Burn, Baby! Burn: Modelling Time to Ignition and the Critical Heat Flux of Solid Materials

Mark Nelson ${ }^{1} \quad$ Paolo Sebastianelli ${ }^{2}$
${ }^{1}$ School of Mathematics and Applied Statistics
University of Wollongong, Wollongong, australia
${ }^{2}$ Centre for Atmospheric Chemistry
University of Wollongong, Wollongong, australia

SIMIODE EXPO 2024

Mathematical preliminaries

Can your students solve the ODE

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=a-b x, \quad x(0)=X_{0} \tag{1}
\end{equation*}
$$

Mathematical preliminaries

Can your students solve the ODE

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=a-b x, \quad x(0)=X_{0} \tag{1}
\end{equation*}
$$

NOT the ODE

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=1-2 x, \quad x(0)=0 \tag{2}
\end{equation*}
$$

Mathematical preliminaries

Can your students solve the ODE

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=a-b x, \quad x(0)=X_{0} \tag{1}
\end{equation*}
$$

NOT the ODE

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=1-2 x, \quad x(0)=0 \tag{2}
\end{equation*}
$$

The ODE

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=a-b x, \quad x(0)=X_{0} \tag{3}
\end{equation*}
$$

Mathematical preliminaries

Can your students solve the ODE

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=a-b x, \quad x(0)=X_{0} \tag{1}
\end{equation*}
$$

NOT the ODE

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=1-2 x, \quad x(0)=0 \tag{2}
\end{equation*}
$$

The ODE

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=a-b x, \quad x(0)=X_{0} \tag{3}
\end{equation*}
$$

Then let's explore a problem from fire engineering!

The experiment

Incident Radiation

Figure 1: Common experimental configuration: horizontal heating.

Experimental details

- What is the ultimate experiment?

Experimental details

- What is the ultimate experiment?
- Why radiative heating?

Experimental details

- What is the ultimate experiment?
- Why radiative heating?
- 1950s. Radiative heating experiments.

Experimental details

- What is the ultimate experiment?
- Why radiative heating?
- 1950s. Radiative heating experiments.
- 1982. Cone Calorimeter. Fire Research Division at NIST (then NBS).

Experimental details

- What is the ultimate experiment?
- Why radiative heating?
- 1950s. Radiative heating experiments.
- 1982. Cone Calorimeter. Fire Research Division at NIST (then NBS).
- Standard tool to study behaviour of fire in small samples of condensed phase materials.

Experimental details

- What is the ultimate experiment?
- Why radiative heating?
- 1950s. Radiative heating experiments.
- 1982. Cone Calorimeter. Fire Research Division at NIST (then NBS).
- Standard tool to study behaviour of fire in small samples of condensed phase materials.
- Critical Surface Temperature. (throw chemistry away)

Experimental details

- What is the ultimate experiment?
- Why radiative heating?
- 1950s. Radiative heating experiments.
- 1982. Cone Calorimeter. Fire Research Division at NIST (then NBS).
- Standard tool to study behaviour of fire in small samples of condensed phase materials.
- Critical Surface Temperature. (throw chemistry away)
- $\frac{\mathrm{d} x}{\mathrm{~d} t}=a-b x, \quad x(0)=X_{0}$.

The model

My students: heat-transfer
(Barnes \& Fulford)
(4)

The model

My students: heat-transfer

$$
\begin{equation*}
c m \frac{\mathrm{~d} T}{\mathrm{~d} t}=-h S\left(T-T_{a}\right)+\epsilon \mathcal{L} S, \quad T(0)=T_{a} \tag{4}
\end{equation*}
$$

The model

My students: heat-transfer

$$
\begin{aligned}
c m \frac{\mathrm{~d} T}{\mathrm{~d} t} & =-h S\left(T-T_{a}\right)+\epsilon \mathcal{L} S, \quad T(0)=T_{a} \\
c m \frac{\mathrm{~d} T}{\mathrm{~d} t} & =
\end{aligned}
$$

(Barnes \& Fulford)

The model

My students: heat-transfer

$$
\begin{aligned}
c m \frac{\mathrm{~d} T}{\mathrm{~d} t} & =-h S\left(T-T_{a}\right)+\epsilon \mathcal{L} S, \quad T(0)=T_{a} \\
c m \frac{\mathrm{~d} T}{\mathrm{~d} t} & =-h S\left(T-T_{a}\right)
\end{aligned}
$$

(Barnes \& Fulford)

The model

My students: heat-transfer

$$
\begin{aligned}
c m \frac{\mathrm{~d} T}{\mathrm{~d} t} & =-h S\left(T-T_{a}\right)+\epsilon \mathcal{L} S, \quad T(0)=T_{a} \\
c m \frac{\mathrm{~d} T}{\mathrm{~d} t} & =-h S\left(T-T_{a}\right)+\epsilon \mathcal{L} S
\end{aligned}
$$

(Barnes \& Fulford)

The model

My students: heat-transfer
(Barnes \& Fulford)

$$
\begin{align*}
c m \frac{\mathrm{~d} T}{\mathrm{~d} t} & =-h S\left(T-T_{a}\right)+\epsilon \mathcal{L} S, \quad T(0)=T_{a} \tag{4}\\
c m \frac{\mathrm{~d} T}{\mathrm{~d} t} & =-h S\left(T-T_{a}\right)+\epsilon \mathcal{L} S
\end{align*}
$$

Most of my students rewrote the equation

$$
\frac{\mathrm{d} T}{\mathrm{~d} t}=-a\left(T-T_{a}\right)+b
$$

or

$$
\frac{\mathrm{d} T}{\mathrm{~d} t}=b-a T .
$$

Solution

Solution. The solution of the differential equation is

$$
\begin{equation*}
T=T_{a}+\frac{\epsilon \mathcal{L}}{h}-\frac{\epsilon L}{h} \exp \left[-\frac{h S}{c m} \cdot t\right] . \tag{5}
\end{equation*}
$$

Solution

Solution. The solution of the differential equation is

$$
\begin{equation*}
T=T_{a}+\frac{\epsilon \mathcal{L}}{h}-\frac{\epsilon L}{h} \exp \left[-\frac{h S}{c m} \cdot t\right] . \tag{5}
\end{equation*}
$$

Sample ignites when $T=T_{\text {ign }}$ at $t=t_{\text {ign }}$.

Solution

Solution. The solution of the differential equation is

$$
\begin{equation*}
T=T_{a}+\frac{\epsilon \mathcal{L}}{h}-\frac{\epsilon L}{h} \exp \left[-\frac{h S}{c m} \cdot t\right] . \tag{5}
\end{equation*}
$$

Sample ignites when $T=T_{\text {ign }}$ at $t=t_{\text {ign }}$.
Show that

$$
\begin{equation*}
\exp \left[\frac{h S}{c m} \cdot t_{\mathrm{ign}}\right]=\frac{\epsilon \mathcal{L}}{\epsilon L-h\left(T_{\mathrm{ign}}-T_{a}\right)} . \tag{6}
\end{equation*}
$$

Solution

Solution. The solution of the differential equation is

$$
\begin{equation*}
T=T_{a}+\frac{\epsilon \mathcal{L}}{h}-\frac{\epsilon L}{h} \exp \left[-\frac{h S}{c m} \cdot t\right] . \tag{5}
\end{equation*}
$$

Sample ignites when $T=T_{\text {ign }}$ at $t=t_{\text {ign }}$.
Show that

$$
\begin{equation*}
\exp \left[\frac{h S}{c m} \cdot t_{\mathrm{ign}}\right]=\frac{\epsilon \mathcal{L}}{\epsilon L-h\left(T_{\mathrm{ign}}-T_{a}\right)} . \tag{6}
\end{equation*}
$$

Why do this?

Time-to-ignition and critical heat-flux

$$
\exp \left[\frac{h S}{c m} \cdot t_{\mathrm{ign}}\right]=\frac{\epsilon \mathcal{L}}{\epsilon L-h\left(T_{\mathrm{ign}}-T_{a}\right)}
$$

Time-to-ignition and critical heat-flux

$$
\exp \left[\frac{h S}{c m} \cdot t_{\mathrm{ign}}\right]=\frac{\epsilon \mathcal{L}}{\epsilon L-h\left(T_{\mathrm{ign}}-T_{a}\right)} .
$$

Question 3.1 (Pre-calculus)
Use equation (6) to show there is a critical heat-flux, $\mathcal{L}_{c r}$:
(1) if $\mathcal{L}<\mathcal{L}_{\text {cr }}$ the sample does not ignite;
(2) if $\mathcal{L}=\mathcal{L}_{\text {cr }}$ the sample ignites after an infinite amount of time;
(3) if $\mathcal{L}>\mathcal{L}_{\text {cr }}$ the sample ignites after a finite amount of time.

Time-to-ignition and critical heat-flux

$$
\exp \left[\frac{h S}{c m} \cdot t_{\mathrm{ign}}\right]=\frac{\epsilon \mathcal{L}}{\epsilon L-h\left(T_{\mathrm{ign}}-T_{a}\right)} .
$$

Question 3.1 (Pre-calculus)
Use equation (6) to show there is a critical heat-flux, $\mathcal{L}_{c r}$:
(1) if $\mathcal{L}<\mathcal{L}_{\text {cr }}$ the sample does not ignite;
(2) if $\mathcal{L}=\mathcal{L}_{\text {cr }}$ the sample ignites after an infinite amount of time;
(3) if $\mathcal{L}>\mathcal{L}_{\text {cr }}$ the sample ignites after a finite amount of time.

$$
\mathcal{L}_{\mathrm{cr}}=\frac{h\left(T_{\mathrm{ign}}-T_{a}\right)}{\epsilon}, \quad t_{\mathrm{ign}}=\frac{c m}{h S} \ln \left[\frac{\epsilon \mathcal{L}}{\epsilon \mathcal{L}-h\left(T_{\mathrm{ign}}-T_{a}\right)}\right] .
$$

Fire-Engineering application

$$
\begin{equation*}
t_{\mathrm{ign}}=\frac{c m}{h S} \ln \left[\frac{\epsilon \mathcal{L}}{\epsilon \mathcal{L}-h\left(T_{\mathrm{ign}}-T_{a}\right)}\right] . \tag{7}
\end{equation*}
$$

Fire-Engineering application

$$
\begin{equation*}
t_{\text {ign }}=\frac{c m}{h S} \ln \left[\frac{\epsilon \mathcal{L}}{\epsilon \mathcal{L}-h\left(T_{\text {ign }}-T_{a}\right)}\right] . \tag{7}
\end{equation*}
$$

(1) Set \mathcal{L}. Measure t_{ign}.

Fire-Engineering application

$$
\begin{equation*}
t_{\mathrm{ign}}=\frac{c m}{h S} \ln \left[\frac{\epsilon \mathcal{L}}{\epsilon \mathcal{L}-h\left(T_{\mathrm{ign}}-T_{a}\right)}\right] . \tag{7}
\end{equation*}
$$

(1) Set \mathcal{L}. Measure t_{ign}.
(2) Estimate $T_{\text {ign }}$ (experimentalist's job, not ours)

Fire-Engineering application

$$
\begin{equation*}
t_{\mathrm{ign}}=\frac{c m}{h S} \ln \left[\frac{\epsilon \mathcal{L}}{\epsilon \mathcal{L}-h\left(T_{\mathrm{ign}}-T_{a}\right)}\right] . \tag{7}
\end{equation*}
$$

(1) Set \mathcal{L}. Measure t_{ign}.
(2) Estimate $T_{\text {ign }}$ (experimentalist's job, not ours)
(3) Values for h and S defined by test method.

Fire-Engineering application

$$
\begin{equation*}
t_{\mathrm{ign}}=\frac{c m}{h S} \ln \left[\frac{\epsilon \mathcal{L}}{\epsilon \mathcal{L}-h\left(T_{\mathrm{ign}}-T_{a}\right)}\right] . \tag{7}
\end{equation*}
$$

(1) Set \mathcal{L}. Measure t_{ign}.
(2) Estimate $T_{\text {ign }}$ (experimentalist's job, not ours)
(3) Values for h and S defined by test method.
(9) Value for T_{a} known. If ϵ unknown then $\epsilon=1$.

Fire-Engineering application

$$
\begin{equation*}
t_{\mathrm{ign}}=\frac{c m}{h S} \ln \left[\frac{\epsilon \mathcal{L}}{\epsilon \mathcal{L}-h\left(T_{\mathrm{ign}}-T_{a}\right)}\right] . \tag{7}
\end{equation*}
$$

(1) Set \mathcal{L}. Measure t_{ign}.
(2) Estimate $T_{\text {ign }}$ (experimentalist's job, not ours)
(3) Values for h and S defined by test method.
(9) Value for T_{a} known. If ϵ unknown then $\epsilon=1$.
(0) Isn't cm known?

Fire-Engineering application

$$
\begin{equation*}
t_{\mathrm{ign}}=\frac{c m}{h S} \ln \left[\frac{\epsilon \mathcal{L}}{\epsilon \mathcal{L}-h\left(T_{\mathrm{ign}}-T_{a}\right)}\right] . \tag{7}
\end{equation*}
$$

(1) Set \mathcal{L}. Measure $t_{\text {ign }}$.
(2) Estimate $T_{\text {ign }}$ (experimentalist's job, not ours)
(3) Values for h and S defined by test method.
(9) Value for T_{a} known. If ϵ unknown then $\epsilon=1$.
(0) Isn't cm known?
(0) What's the best value of cm to fit data?

Fire-Engineering application

$$
\begin{equation*}
t_{\mathrm{ign}}=\frac{c m}{h S} \ln \left[\frac{\epsilon \mathcal{L}}{\epsilon \mathcal{L}-h\left(T_{\mathrm{ign}}-T_{a}\right)}\right] . \tag{7}
\end{equation*}
$$

(1) Set \mathcal{L}. Measure $t_{\text {ign }}$.
(2) Estimate $T_{\text {ign }}$ (experimentalist's job, not ours)
(3) Values for h and S defined by test method.
(9) Value for T_{a} known. If ϵ unknown then $\epsilon=1$.
(6) Isn't cm known?
(0) What's the best value of cm to fit data?
(0) Show that...

$$
\begin{equation*}
t_{\text {ign }}=\frac{c m}{h S} \ln \left[\frac{\mathcal{L}}{\mathcal{L}-\mathcal{L}_{\mathrm{cr}}}\right] . \tag{8}
\end{equation*}
$$

Taylor Series to the rescue

$$
t_{\mathrm{ign}}=\frac{c m}{h S} \ln \left[\frac{\mathcal{L}}{\mathcal{L}-\mathcal{L}_{\mathrm{cr}}}\right] .
$$

Taylor Series to the rescue

$$
\mathrm{t}_{\mathrm{ign}}=\frac{\mathrm{cm}}{h S} \ln \left[\frac{\mathcal{L}}{\mathcal{L}-\mathcal{L}_{\mathrm{cr}}}\right] .
$$

(1) Show that when $\mathcal{L} \gg \mathcal{L}_{\text {cr }}$

$$
\ln \left[\frac{\mathcal{L}}{\mathcal{L}-\mathcal{L}_{\mathrm{cr}}}\right] \approx \frac{\mathcal{L}_{\mathrm{cr}}}{\mathcal{L}} .
$$

Taylor Series to the rescue

$$
\mathrm{t}_{\mathrm{ign}}=\frac{\mathrm{cm}}{h S} \ln \left[\frac{\mathcal{L}}{\mathcal{L}-\mathcal{L}_{\mathrm{cr}}}\right] .
$$

(1) Show that when $\mathcal{L} \gg \mathcal{L}_{\text {cr }}$

$$
\ln \left[\frac{\mathcal{L}}{\mathcal{L}-\mathcal{L}_{\mathrm{cr}}}\right] \approx \frac{\mathcal{L}_{\mathrm{cr}}}{\mathcal{L}} .
$$

(2) Show that

$$
\begin{equation*}
t_{\mathrm{ign}} \approx \frac{c m}{h S} \cdot \frac{\mathcal{L}_{\mathrm{cr}}}{\mathcal{L}} \tag{9}
\end{equation*}
$$

Taylor Series to the rescue

$$
t_{\mathrm{ign}}=\frac{c m}{h S} \ln \left[\frac{\mathcal{L}}{\mathcal{L}-\mathcal{L}_{\mathrm{cr}}}\right] .
$$

(1) Show that when $\mathcal{L} \gg \mathcal{L}_{\text {cr }}$

$$
\ln \left[\frac{\mathcal{L}}{\mathcal{L}-\mathcal{L}_{\mathrm{cr}}}\right] \approx \frac{\mathcal{L}_{\mathrm{cr}}}{\mathcal{L}} .
$$

(2) Show that

$$
\begin{equation*}
t_{\mathrm{ign}} \approx \frac{c m}{h S} \cdot \frac{\mathcal{L}_{\mathrm{cr}}}{\mathcal{L}} \tag{9}
\end{equation*}
$$

(3) Show that (fire engineering version, assuming $\epsilon=1$)

$$
\begin{equation*}
t_{\mathrm{ign}} \approx c \delta \rho\left(T_{\mathrm{ign}}-T_{0}\right) \cdot \frac{1}{\mathcal{L}} \tag{10}
\end{equation*}
$$

Taylor Series to the rescue

$$
t_{\mathrm{ign}}=\frac{c m}{h S} \ln \left[\frac{\mathcal{L}}{\mathcal{L}-\mathcal{L}_{\mathrm{cr}}}\right] .
$$

(1) Show that when $\mathcal{L} \gg \mathcal{L}_{\text {cr }}$

$$
\ln \left[\frac{\mathcal{L}}{\mathcal{L}-\mathcal{L}_{\mathrm{cr}}}\right] \approx \frac{\mathcal{L}_{\mathrm{cr}}}{\mathcal{L}} .
$$

(2) Show that

$$
\begin{equation*}
t_{\mathrm{ign}} \approx \frac{c m}{h S} \cdot \frac{\mathcal{L}_{\mathrm{cr}}}{\mathcal{L}} \tag{9}
\end{equation*}
$$

(3) Show that (fire engineering version, assuming $\epsilon=1$)

$$
\begin{equation*}
t_{\mathrm{ign}} \approx c \delta \rho\left(T_{\mathrm{ign}}-T_{0}\right) \cdot \frac{1}{\mathcal{L}} \tag{10}
\end{equation*}
$$

(9) Data...

Another way to rewrite the model

$$
\frac{\mathrm{d} T}{\mathrm{~d} t}=-a\left(T-T_{a}\right)+b
$$

Another way to rewrite the model

$$
\begin{aligned}
\frac{\mathrm{d} T}{\mathrm{~d} t} & =-a\left(T-T_{a}\right)+b \\
& =-a\left(T-T_{a}^{*}\right)
\end{aligned}
$$

(1) T_{a}^{*} : effective steady-state temperature.

Another way to rewrite the model

$$
\begin{aligned}
\frac{\mathrm{d} T}{\mathrm{~d} t} & =-a\left(T-T_{a}\right)+b \\
& =-a\left(T-T_{a}^{*}\right)
\end{aligned}
$$

(1) T_{a}^{*} : effective steady-state temperature.
(2) Behaviour understood by students.

Another way to rewrite the model

$$
\begin{aligned}
\frac{\mathrm{d} T}{\mathrm{~d} t} & =-a\left(T-T_{a}\right)+b, \\
& =-a\left(T-T_{a}^{*}\right) .
\end{aligned}
$$

(1) T_{a}^{*} : effective steady-state temperature.
(2) Behaviour understood by students.
(3) Sample can not ignite if $T_{a}^{*}<T_{\text {ign }}$.

Another way to rewrite the model

$$
\begin{aligned}
\frac{\mathrm{d} T}{\mathrm{~d} t} & =-a\left(T-T_{a}\right)+b, \\
& =-a\left(T-T_{a}^{*}\right) .
\end{aligned}
$$

(1) T_{a}^{*} : effective steady-state temperature.
(2) Behaviour understood by students.
(3) Sample can not ignite if $T_{a}^{*}<T_{\text {ign }}$.
(9) Critical Heat Flux: $T_{a}^{*}=T_{\text {ign }}$.

Another way to rewrite the model

$$
\begin{aligned}
\frac{\mathrm{d} T}{\mathrm{~d} t} & =-a\left(T-T_{a}\right)+b, \\
& =-a\left(T-T_{a}^{*}\right) .
\end{aligned}
$$

(1) T_{a}^{*} : effective steady-state temperature.
(2) Behaviour understood by students.
(3) Sample can not ignite if $T_{a}^{*}<T_{\text {ign }}$.
(9) Critical Heat Flux: $T_{a}^{*}=T_{\text {ign }}$.
(5) Intuitive way to understand basic properties

Heat-flux is not time dependent

(1) $\mathcal{L}(t)$ rather than \mathcal{L}.

Heat-flux is not time dependent

(1) $\mathcal{L}(t)$ rather than \mathcal{L}.
(2)

$$
\begin{align*}
\frac{\mathrm{d} T}{\mathrm{~d} t}+\frac{h S_{\mathrm{c}}}{c m} \cdot T & =f(t), \quad T(0)=T_{a} \\
f(t) & =\frac{1}{c m}\left[h S T_{a}+\epsilon S \mathcal{L}(t)\right] \tag{11}
\end{align*}
$$

Heat-flux is not time dependent

(1) $\mathcal{L}(t)$ rather than \mathcal{L}.
(2)

$$
\begin{align*}
\frac{\mathrm{d} T}{\mathrm{~d} t}+\frac{h S_{\mathrm{c}}}{c m} \cdot T & =f(t), \quad T(0)=T_{a} \tag{11}\\
f(t) & =\frac{1}{c m}\left[h S T_{a}+\epsilon S \mathcal{L}(t)\right]
\end{align*}
$$

(3) $\mathcal{L} \uparrow$ or $\mathcal{L} \downarrow:$ why?

Heat-flux is not time dependent

(1) $\mathcal{L}(t)$ rather than \mathcal{L}.
(2)

$$
\begin{align*}
\frac{\mathrm{d} T}{\mathrm{~d} t}+\frac{h S_{\mathrm{c}}}{c m} \cdot T & =f(t), \quad T(0)=T_{\mathrm{a}}, \\
f(t) & =\frac{1}{c m}\left[h S T_{a}+\epsilon S \mathcal{L}(t)\right] . \tag{11}
\end{align*}
$$

(0) $\mathcal{L} \uparrow$ or $\mathcal{L} \downarrow:$ why?
(4)

Increasing power-law.

$$
\mathcal{L}(t)=a t^{b}, \quad(b>1)
$$

Linearly decreasing rate.

$$
\mathcal{L}(t)=\mathcal{L}-a t .
$$

Conclusions

- Can your students solve the ODE

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a-b x, \quad x(0)=X_{0}
$$

Conclusions

- Can your students solve the ODE

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a-b x, \quad x(0)=X_{0}
$$

- Radiative ignition test for thermally thin sample:

$$
c m \frac{\mathrm{~d} T}{\mathrm{~d} t}=-h S\left(T-T_{a}\right)+\epsilon \mathcal{L} S, \quad T(0)=T_{a} .
$$

Conclusions

- Can your students solve the ODE

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a-b x, \quad x(0)=X_{0}
$$

- Radiative ignition test for thermally thin sample:

$$
c m \frac{\mathrm{~d} T}{\mathrm{~d} t}=-h S\left(T-T_{a}\right)+\epsilon \mathcal{L} S, \quad T(0)=T_{a} .
$$

- Solve!

Conclusions

- Can your students solve the ODE

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a-b x, \quad x(0)=X_{0}
$$

- Radiative ignition test for thermally thin sample:

$$
c m \frac{\mathrm{~d} T}{\mathrm{~d} t}=-h S\left(T-T_{a}\right)+\epsilon \mathcal{L} S, \quad T(0)=T_{a}
$$

- Solve!
- Use solution to show $\mathcal{L}_{\text {cr }}$

Conclusions

- Can your students solve the ODE

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a-b x, \quad x(0)=X_{0}
$$

- Radiative ignition test for thermally thin sample:

$$
c m \frac{\mathrm{~d} T}{\mathrm{~d} t}=-h S\left(T-T_{a}\right)+\epsilon \mathcal{L} S, \quad T(0)=T_{a}
$$

- Solve!
- Use solution to show $\mathcal{L}_{\text {cr }}$ (military) (exp can not be negative!)
- Find t_{ign} as a function of \mathcal{L}.

Conclusions

- Can your students solve the ODE

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a-b x, \quad x(0)=X_{0}
$$

- Radiative ignition test for thermally thin sample:

$$
c m \frac{\mathrm{~d} T}{\mathrm{~d} t}=-h S\left(T-T_{a}\right)+\epsilon \mathcal{L} S, \quad T(0)=T_{a}
$$

- Solve!
- Use solution to show $\mathcal{L}_{\text {cr }}$ (military) (exp can not be negative!)
- Find t_{ign} as a function of \mathcal{L}.
- Use Taylor series!

Conclusions

- Can your students solve the ODE

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a-b x, \quad x(0)=X_{0}
$$

- Radiative ignition test for thermally thin sample:

$$
c m \frac{\mathrm{~d} T}{\mathrm{~d} t}=-h S\left(T-T_{a}\right)+\epsilon \mathcal{L} S, \quad T(0)=T_{a}
$$

- Solve!
- Use solution to show $\mathcal{L}_{\mathrm{cr}} \quad$ (military) (exp can not be negative!)
- Find t_{ign} as a function of \mathcal{L}.
- Use Taylor series!
- Simplify to: $t_{\mathrm{ign}} \approx c \delta \rho\left(T_{\mathrm{ign}}-T_{0}\right) \cdot \frac{1}{\mathcal{L}}$.

Conclusions

- Can your students solve the ODE

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a-b x, \quad x(0)=X_{0}
$$

- Radiative ignition test for thermally thin sample:

$$
c m \frac{\mathrm{~d} T}{\mathrm{~d} t}=-h S\left(T-T_{a}\right)+\epsilon \mathcal{L} S, \quad T(0)=T_{a}
$$

- Solve!
- Use solution to show $\mathcal{L}_{\mathrm{cr}} \quad$ (military) (exp can not be negative!)
- Find t_{ign} as a function of \mathcal{L}.
- Use Taylor series!
- Simplify to: $t_{\mathrm{ign}} \approx c \delta \rho\left(T_{\mathrm{ign}}-T_{0}\right) \cdot \frac{1}{\mathcal{L}}$.
- Data (linear regression)

Conclusions

- Can your students solve the ODE

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a-b x, \quad x(0)=X_{0}
$$

- Radiative ignition test for thermally thin sample:

$$
c m \frac{\mathrm{~d} T}{\mathrm{~d} t}=-h S\left(T-T_{a}\right)+\epsilon \mathcal{L} S, \quad T(0)=T_{a}
$$

- Solve!
- Use solution to show $\mathcal{L}_{\mathrm{cr}} \quad$ (military) (exp can not be negative!)
- Find $t_{\text {ign }}$ as a function of \mathcal{L}.
- Use Taylor series!
- Simplify to: $t_{\mathrm{ign}} \approx c \delta \rho\left(T_{\mathrm{ign}}-T_{0}\right) \cdot \frac{1}{\mathcal{L}}$.
- Data (linear regression)
- Extensions: two-sided heating, heat-capacity as function of temperature $(a+b T), \mathcal{L}(t)$. (radiative heat-loss)

Conclusions

- Can your students solve the ODE

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a-b x, \quad x(0)=X_{0}
$$

- Radiative ignition test for thermally thin sample:

$$
c m \frac{\mathrm{~d} T}{\mathrm{~d} t}=-h S\left(T-T_{a}\right)+\epsilon \mathcal{L} S, \quad T(0)=T_{a}
$$

- Solve!
- Use solution to show $\mathcal{L}_{\mathrm{cr}} \quad$ (military) (exp can not be negative!)
- Find $t_{\text {ign }}$ as a function of \mathcal{L}.
- Use Taylor series!
- Simplify to: $t_{\mathrm{ign}} \approx c \delta \rho\left(T_{\mathrm{ign}}-T_{0}\right) \cdot \frac{1}{\mathcal{L}}$.
- Data (linear regression)
- Extensions: two-sided heating, heat-capacity as function of temperature $(a+b T), \mathcal{L}(t)$. (radiative heat-loss)
- $\dot{x}=a-b x, \quad x(0)=X_{0}$

References

B. Barnes and G.R. Fulford. (2015). Mathematical Modelling with Case Studies Using Maple and Matlab. CRC Press, Boca Rato London New York, third edition.

I used this book as the basis for my heat-transfer lecture notes. It teaches students how to derive heat-transfer models for homogeneous heat-transfer, when there is no temperature profile so the model is an ODE, and for steady-state heat conduction problems, so the model is a second-order ODE.
D. Drysdale. (1999). An Introduction to Fire Dynamics. John Wiley and Sons, 2nd edition.

Good introduction to Fire Dynamics. Has good sections on the ignition of thermally thin materials and thermally thick, which gives a PDE model.
R. Parot, J.I. Rivera, P. Reszka, J.L. Torero, and A. Fuentes. (2022). A simplified analytical model for radiation dominated ignition of solid fuels exposed to multiple non-steady heat fluxes. Combustion and Flame, 237:111866.

Comprehensive listing of functional forms for $\mathcal{L}(t)$ that have used in the literature. Uses them in extension of the ODE model I discussed to include radiative heat loss.
M.I. Nelson and P. Sebastianelli. (In preparation).

A souped up version of the talk including the missing details, more background and more discussion of our experiences using the model in the classroom. Ready to submit real soon.

