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Tumor Growth Modeling using the Exponential Function

Evolution equation: Solution:
dC
dt = kC C (t) = C0e

kt

where C is tumor cell density, t is time, and k is the intrinsic growth rate.

C0 and k are needed for these plots. Some sources:

k = ln 2
Tp

, where Tp is doubling time, C0=?.

Experimental literature.

Lab data.
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Exponential: Finding k from Data

Data: Mouse tumor volume,

C , in mm3, as a function of

time, t, in hours, [4].

In all cases: C0 = 1.041

Regression k = 0.0943

Solver - SSE k=0.0804

Solver - Relative SSE k=0.0826

Dynamic k k=0.099294

Table: Regression was performed using

C0 = 1.041. The relative SSE is
∑n

i
(yi−ŷi )

2

y2
i

.

Here, the dynamic k is the mean (after removing

very extreme outliers) of the k = 1
C

dC
dt by using:

1
Ci−1

Ci−Ci−1

ti−ti−1
.
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Results

Figure: Exponential functions using different k intrinsic growth rates for a fixed

initial tumor volume C0 = 1.04mm3.
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Logistic

Exponential function does not represent a good fit for the data.

Need: A model that includes a slow down of the growth rate later on

when the tumor is larger, i.e., new rate= f (C ).

Try: Relative growth rate, 1
C

dC
dt , declines linearly with increased

tumor size, C , i.e., k1 = k
(
1− C

M

)
.

Evolution equation: Solution:
dC
dt =

[
k
(
1− C

M

)]
C C (t) = M

1+
M−C0
C0

e−kt
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Logistic: Finding k from Data

For the logistic growth: k = 1
C

1
1− C

M

dC
dt .

In all cases M = 421.47 obtained from regression.

Regression k = 0.1086

Solver - SSE k=0.1085776

Solver - Relative SSE k=0.1033

Dynamic k k=0.173953

Table: Dynamic k : the mean (after

removing very extreme outliers) of the k

values from: 1

Ci−1

(
1−

Ci−1
M

) Ci−Ci−1

ti−ti−1
.

Figure: Logistic growths using different k

values.
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Random Forests (RF) Algorithm

Figure: RF algorithm using random

numbers from a normal distribution

around points for each subinterval of the

logistic regression function as a training

data set, and original data values as a

testing data set. MAE=30.591 (vs

MAE=30.45 for logistic, the green line).

Figure: RF algorithm using randomly

generated numbers from an uniform

distribution from each subinterval as a

training data set, and original data

values as a testing data set. MAE=30.6.
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Random Forests (RF) Algorithm

Figure: RF algorithm using original data splitted into train/test using the

following percents: 87.5%/12.5%.
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Immunotherapy
Assumption: Tumor growth

follows a logistic function.

Need to add the effect of

effector cells, E .

Terms can be added to the

system according to

diagram:

dC
dt = kC

(
1− Ctot

M

)
+ ......− .......+ .......,

dE
dt = .......− .......+ .......,

dS
dt = ......− .......− .......− .......,

dE∗
dt = .......,

dC∗
dt = ........

Tumor cells, C , and effector cells, E ,

form a complex, S .
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Immunotherapy

System of equations becomes:

dC
dt = kC

(
1− Ctot

M

)
− k12CE + (k21 + k2)S ,

dE
dt = −k12CE + (k21 + k1)S ,

dS
dt = k12EC − (k21 + k1 + k2)S ,

dE∗
dt = k2S ,

dC∗
dt = k1S ,

(1)

where Ctot = C + S .
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Immunotherapy

More assumptions:

(a) Constant rate of

effector cells, α.

(b) Effector cells are

dying (and clearing).

(c) E∗, are clearing.

(d) C∗, are clearing.

(e) Recruitment of the

effector cells to the

tumor site.



dC
dt = kC

(
1− Ctot

M

)
− k12CE + (k21 + k2)S ,

dE
dt = α︸︷︷︸

(a)

+ fM−M︸ ︷︷ ︸
(e)

−k12CE + (k21 + k1)S

− δE︸︷︷︸
(b)

,

dS
dt = k12EC − (k21 + k1 + k2)S ,

dE∗
dt = k2S ,−βE∗︸︷︷︸

(c)

,

dC∗
dt = k1S − γC∗︸︷︷︸

(d)

.
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Immunotherapy: A Two Population Model

Based on experimental observations the system is reduced to:

dC
dt = kC (1− C/M)− cCE︸ ︷︷ ︸

(i)

,

dE
dt = p +

aCE

b + C
− dE − gCE︸ ︷︷ ︸
(ii)

.
(2)
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Immunotherapy: A Two Population Model - Mosaic

Calculus Modules, from Daniel Kaplan, Macalester College:

https : //www .mosaic − web.org/MOSAIC − Calculus/.

Using mosaicCalc package in R:

Figure: Streamline field: streamlines(dx ∼ (i), dy

∼ (ii), domain(x=0:1000000, y=0:2000000), npts = 8, dt =

0.01, nsteps = 10, color = ”blue”, alpha = 7). Here, (i) and

(ii) are the RHS of the Eqs. 2.

Figure: Flow field: flow field(dx ∼ (i), dy ∼ (ii),

domain(x=0:1000000, y=0:2000000), npts = 10, scale = 0.9,

color = ”blue”, alpha = 5). Here, (i) and (ii) are the RHS of

the Eqs. 2.
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Immunotherapy: A Two Population Model - MosaicCalc

Figure: Vector field and

trajectories, T1 and T2, with

marked times (in days).

library(mosaicCalc)

Pts1← tibble(x = 500000, y = 300000)

Pts2← tibble(x = 250000, y = 300000)

soln1 = integrateODE(dx ∼ (i), dy ∼ (ii), x=500000, y=300000,

domain(t=0:50))

soln2 = integrateODE(dx ∼ (i), dy ∼ (ii), x=250000, y=300000,

domain(t=0:50))

gf label(1220000 ∼ 150000, label=”numbers represent time in days”,

color=”gray”)% > %

traj plot(y(t) ∼ x(t), soln1, col=”red”)% > %

traj plot(y(t) ∼ x(t), soln2, col=”orange”)% > %

gf point(y ∼ x, data = Pts1, color = ”red”, size=7, alpha=0.3)% > %

gf label(700000 ∼ 365000, label=”t1”, color=”orange”)% > %

gf point(y ∼ x, data = Pts2, color = ”orange”, size=4, alpha=0.3)% > %

gf label(700000 ∼ 720000, label=”t2”, color=”red”)% > %

vectorfield plot(C ∼ (a), E ∼ (b), color=”blue”,bounds(x=0:1000000,

y=0:2000000))

(i) and (ii) are as in Eqs. 2 with x = C , and y = E .
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Immunotherapy: A Two Population Model

1. The trajectory shown in the left figure is identical to T1 or T2 (from

the figure shown on the right)?

2. What does the vector plot (on the right) suggest? Is tumor dynamic

sensitive to the initial tumor size? Is tumor dynamic sensitive to the initial

number of effector cells?
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Immunotherapy: A Two Population Model

MATLAB plotter written by

John C. Polking of Rice

University:

https://aeb019.

hosted.uark.edu/pplane.html.
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Immunotherapy: A Two Population Model

Nondimensional Kuznetsov-Taylor system dx
dτ = σ + ρxy

η+y − µxy − δx

dy
dτ = αy(1− βy)− xy

(3)

Nullclines: 
y = 0

x = α(1− βy)

x = σ
δ− ρy

η+y
+µy

(4)

There are up to 4 possible steady states (depending on parameter

values).

Tumor-free equilibrium given by (xe , ye)=(σδ , 0), from the

intersection of two nullclines.

Stability of (xe , ye) = (σδ , 0) depends on parameter values.
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Immunotherapy: A Two Population Model - MosaicCalc

For Eq. (3), J (the Jacobian matrix) =[
−δ − µy + ρy

y+η

(
ηρ

(y+η)2
− µ

)
x

−y −x + α− 2αβy

]

At point A: determinant(J) > 0

and trace(J) < 0 ⇒ A is

asymptotically stable.

Point A is an example of a

steady state corresponding to a

dormant tumor; a relatively

low number of tumor cells.
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Immunotherapy: A Three Population Model - MosaicCalc

C=tumor cells, E=effector cells, T=CD8+

T-cells

dC
dt = kC (1− C/M)− cCE︸ ︷︷ ︸

(a)

dE
dt = p +

aCE

b + C
− dE − gCE ,︸ ︷︷ ︸
(b)

dT
dt = −mT +

jD2

k + D2
T − qTC + rCE︸ ︷︷ ︸

(c)

.

(5)

where D = d
( T

C )
λ

s+( T
C )

λ is the fractional kill rate for

tumor specific CD8+ T-cells (de

Pillis-Radunskaya Law).

Figure: 3D trajectory: library(mosaicCalc),

soln3=integrateODE(dC ∼ (a), dE ∼ (b), dT ∼
(c), C=500000, E=300000, T=300000,

domain(t=0:50)), traj plot 3D(C, E, T, soln3,

npts=5000). (a), (b), and (c) are as in Eqs. 5.
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