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Abstract

A Sand Tank Groundwater Model is a tabletop physical model
constructed of plexiglass and filled with sand that is typically
used to illustrate how groundwater water flows through an
aquifer, how water wells work, and the effects of contaminants
introduced into an aquifer.

Mathematically groundwater flow through an aquifer can be
modeled with the heat equation.

We will show how a Sand Tank Groundwater Model can be
used to simulate groundwater flow through an aquifer with a
no flow boundary condition.

This work appears as part of the Third Special Issue of the
CODEE Journal: Engaging the World: Differential Equations
Can Influence Public Policies.
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One-Dimensional Heat Flow

One of the first partial differential
equations that is encountered in
an introductory course on
boundary value problems is the
one-dimensional heat equation.

Typically, the one-dimensional
heat equation is derived and
introduced as a model for heat
flow through a rod or bar made
up of a homogeneous heat
conducting material with
insulated lateral surface.

Consider a rod such as the one
depicted in Figure 1.

Figure 1: Rod of heat conducting material
with insulated lateral surface.
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One-Dimensional Heat Flow

Assume that the rod has uniform
cross–section (perpendicular to
the x–axis and that the
temperature is the same at any
point of this cross–section.

With this assumption, we can
consider the temperature u in the
rod to be a function of position
along the x–axis and time t, i.e.
u = u(x , t).

The diagram in Figure 1 shows
heat flowing from right to left
through the rod (we are assuming
that temperature T1 is greater
than temperature T0), along with
a small representative
cross–sectional slice of width ∆x
and cross sectional area A.

Figure 1: Rod of heat conducting material
with insulated lateral surface.
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One-Dimensional Heat Flow

There are four possible contributions of heat to this
cross–sectional slice:

1 Heat flow into the right face, −q(x +∆x , t)A;
2 Heat flow out of the left face, −q(x , t)A;
3 Heat generation within the slice, g(x , t)A∆x ; and

4 Heat storage within the slice, ρcA∆x
∂u

∂t
.

Here, q(x , t), which is taken to be positive when heat flows to
the right, is the heat flux or amount of heat per unit time per
unit area flowing through the rod’s cross-section at position x
at time t,
The quantity g(x , t) describes the rate at which heat is
generated within the slice, ρ is the density, and c is the heat
capacity per unit mass.
Both density ρ and heat capacity c can depend on x and t,
but since we are considering a rod made up of homogeneous
material, we can assume that these parameters are constant.
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One-Dimensional Heat Flow

Using the Law of Conservation of Energy, which applied to the
cross-sectional slice indicates that the heat flow into the right
face plus the heat generation within the slice is equal to the
heat flow out of the left face plus the heat storage in the slice,
we see that for this scenario,

− q(x +∆x , t)A+ g(x , t)A∆x = −q(x , t)A+ ρcA∆x
∂u

∂t
, (1)

or, rearranging terms in (1) and dividing by A∆x ,

−q(x +∆x , t) + q(x , t)

∆x
= ρc

∂u

∂t
− g(x , t). (2)

Letting ∆x → 0 in (2), we have
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One-Dimensional Heat Flow

− ∂q

∂x
= ρc

∂u

∂t
− g(x , t). (3)

Equation (3) provides a relationship between the heat flux q
and temperature u.
In order to get an equation that involves only the temperature
u, we can use Fourier’s Law,

q = −κ
∂u

∂x
, (4)

which relates the gradient of the temperature to the heat flux.
The proportionality quantity κ, known as the thermal
conductivity, may depend on x and t, but since our rod is
homogeneous, κ can be assumed to be constant,
The minus sign in (4) indicates that heat flows from higher
temperatures to lower temperatures.
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homogeneous, κ can be assumed to be constant,
The minus sign in (4) indicates that heat flows from higher
temperatures to lower temperatures.
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One-Dimensional Heat Equation

Substituting −κ
∂u

∂x
for q(x , t) in (3) yields

∂

∂x

(
κ
∂u

∂x

)
= ρc

∂u

∂t
− g(x , t). (5)

Since thermal conductivity κ is constant, we can divide (5) by
κ to get

∂2u

∂x2
=

ρc

κ

∂u

∂t
− g(x , t)

κ
. (6)

Finally, with thermal diffusivity k defined by

k =
κ

ρc
,

we arrive at the one–dimensional heat equation,
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One-Dimensional Heat Equation

∂2u

∂x2
=

1

k

∂u

∂t
− g(x , t)

κ
. (7)

A common application of the heat equation is to find the
temperature u(x , t) at any point x , at any time t, along the
rod with a known initial temperature and specified boundary
conditions, such as a fixed temperature at each end.

In some texts, one may also find applications that involve a
fixed temperature at one end and the other end insulated (a
no flow condition).
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One-Dimensional Groundwater Flow

One application of the heat equation that we have not found
in most boundary value problem texts is groundwater flow
through an aquifer, which is a water bearing porous medium
such as sand, through which water flows easily.

Instead of temperature, we are interested in hydraulic head
h(x , t) (which can be thought of as the height of the water
level, relative to a reference point, such as sea level), at any
point x , at any time t, along the aquifer.

Just as with the heat conducting rod, for applications, we
need to specify appropriate boundary conditions and initial
condition.

Instead of fixed temperatures (or insulated boundary) at each
end and a known initial temperature distribution, there would
be fixed head levels (or a no-flow boundary) and known head
levels at each point of the aquifer at a given time.
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One-Dimensional Groundwater Flow

Table 1 illustrates that each aspect of heat flow in a rod has an analog in
the groundwater flow through an aquifer setting.

Heat Flow in Rod Groundwater Flow in Aquifer
Heat flux, q(x , t) Volumetric flux, q(x , t)

Temperature, u(x , t) Head level, h(x , t)

Fourier’s Law, q = −κ
∂u

∂x
Darcy’s Law, q = −K

∂h

∂x
Thermal conductivity, κ Hydraulic conductivity, K

Heat generation, g(x , t) Recharge, R(x , t)

Heat storage, ρcA∆x
∂u

∂t
Groundwater storage, SsA∆x

∆h

∆t
Density (ρ), Heat capacity (c) Specific storage (Ss)

Thermal diffusivity, k = κ
ρc

Hydraulic diffusivity, k = K
Ss

Table 1: Aspects of Heat Flow in a Rod vs. Groundwater Flow in an Aquifer.

As was done for the heat conducting rod, we will assume that the aquifer
is homogeneous, so that the parameters are constants that depend on the
specific aquifer material.
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One-Dimensional Groundwater Flow

For groundwater flow, recharge R(x , t) describes the volume
of water added per unit time per unit volume of the aquifer,
and specific storage Ss is the volume of water added to, or
released from, storage per unit volume of aquifer per unit
change in hydraulic head.

Darcy’s Law, the analog of Fourier’s Law, (4), in the
groundwater flow setting,

q = −K
∂h

∂x
(8)

shows that the volumetric flux or volumetric flow rate per unit
cross-sectional area of the aquifer, q, is proportional to the
gradient of the hydraulic head, with proportionality quantity,
K , the hydraulic conductivity.
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One-Dimensional Groundwater Flow Equation

Using Darcy’s Law, (8), and the idea of continuity
(conservation of mass), one can use essentially the same
argument as above for deriving the one-dimensional heat
equation to obtain a partial differential equation that describes
hydraulic head level h at any point in an aquifer, at any time,
known as the one-dimensional groundwater flow equation,

∂2h

∂x2
=

1

k

∂h

∂t
− R(x , t)

K
, (9)

where hydraulic diffusivity k depends on the material in the
aquifer through which the groundwater is flowing.

As we see, the one-dimensional groundwater flow equation,
(9), is the “same” as the one-dimensional heat equation, (7).
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Sand Tank Groundwater Model

One way to illustrate groundwater
flow is via a physical Sand Tank
Groundwater Model.

A Sand Tank Groundwater Model
or sand tank, such as the one
pictured in Figure 2, from Ball
State University’s Department of
Geological Sciences, “is an
educational device constructed ...
of sturdy layered sand lenses to
represent a sliced section of earth.

... Through the use of water
tinted with food coloring or grape
Kool-Aid, it is possible to observe
a wide range of groundwater
movements.”

Figure 2: Sand Tank Groundwater Model.
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Sand Tank Groundwater Model

Sand tanks can also be used in an
“unconventional manner” to tie
together groundwater flow
modeling and more advanced
differential equations concepts
and solution techniques.

By leaving a sand tank in
unmodified state (i.e. leaving in
the drain plug D1 in Figure 3) we
were able to physically simulate
one-dimensional groundwater flow
through an aquifer with a fixed
head level at one boundary
(right) and no flow at the other
boundary (left).

Figure 3: Sand Tank Groundwater Model
Components: Underground Tank (UT),
Leaky Lagoon (LL), Stream (ST), Bedrock
Aquifer, Sand Lenses (SL1 - SL5), Shallow
Wells (S1 - S4), Artesian Well (AW),
Pumping Wells (P1 - P2), Deep Wells (W1
- W3), Drain Outlets (D1 - D2), Recharge
Columns (R1 - R2), Access Holes into
Aquifer (H1 - H2).
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Sand Tank Groundwater Model

We added a drop of green food
coloring to each well and used an
upside down bottle with stopper
and tube to establish a fixed head
level and introduce clean water at
a fixed rate into the aquifer via
the access hole at the base of the
right recharge column.

Using a video camera, we were
able to film the sand tank and use
Tracker software to collect
approximately 70 seconds worth
of well head data from the
resulting video recording.

Figure 4: Collecting Well Head Data via
Tracker.
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A Model for Our Sand Tank Aquifer
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of our sand tank aquifer.
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Initial Value–Boundary Value Problem (IVBVP)

The initial value–boundary value problem (IVBVP) that describes this
specific situation is

∂2h

∂x2
=

1

k

∂h

∂t
, for 0 < x < a, t > 0, (10)

h(a, t) = H1, for t > 0. (11)

∂

∂x
h(0, t) = 0, for t > 0, (12)

h(x , 0) = f (x) for 0 < x < a. (13)

Here, boundary condition (11) indicates a fixed head level of H1 at the
right end of the aquifer and using Darcy’s Law (8), we see that boundary
condition (12) indicates that there is no water flowing through the left
end of the aquifer.

The initial head level at time t = 0 is given by equation (13).

To guarantee a solution to the IVBVP (10)–(13), we assume that f (x) is
sectionally smooth on [0, a], i.e. f has at most a finite number of
removable jumps, discontinuities, and corners, with the function and its
derivatives being continuous between such points.
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IVBVP Solution

To solve (10)–(13), one can use the standard technique of
separation of variables.

One finds that

h(x , t) = H1 +
∞∑
n=1

bn cos

(
(2n − 1)π

2a
x

)
e−( (2n−1)π

2a
)2kt , (14)

where

bn =
2

a

∫ a

0
(f (x)− H1) cos

(
(2n − 1)π

2a
x

)
dx . (15)
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Testing Our Model

To check our model, we use Mathematica to compare head
level data for each well (left, middle, and right) collected from
the sand tank to our model (14), (15), after specifying model
parameters and initial data.
The length of the aquifer is a = 23.75 in, head level at the
right boundary when x = a is measured to be

H1 = 9.6875 in, (16)

and since initial head levels at each well are 1.02919 in,
1.16587 in, and 1.39256 in, at the left, middle, and right
wells, respectively, we choose the initial head level to be

f (x) ≡ H0 =
1.02919 + 1.16587 + 1.39256

3
= 1.19587 in, (17)

for 0 < x < a.
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Model Coefficients

With this choice of initial condition (17), the bn coefficients in
(14) are found with (15) to be

bn =
2

a

∫ a

0
(H0 − H1) cos

(
(2n − 1)π

2a
x

)
dx

=
4(−1)n(H1 − H0)

π(2n − 1)
(18)

Computing coefficients bn via (18), with (16) and (17) and
setting t = 0 in (14), we can determine an appropriate
number of terms in the sum in equation (14) for our model.

Using graphical, RMSE, and square error comparisons, we find
that a partial sum with 50 terms in our model should be
sufficient.
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Model Coefficients and Parameters

Figure 6 compares our model at
time t = 0 sec, h(x , 0), to the
initial head level f (x) on the
interval 0 < x < a.

For the hydraulic diffusivity k,
since we don’t know specifically
what type of sand is in the
aquifer, we choose a value for k
to get a good graphical match
between model and data, followed
by an application of
Mathematica’s FindMinimum
command to minimize RMSE.

We also compute RMSE between
model and measured data for
m = 1 to 100 terms in the model
to see how different numbers of
terms impact the choice of k and
resulting error.

5 10 15 20
x (in)

2

4

6

8

10

h (in)
Initial Head Level

h(x,0)

f(x)

Figure 6: Initial Head Level.

22 / 38



Introduction A Model for Our Sand Tank Testing Our Model “Real-World” Application Conclusion References

Model Coefficients and Parameters

Figure 6 compares our model at
time t = 0 sec, h(x , 0), to the
initial head level f (x) on the
interval 0 < x < a.

For the hydraulic diffusivity k,
since we don’t know specifically
what type of sand is in the
aquifer, we choose a value for k
to get a good graphical match
between model and data, followed
by an application of
Mathematica’s FindMinimum
command to minimize RMSE.

We also compute RMSE between
model and measured data for
m = 1 to 100 terms in the model
to see how different numbers of
terms impact the choice of k and
resulting error.

5 10 15 20
x (in)

2

4

6

8

10

h (in)
Initial Head Level

h(x,0)

f(x)

Figure 6: Initial Head Level.

22 / 38



Introduction A Model for Our Sand Tank Testing Our Model “Real-World” Application Conclusion References

Model Coefficients and Parameters

Figure 6 compares our model at
time t = 0 sec, h(x , 0), to the
initial head level f (x) on the
interval 0 < x < a.

For the hydraulic diffusivity k,
since we don’t know specifically
what type of sand is in the
aquifer, we choose a value for k
to get a good graphical match
between model and data, followed
by an application of
Mathematica’s FindMinimum
command to minimize RMSE.

We also compute RMSE between
model and measured data for
m = 1 to 100 terms in the model
to see how different numbers of
terms impact the choice of k and
resulting error.

5 10 15 20
x (in)

2

4

6

8

10

h (in)
Initial Head Level

h(x,0)

f(x)

Figure 6: Initial Head Level.

22 / 38



Introduction A Model for Our Sand Tank Testing Our Model “Real-World” Application Conclusion References

Model Coefficients and Parameters

Figure 6 compares our model at
time t = 0 sec, h(x , 0), to the
initial head level f (x) on the
interval 0 < x < a.

For the hydraulic diffusivity k,
since we don’t know specifically
what type of sand is in the
aquifer, we choose a value for k
to get a good graphical match
between model and data, followed
by an application of
Mathematica’s FindMinimum
command to minimize RMSE.

We also compute RMSE between
model and measured data for
m = 1 to 100 terms in the model
to see how different numbers of
terms impact the choice of k and
resulting error.

5 10 15 20
x (in)

2

4

6

8

10

h (in)
Initial Head Level

h(x,0)

f(x)

Figure 6: Initial Head Level.

22 / 38



Introduction A Model for Our Sand Tank Testing Our Model “Real-World” Application Conclusion References

Comparison of Model to Measured Data

What we find is that the resulting
RMSE and choice of k are
essentially the same for most
choices of m, with the smallest
error occuring with m = 11.

For this reason, we choose
m = 11 terms for our model.

Figure 7 shows that with
k = 3.01356 in2/sec and an
RMSE of 0.451039 inches, our
model overestimates head level at
the right well and underestimates
the head level at the left well.
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Model vs. Measured Data

Left Model
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Middle Data

Right Data

Figure 7: Comparison of Model to
Measured Data.

23 / 38



Introduction A Model for Our Sand Tank Testing Our Model “Real-World” Application Conclusion References

Comparison of Model to Measured Data

What we find is that the resulting
RMSE and choice of k are
essentially the same for most
choices of m, with the smallest
error occuring with m = 11.

For this reason, we choose
m = 11 terms for our model.

Figure 7 shows that with
k = 3.01356 in2/sec and an
RMSE of 0.451039 inches, our
model overestimates head level at
the right well and underestimates
the head level at the left well.

0 10 20 30 40 50 60
t (sec)

2

4

6

8

10

h (in)
Model vs. Measured Data

Left Model

Middle Model

Right Model

Left Data

Middle Data

Right Data

Figure 7: Comparison of Model to
Measured Data.

23 / 38



Introduction A Model for Our Sand Tank Testing Our Model “Real-World” Application Conclusion References

Comparison of Model to Measured Data

What we find is that the resulting
RMSE and choice of k are
essentially the same for most
choices of m, with the smallest
error occuring with m = 11.

For this reason, we choose
m = 11 terms for our model.

Figure 7 shows that with
k = 3.01356 in2/sec and an
RMSE of 0.451039 inches, our
model overestimates head level at
the right well and underestimates
the head level at the left well.

0 10 20 30 40 50 60
t (sec)

2

4

6

8

10

h (in)
Model vs. Measured Data

Left Model

Middle Model

Right Model

Left Data

Middle Data

Right Data

Figure 7: Comparison of Model to
Measured Data.

23 / 38



Introduction A Model for Our Sand Tank Testing Our Model “Real-World” Application Conclusion References

First Revision: Variable Head Level at Right Boundary

One way to take into
consideration the discrepancy
between the model and measured
data at the right well is to treat
fixed head level H1 at x = a, as
an unknown parameter to be
determined.

Again, starting with choices of k
and H1 to get a good graphical
fit, followed by an application of
Mathematica’s FindMinimum
command, we obtain an RMSE of
0.297491 in with k = 3.81486
in2/sec and H1 = 8.53077 in.

It is clear from Figure 8 that we
get a much better fit for the right
well, about the same for the
middle well, but still not a great
match at the left well.
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Figure 8: First Revision: Variable Head
Level at Right Boundary.
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determined.

Again, starting with choices of k
and H1 to get a good graphical
fit, followed by an application of
Mathematica’s FindMinimum
command, we obtain an RMSE of
0.297491 in with k = 3.81486
in2/sec and H1 = 8.53077 in.

It is clear from Figure 8 that we
get a much better fit for the right
well, about the same for the
middle well, but still not a great
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Second Revision: Variable Head Level at Right Boundary
and Variable Initial Head Level

To see if we can get a better fit
at the left well, we make another
model revision by also treating
the initial head level as another
unknown parameter H0 to be
determined along with parameters
k and H1 to minimize RMSE.

Figure 9 shows that with
k = 3.13721 in2/sec,
H1 = 8.69686 in, H0 = 1.81506
in, we get much better match at
all three wells.

For this revision, RMSE is
reduced to 0.196507 in.

0 10 20 30 40 50 60
t (sec)

2

4

6

8

h (in)
Second Revision - Model vs. Measured Data

Left Model

Middle Model

Right Model

Left Data

Middle Data

Right Data

Figure 9: Second Revision: Variable Head
Level at Right Boundary and Variable
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Third Revision: Variable Head Level at Right Boundary,
Variable Initial Head Level, and Recharge Term

Finally, to see if we can reduce the RMSE, we revise our model a third
time to include a recharge term.

This amounts to incorporating a new steady-state and revised coefficients
in our solution, with (14) and (15) revised as follows

h(x , t) =
a2R + 2H1K − Rx2

2K
+

∞∑
n=1

bn cos

(
(2n − 1)π

2a
x

)
e−(

(2n−1)π
2a

)2kt , (19)

with

bn =
2

a

∫ a

0

(
H0 −

a2R + 2H1K − Rx2

2K

)
cos

(
(2n − 1)π

2a
x

)
dx

=
2(−1)n

(
8a2R + 2K(π − 2πn)2(H1 − H0)

)
π3K(2n − 1)3

(20)
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Third Revision: Variable Head Level at Right Boundary,
Variable Initial Head Level, and Recharge Term

With this model revision, we get
essentially the same results as our
second revision, with k = 2.80571
in2/sec, H1 = 8.68895 in,
H0 = 1.84571 in,
R = 0.000740298 sec−1,
K = 0.300134 in/sec and an
RMSE of 0.192617 in.

Figure 10 reinforces this, as the
graphs are nearly indistinguishable
from those in Figure 9.
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Figure 10: Third Revision: Variable Head
Level at Right Boundary, Variable Initial
Head Level, and Recharge Term.
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A “Real-World” Application

From our model comparison to measured data results, it is clear that the heat
equation can be used to model groundwater flow through an aquifer.

As a final test of our model (we will use the second revision), consider the
following “real-world” situation.

Suppose the groundwater in our sand tank aquifer is contaminated at time
t = 0 sec and we have a concern that it may impact three wells drilled for
drinking water.

The wells are located at positions in the aquifer corresponding to approximately
x = 4.1 in, x = 11.2 in, and x = 19.1 in.

The wells draw groundwater from an approximate head level of 4.4 in.

Using our model, we can answer the following questions:

1 Does the groundwater reach any of these wells?
2 If so, estimate the time at which the groundwater reaches these wells.

3 How do these model time estimates, if any, compare to the actual time

needed for the contaminated groundwater to reach the drinking wells?
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A “Real-World” Application

Plotting our model head levels at
each drinking well location, we see
from Figure 11 that the model
predicts that the contaminated
groundwater will reach the left,
middle, and right drinking wells at
approximately t = 48 sec, t = 30
sec, and t = 4 sec, respectively.

Using Mathematica’s FindRoot
command with our model, we can
get more accurate numerical
estimates for these times, namely
t = 49.1323 sec, t = 30.4799 sec,
and t = 4.39004 sec, at the left,
middle, and right drinking water
wells, respectively.
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Figure 11: Comparing Model to Drinking
Well Head Level.
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A “Real-World” Application

We can then check with Tracker
to see when the the groundwater
actually reaches a head level of 4.4
in for each drinking water well.

What we find is that the actual
times are approximately t = 63.514
sec, t = 33.984 sec, and t = 7.291
sec, respectively.
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Conclusion

Using a Sand Tank Groundwater Model for an aquifer and
collecting head level data via a video camera and Tracker, we
have been able to show that the one-dimensional groundwater
flow equation can be used to model the head levels in the
aquifer for the case when there is a fixed head level at one
boundary and a no flow condition at the other boundary.

The results obtained are surprisingly good (to us), especially
considering the fact that the aquifer we worked with does not
have uniform material throughout.
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Further Questions

Regarding the “real-world” question, we did notice that at each drinking water
well, the actual times at which the well head level of 4.4 inches is reached in the
aquifer are consistently greater than the times predicted by the model.

Looking at the Sand Tank Groundwater Model, the material at the bottom of
the aquifer is different than the material at the level where the groundwater
enters the drinking water wells.

Our model assumes that the aquifer material is homogenous throughout, so a
natural question that could be considered in future investigations is “can we
modify our model to take into consideration different materials in the aquifer at
different levels?”

Another question to consider is, “perhaps our model needs to be modified to
consider groundwater flow in more than one direction, perhaps there is both
horizontal and vertical movement of the groundwater through the aquifer.”

This would lead to a much more complicated model that is beyond the scope of
this investigation.
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Implications for Public Policy

As pointed out in the Environmental Protection Agency’s Handbook of
Groundwater Protection and Cleanup Policies for RCRA Corrective Action,
which “is designed to help ... a regulator, member of the regulated community,
or member of the public find and understand EPA policies on protecting and
cleaning up groundwater at Resource Conservation and Recovery Act (RCRA)
corrective action facilities”, such as Indiana’s Department of Environmental
Management,

“[g]roundwater supplies drinking water to half of the nation and virtually all
people living in rural areas [and] ... supports many billions of dollars worth of
food production and industrial activity.”

For this reason, it is crucial that policy makers are convinced that the
mathematical models used to help investigate and conduct cleanup of sites with
contaminated groundwater are valid.

Projects such as the one outlined in this paper can be used for this purpose.
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