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Introduction

Mathematical preliminaries

Can your students solve the ODE

dx

dt
= a− bx , x (0) = X0. (1)

NOT the ODE

dx

dt
= 1− 2x , x (0) = 0. (2)

The ODE

dx

dt
= a− bx , x (0) = X0. (3)

Then let’s explore a problem from fire engineering!
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Introduction

The experiment

Test Sample

Sample Holder

Incident Radiation

Figure 1: Common experimental configuration: horizontal heating.
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Introduction

Experimental details

What is the ultimate experiment?

Why radiative heating?

1950s. Radiative heating experiments.

1982. Cone Calorimeter. Fire Research Division at NIST (then NBS).

Standard tool to study behaviour of fire in small samples of
condensed phase materials.

Critical Surface Temperature. (throw chemistry away)

dx

dt
= a− bx , x (0) = X0.
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The model

The model

My students: heat-transfer (Barnes & Fulford)

cm
dT

dt
= −hS (T − Ta) + ϵLS , T (0) = Ta.

(4)

Most of my students rewrote the equation

dT

dt
= −a (T − Ta) + b,

or

dT

dt
= b − aT .
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Results

Solution

Solution. The solution of the differential equation is

T = Ta +
ϵL
h

− ϵL

h
exp

[
− hS

cm
· t
]
. (5)

Sample ignites when T = Tign at t = tign.
Show that

exp

[
hS

cm
· tign

]
=

ϵL
ϵL− h (Tign − Ta)

. (6)

Why do this?
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Results

Time-to-ignition and critical heat-flux

exp

[
hS

cm
· tign

]
=

ϵL
ϵL− h (Tign − Ta)

.

Question 3.1 (Pre-calculus)

Use equation (6) to show there is a critical heat-flux, Lcr:

1 if L < Lcr the sample does not ignite;

2 if L = Lcr the sample ignites after an infinite amount of time;

3 if L > Lcr the sample ignites after a finite amount of time.

Lcr =
h (Tign − Ta)

ϵ
, tign =

cm

hS
ln

[
ϵL

ϵL − h (Tign − Ta)

]
.
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Results

Fire-Engineering application

tign =
cm

hS
ln

[
ϵL

ϵL − h (Tign − Ta)

]
. (7)

1 Set L. Measure tign.

2 Estimate Tign (experimentalist’s job, not ours)

3 Values for h and S defined by test method.

4 Value for Ta known. If ϵ unknown then ϵ = 1.

5 Isn’t cm known?

6 What’s the best value of cm to fit data?

7 Show that. . .

tign =
cm

hS
ln

[
L

L − Lcr

]
. (8)
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Results

Taylor Series to the rescue

tign =
cm

hS
ln

[
L

L − Lcr

]
.

1 Show that when L ≫ Lcr

ln

[
L

L − Lcr

]
≈ Lcr

L
.

2 Show that

tign ≈ cm

hS
· Lcr

L
. (9)

3 Show that (fire engineering version, assuming ϵ = 1)

tign ≈ cδρ (Tign − T0) ·
1

L
, (10)

4 Data. . .
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Discussion

Another way to rewrite the model

dT

dt
= −a (T − Ta) + b,

= −a (T − T ∗
a ) .

1 T ∗
a : effective steady-state temperature. (L)

2 Behaviour understood by students.

3 Sample can not ignite if T ∗
a < Tign.

4 Critical Heat Flux: T ∗
a = Tign.

5 Intuitive way to understand basic properties

10 / 14



Discussion

Another way to rewrite the model

dT

dt
= −a (T − Ta) + b,

= −a (T − T ∗
a ) .

1 T ∗
a : effective steady-state temperature. (L)

2 Behaviour understood by students.

3 Sample can not ignite if T ∗
a < Tign.

4 Critical Heat Flux: T ∗
a = Tign.

5 Intuitive way to understand basic properties

10 / 14



Discussion

Another way to rewrite the model

dT

dt
= −a (T − Ta) + b,

= −a (T − T ∗
a ) .

1 T ∗
a : effective steady-state temperature. (L)

2 Behaviour understood by students.

3 Sample can not ignite if T ∗
a < Tign.

4 Critical Heat Flux: T ∗
a = Tign.

5 Intuitive way to understand basic properties

10 / 14



Discussion

Another way to rewrite the model

dT

dt
= −a (T − Ta) + b,

= −a (T − T ∗
a ) .

1 T ∗
a : effective steady-state temperature. (L)

2 Behaviour understood by students.

3 Sample can not ignite if T ∗
a < Tign.

4 Critical Heat Flux: T ∗
a = Tign.

5 Intuitive way to understand basic properties

10 / 14



Discussion

Another way to rewrite the model

dT

dt
= −a (T − Ta) + b,

= −a (T − T ∗
a ) .

1 T ∗
a : effective steady-state temperature. (L)

2 Behaviour understood by students.

3 Sample can not ignite if T ∗
a < Tign.

4 Critical Heat Flux: T ∗
a = Tign.

5 Intuitive way to understand basic properties

10 / 14



Discussion

Another way to rewrite the model

dT

dt
= −a (T − Ta) + b,

= −a (T − T ∗
a ) .

1 T ∗
a : effective steady-state temperature. (L)

2 Behaviour understood by students.

3 Sample can not ignite if T ∗
a < Tign.

4 Critical Heat Flux: T ∗
a = Tign.

5 Intuitive way to understand basic properties

10 / 14



Discussion

Heat-flux is not time dependent

1 L (t) rather than L.

2

dT

dt
+

hSc
cm

· T = f (t) , T (0) = Ta,

f (t) =
1

cm
[hSTa + ϵSL (t)] .

(11)

3 L ↑ or L ↓: why?
4

Increasing power-law.

L (t) = atb, (b > 1) .

Linearly decreasing rate.

L (t) = L − at.
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Conclusions

Conclusions

Can your students solve the ODE

dx

dt
= a− bx , x(0) = X0.

Radiative ignition test for thermally thin sample:

cm
dT

dt
= −hS (T − Ta) + ϵLS , T (0) = Ta.

Solve!
Use solution to show Lcr (military) (exp can not be negative!)
Find tign as a function of L.
Use Taylor series!

Simplify to: tign ≈ cδρ (Tign − T0) ·
1

L
.

Data (linear regression) (estimate c , thermally thin?)
Extensions: two-sided heating, heat-capacity as function of
temperature (a+ bT ), L(t). (radiative heat-loss)
ẋ = a− bx , x(0) = X0
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Extensions: two-sided heating, heat-capacity as function of
temperature (a+ bT ), L(t). (radiative heat-loss)
ẋ = a− bx , x(0) = X0
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