT: RINXJ PANCL BYNDT CMBHK OJDE 

While the first letters agree the second letters do not (as well as many others).  Perhaps 

these do no match up because T and I should be connected on the plugboard.  If we 

connect T and I and re-encrypt our plaintext we get: 

Our CT:  RIDXJ PSNMG BYNDO NBBHW SJDD 

OP1 CT:  RINXJ PANCL BYNDT CMBHK OJDE 

This looks better and suggests that we might try connecting D and N.  If we do this, we 

get: 

Our CT:  RINXJ PSDMG BYDNO DBBHW SJNN 

OP1 CT:  RINXJ PANCL BYNDT CMBHK OJDE 

Again, this is looking better.  Let’s connect A and S: 

Our CT:  RIDXJ PADMG BYDNT MCBHW AJNE 

OP1 CT:  RINXJ PANCL BYNDT CMBHK OJDE 

Now it looks like we want to remove the D→N connection and add an M→C 

connection.  This results in: 

Our CT:  RINXJ PANCG BYNDT CMBHW AJDE 

OP1 CT:  RINXJ PANCL BYNDT CMBHK OJDE 

Using a final plugboard setting of I→T, A→S, M→C, and G→L we get: 

Our CT:  RINXJ PANCL BYNDT CMBHK OJDE 

OP1 CT:  RINXJ PANCL BYNDT CMBHK OJDE 

A perfect match! 

We are now in a position to decrypt any Enigma traffic for the day. As we did 

with Operator 1, we can determine Operator 13’s session key, use the correct plugboard 

settings, and decrypt the final message on the Intelligence Briefing (exercise left to the 

reader). 



 

 

Project Logistics 

Once the techniques of the Polish Codebreakers has been taught in class, one may use 

the Intelligence Briefing as a final culminating project to assess all of these 

cryptanalytic skills.  All of the necessary information is included in the Intelligence 

Briefing, but one may tailor the difficulty level of the assignment by providing students 

with additional scaffolding and/or prompts.  This project was used in Spring 2021 in a 

10-week seminar (ten 50-minute meetings on Zoom) on the Polish breaking of Enigma.  

For that class, the project was broken up into four Canvas assignments, due a week 

apart.  While readers are welcome to contact the author for the specific wording of the 

prompts used, the four assignments were essentially: 

(1) Determine the three product permutations and their cycle structure. If this is 

done correctly, the instructor will respond with the correct rotor order and ring 

positions for the daily key. 

(2) Determine the six permutations 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹.  Decrypt the session keys of 

Operators 1 and 2.  Do these seem like random session keys? 

(3) What are the plugboard settings and what is the complete message that Operator 

1 sent? 

(4) Decrypt Operator 13’s message. 

Most of the students found the project reasonably challenging and some students 

were given additional hints to help them with the “psychological method” portion of the 

assignment.  For example, one could tell students which operators typed “WWW”, 

“AAA”, and/or “QQQ” to make the project less difficult. To make the project more 

challenging, there are also a variety of options: 



 

 

(1) An instructor could just hand out the Intelligence Report and ask for a decrypt of 

Operator 13’s message.  Students would need to identify the correct 

cryptanalytic steps to take in order to break Enigma. 

(2) One could reduce the number of message keys given to the students and let them 

try to guess some of the more likely ones.  In addition to the message keys of 

“WWW”, “AAA”, and “QQQ”, many of them are three consecutive letters on 

the keyboard, like: “ASD”, “QWE”, “ZXC”, “DFG”, “POI”, “LKJ”, etc.  

Working in groups and sharing information might allow students to deduce 

some of the message keys and allow them to uniquely factor the product 

permutations.  

(3) One could not disclose the exact placement of the crib in Operator 1’s message.  

However, if one uses this modification to the project, one might adjust the crib.  

As written, there are quite a few possible places it could appear in the message if 

one is simply using the fact that Enigma never encrypts a letter to itself. 

The Story Continues 

The preceding paragraphs detailed some of the steps taken by the Polish codebreakers 

on a daily basis in breaking Enigma.  In early 1938, the Poles were reading 75% of all 

Enigma traffic!  Moreover, Rejewski believes this could have been as high as 90% if 

they had been given a slight increase in personnel (Rejewski, 1981). However, the story 

of breaking Enigma continues long after the first successful breaks by the Poles.  The 

Poles had to rebuild their catalogue of daily keys after the Germans started using a 

different reflector on November 2, 1937.  More devastating though, on September 15, 

1938, the Germans stopped using the indicator method, which the above work is based 

on.  At the same time, the Germans introduced a fourth and fifth rotor, thereby 

increasing the number of daily keys tenfold.  The Poles developed new techniques 



 

 

including Zygalski sheets, Różycki’s “Clock Method” and the building of the bomba to 

continue their breaks into Enigma. Of course, Germany invaded Poland in September of 

1939 disrupting the work of the Polish Cipher Bureau and causing the Polish 

codebreakers to begin a series of dangerous trips across Europe and North Africa in 

attempts to continue their cryptanaytic work and simultaneously safeguard the valuable 

secret of their break into Enigma.  Advances in the Enigma machine continued 

throughout World War II and the codebreakers of Bletchley Park picked up the battle so 

courageously and deftly begun by Rejewski in 1932. 

Conclusion 

The wonderful world of secret writing, codes, and ciphers can hold the interest of many 

students.  College instructors with an interest in cryptology should take advantage of 

this interest and challenge themselves to bring this subject to a wider audience by 

weaving in exciting stories like the Polish codebreakers and personal privacy. 

Instructors could offer courses in innovative formats (e.g. seminars) or to students 

outside the typical domains of mathematics and computer science.  Cryptology is 

inherently nestled in a context that is naturally exciting, intriguing, and thought 

provoking. It would be great to see colleges and universities regularly offering 

cryptology courses. 
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