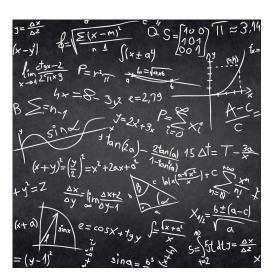
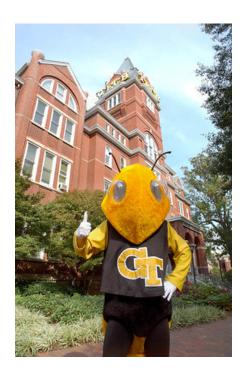

Empowering the Future: How the Distance Math Program Offers Undergraduate Courses to Advanced High School Students in Georgia



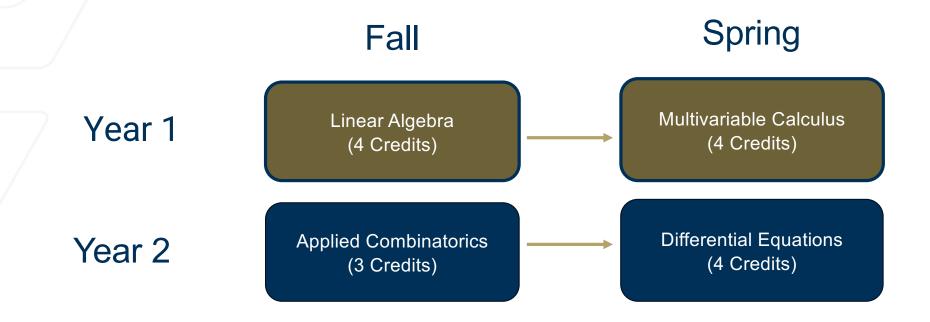
Greg Mayer
Georgia Institute of Technology
SIMIODE Expo 2024

While we are waiting to start: use the chat to introduce yourself and where you are connecting from, experiences teaching distance and/or for high school.

Overview


- Distance Math Program Overview
 - Program structure
 - Enrollment
 - Technologies and procedures
- Differential Equations for High School Distance
- Benefits and Challenges

The Distance Math Program


- A distance learning program offered at Georgia Tech
- Offers undergraduate mathematics courses to Georgia high school students.
- Relies on state funding through dual enrollment*.
 - Dual enrollment allows students to be enrolled in college(s) and high school.
 - Students receive high school and college credit simulteneously.

^{*} More info on GaDOE website here.

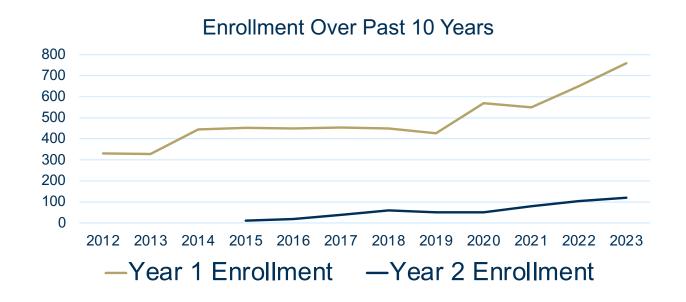
Courses

Partnerships

- School of Math
 - Course curriculum and instruction
 - Assigns teaching assistants, instructors
 - Director of online learning supports teaching assistants and instructors
- Georgia Tech Professional Education
 - Course design
 - Technology support for students, assistants, instructors
 - Exam administration
- Georgia Tech Admissions
 - Application and enrollment processes

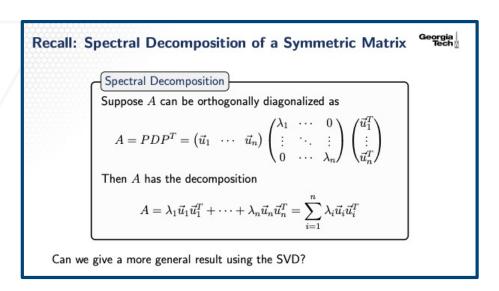
Application Requirements

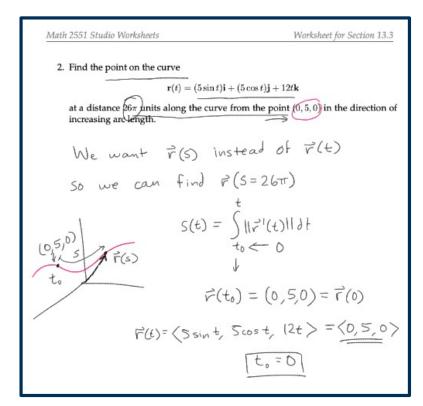
- To apply for distance math, students must
 - Be a Georgia resident (out-of-state students not eligible).
 - Have completed AP Calculus BC with score of 4 or 5.
 - Submit high school transcript
 - Submit SAT, ACT, or PSAT scores
- More information about application process on GT Admissions website.


Impact

- Roughly half of the distance math students go on to enroll at Georgia Tech.
- Among in-state students admitted to an undergraduate degree program at Georgia Tech, around 1/6 of them completed the Distance Math Program.

Enrollment Growth


- Program began in 2005 with ~ 30 high school students
- Approximate enrollment now:
 - Year 1: 760 students (linear algebra, multivariable calculus)
 - Year 2: 120 students (applied combinatorics, differential equations)

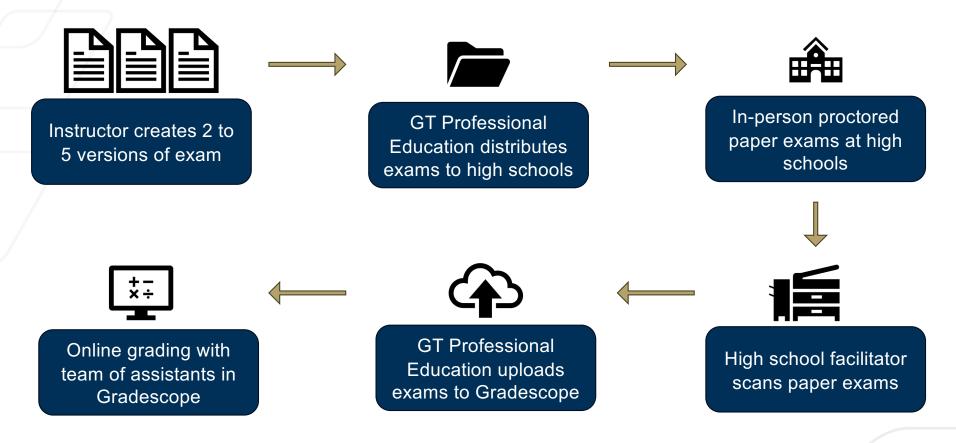


Course Delivery Format

- Asychronous: pre-recorded lectures
- Live studio sessions facilitated by teaching assistants

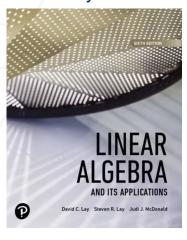
Lecture Slides Created in LaTeX (beamer)

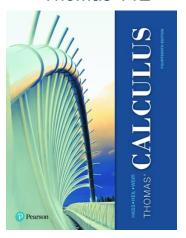
Teaching Assistants Annotate
Worksheets in Live Studio


Exam Procedures

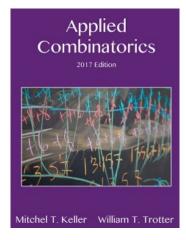
Year 1 MATH 1554 Exam 2 Version B							
Work done on scratch paper will not be graded. You do not need to show your work on page 1.							
1. (0.5 points) Fill in the blanks with a dark pen or pencil. Using only capital letters prifirst name:, last name:, the renof your GTID: 9 0, the High School you attend:							
2. (9 points) Indicate true if the statement is true, otherwise, indicate false .	true	false					
a) If E is a 2×2 elementary matrix, then $\det(E) = 1$.	0	0					
b) 1 is always an eigenvalue for any stochastic matrix P .							
c) The dimension of an eigenspace of a square matrix \boldsymbol{A} is one.							
d) If matrices A and B have the same eigenvalues, then A and B are similar.							
e) If A is a diagonalizable $n\times n$ matrix, then A has n distinct eigenvalues.							
f) If an $n \times n$ matrix has n distinct eigenvalues, then $Ax = b$ has a solution for all b .							
g) A 2×2 matrix A with characteristic polynomial $\lambda^2 + 1$ has two real eigenvalues.							
h) If $\det(A) = 3$ and A is a 3×3 matrix, then $\det(-A) = -3$.							
i) If an eigenvalue of $n \times n$ matrix A is $\lambda = 2$, then $\dim(\operatorname{Null}(A - 2I)) = n - 1$.							
3. (6 points) Fill in the blanks. You do not need to show your work. (a) If c is a real number, $A = \begin{pmatrix} 5 & 4 \\ c & c \end{pmatrix}$, $B = \begin{pmatrix} 10 & c \\ 8 & c \end{pmatrix}$, and $\det A = 4$, then $\det B = $. (b) The determinant of $A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 1 \end{pmatrix}$ is: $$.							

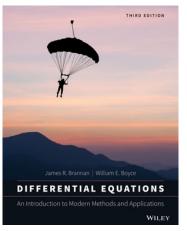
- In-person proctored.
- Each high school has a designated facilitator who is in charge of proctoring.
- Exams graded using Gradescope.


Exam Procedures



Textbooks


Linear Algebra Lay 6E


Multivariable Calculus
Thomas 14E

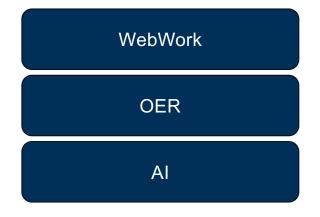
Applied Combinatorics
Keller & Trotter

Differential Equations Brannan & Boyce 3E

- Using the same textbooks that the on-campus sections use.
- State policy that dual enrolled students not required to pay for textbooks.
- GT Bookstore emails e-textbook codes to students.
- Working on moving to OER ...

Assistant Team

	Head TA	TAs	Lecture Assistants	Graders	Curriculum Developers
Grade	✓	✓	✓	✓	
Office Hours	\checkmark	\checkmark	\checkmark		
Forum Moderation	✓	✓	✓		
Live online studios	\checkmark	\checkmark			
Course Admin	✓				
Develop Curriculum	√	√			\checkmark
	Head TA	TAs	Lecture Assistants	Graders	Curriculum Developers
Year 1	1	1	4	4	7
Year 2	0	1	0	1	0

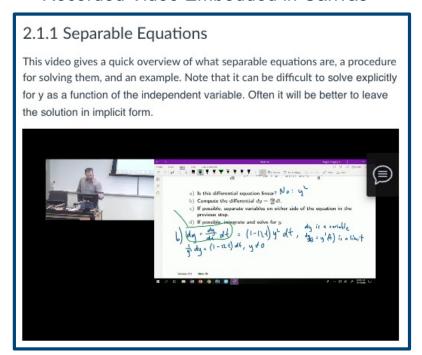

Current Challenges \rightarrow **Future Directions**

Publisher homework systems alignment to course

Textbook costs and code distribution

Time needed to create multiple exam versions

Impact on Other Initiatives


- Distance Math curriculum supported other undergraduate courses and generated momentum for other projects.
- For example:
 - Lecture slides, worksheets, lecture recordings shared with other mathematics faculty.
 - Four-part linear algebra series on EdX.
 - Open Course Project (a DEI initiative).

Online Differential Equations

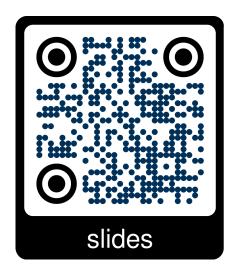
- Spring semesters
- Pre-recorded lectures
- Covers same topics as on-campus sections
 - 1. First order equations
 - 2. Linear systems
 - 3. Second order equations
 - 4. Numerical methods
 - 5. Nonlinear equations
 - 6. Laplace Transform methods

Recorded Video Embedded in Canvas

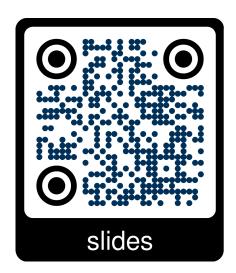
Projects in Differential Equations

Using the chat: what challenges do you encounter when you have group project, or think you would encounter, if you were to incorporate them into your class?

Online Differential Equations Group Project


- Modeled off of the annual SCUDEM challenge
- Students must:
 - Create numerical solution
 - Incorporate a non-linear system with at least two dependent variables
 - Work in group of 2 or 3
 - Write a ~1,500 word essay
 - Choose a topic, but we give suggestions from SIMIODE
- Final project report due at end of semester.
- Project mini-conference where students:
 - Share final report draft on course forum
 - · Comment on each other's drafts
 - Reply to comments

Online Differential Equations Group Project: Rubric


- After a few semesters of grading student projects we have been working on refining a rubric
 - Based on SCUDEM challenge scoring rubric.
 - Addresses some of the common challenges students have in technical writing.
- Download our project instructions and rubric:

Questions?

- Would be happy to answer any questions that you might have!
- Greg Mayer: greg.mayer@gatech.edu

