Contrasting Discrete and Continuous Density Dependent Population Models

Jim Sandefur sandefur@georgetown.edu

Department of Mathematics and Statistics, Georgetown University, Washington, DC

February 14, 2024

Discrete and Continuous Density Dependent Models

$$
\begin{aligned}
p_{n+1}-p_{n} & =r\left(p_{n}\right) p_{n} \\
p^{\prime}(t) & =r(p(t)) p(t) \\
p(t+h)-p(t) & =\operatorname{hr}(p(t)) p(t)
\end{aligned}
$$

Per capita growth rate r : Compensation model

1. intrinsic per capita growth rate, $r(0)=b$
2. r is decreasing
3. carrying capacity, $r(L)=0, r(1)=0$

Equilibrium

$$
\begin{aligned}
p_{n+1} & =p_{n}+r\left(p_{n}\right) p_{n} \\
p^{\prime}(t) & =r(p(t)) p(t)
\end{aligned}
$$

- $E=0$
- $r(E)=0$, so $E=1$.

Stability of Equilibrium, continuous case

$$
\begin{aligned}
d p(t) / d t & =f(p(t)) \\
\left.\frac{d f(p)}{d p}\right|_{p=E} & =a \\
p(t) \sim E+c \cdot e^{a t} &
\end{aligned}
$$

E is stable if $a<0$, unstable if $a>0$.
Summary for $d p / d t=r(p) p$

- $f(p)=r(p) p$
- $f^{\prime}(E)=r(E)+r^{\prime}(E) E$
- $f^{\prime}(0)=r(0)=b>0$, unstable
- $f^{\prime}(1)=r^{\prime}(1)<0$, stable

Stability of Equilibrium, discrete case

$$
\begin{aligned}
p_{n+1} & =f\left(p_{n}\right) \\
\left.\frac{d f(p)}{d p}\right|_{p=E} & =a \\
p_{n} \sim E+c \cdot a^{n} &
\end{aligned}
$$

E is stable if $|a|<1$, unstable if $|a|>1$.
Summary for $p_{n+1}=p_{n}+r\left(p_{n}\right) p_{n}$

- $f(p)=p+r(p) p$
- $f^{\prime}(E)=1+r(E)+r^{\prime}(E) E$
- $f^{\prime}(0)=1+r(0)=1+b>1$, unstable
- $f^{\prime}(1)=1+r^{\prime}(1)<1$,
- stable if $-2<r^{\prime}(1)$

Logistic Equation: Linear r

$$
\begin{aligned}
r(p) & =b-b p \\
p^{\prime}(t) & =(b-b p) p \\
p_{n+1} & =p_{n}+\left(b-b p_{n}\right) p_{n}
\end{aligned}
$$

- $E=0$ unstable for both
- Continuous:
- solution using partial fractions.
- $E=1$ is stable for all b.
- Discrete:
- $E=1$ is stable for $-2<r^{\prime}(1)=-b$ or $b<2$.
- period doubling to chaos.
- if $b>3, p_{n} \rightarrow-\infty$
- if $p_{0}>1+1 / b, p_{n} \rightarrow-\infty$

Period Doubling to Chaos

Per capita growth rate

1. $r(0)=b$
2. r is decreasing
3. $r(1)=0$

4. $\lim _{p \rightarrow \infty} r(p)=-1$.

Contest competition

scramble competition

Rational r

$$
r(p)=\frac{a_{1}+a_{2} p^{j_{2}}}{a_{3}+a_{4} p^{j_{4}}}
$$

$r(0)=b$ implies

$$
r(p)=\frac{b+a_{2} p^{j_{2}}}{1+a_{4} p^{j_{4}}}
$$

$r(1)=0$ implies

$$
r(p)=\frac{b-b p^{j_{2}}}{1+a_{4} p^{j_{4}}}
$$

r decreasing implies

$$
a_{4} \geq 0 \text { and } j_{2} \geq j_{4} .
$$

$r \rightarrow-1$ implies $j_{2}=j_{4}$ and $a_{4}=b$, so

$$
r(p)=\frac{b-b p^{j}}{1+b p^{j}}
$$

Beverton/Holt, 1957, $j=1$: Maynard-Smith/Slatkin, 1973, $j_{\equiv} \neq 1$ 를

Competition

$$
r^{\prime \prime}(p)=\frac{\left(1-j+b(1+j) p^{j}\right) b(1+b) j p^{j-2}}{\left(1+b p^{j}\right)^{3}} .
$$

- $j \leq 1$, concave up, contest competition (Beverton/Holt) exploited fish. (blue)
- $j>1$, point of inflection so scramble competition Maynard-Smith/Slatkin, prey species. (orange)

Finding a solution, continuous

$$
p^{\prime}=\frac{b p-b p^{j_{2}}}{1+a_{4} p^{j_{4}}}
$$

Separation of Variables

$$
\frac{1+a_{4} p^{j_{4}}}{p-p^{j_{2}}} d p=b d t
$$

partial fractions, integrate
Opinion: Solutions are overrated.

Exponential per capita growth rate

$$
\begin{aligned}
r(p) & =c_{1}\left(c_{2}\right)^{p^{j}}+c_{3} \\
r(0)=b & \Rightarrow c_{1}=b-c_{3} \\
r(1)=0 & \Rightarrow c_{2}=\frac{-c_{3}}{b-c_{3}} \\
r^{\prime}(p)<0 & \Rightarrow c_{3}<0 \\
r(p) \rightarrow-1 & \Rightarrow r(p)=(1+b)^{1-p^{j}}-1
\end{aligned}
$$

Discrete model is the Ricker (1954, $j=1$)/Bellows (1981, $j \neq 1$) model.

When is $E=1$ stable?

- Always for continuous model.
- Rational model: For $0<j \leq 2$ or if $b<\frac{2}{j-2}$.
- Exponential model: For $b<e^{2 / j}-1$.
- Period doubling to chaos,
- $j>2$ rational,
- all $j>0$ exponential.

Thank you!

sandefur@georgetown.edu

1. James Sandefur, (2024) Modelling population growth and sustainable harvesting, International Journal of Mathematical Education in Science and Technology, 55:2, 407-441, DOI: 10.1080/0020739X.2023.2245835
2. James Sandefur, (2024) Population Growth Models: Relationship between sustainable fishing and making a profit, CODEE Journal, 17, Article 6, 1-31, DOI:
10.5642/codee.IYNL7423
3. James Sandefur, (2018) A unifying approach to single-species population models. Discrete and Continuous Dynamical Systems - Series B, DOI: 10.3934/ dcdsb. 2017194.
4. James Sandefur, (2024) Discrete Mathematical Modeling: Theory and Applications. Self Published, 2nd edition.
