Problem C: Dog Cannot Catch A solution

Team 1049 (Ming Gong, Anthony Chang, Paul Rose) Bard College at Simon's Rock

Outline

In this presentation, we will:

- Define the problem,
- Explain the assumptions,
- Create a model,
- Analyze the model,
- Explore limitations and future work.

Problem

- Make a model for Fritz's jaw movement,
- Track Fritz's jaw movement in the video to estimate constants,
- Model the errors in head orientation and path prediction,
- Estimate the effect of the initial throw, object size, and air resistance,
- Summarize the result and analyze the important factors.

Error Sources

Three main factors of failures:

- Parabola miscalculation,
- Mouth mistiming,
- Tricky shape/orientation.

- Took a different approach from many other teams
- Focused on mouth movement and observational error rather than body movement errors

Preliminary Assumptions

- The mouth is circular; the object is spherical.
- The mouth and the object are rigid.
- The dog moves to the correct left-right position and longitudinal orientation before the catch (2D systems).
- In the catching phase, the body is stationary.
- The dog only tracks motion with its eyes (not nose scent, etc.)
- The eyes accurately track the position/velocity of the object.
- The dog loses sight of the food once it opens its mouth.
- The dog has good sense of its mouth mechanics.
- The dog makes only one catching attempt.

ANALYSIS 000000000

Model Framework

For the mouth to successfully catch the object,

 $R < r(t)\cos(\Delta\theta) - \Delta x$,

where

- R: object radius,
- r(t): mouth radius at time t,
- $\Delta \theta$: orientation error,
- Δx : positional error.

Coordinate System

- At the time of the catch, the dog's cheek is at y = 0.
- The object is thrown at position $(0, y_0)$ and velocity (x'_0, y'_0) .
- The mouth opening diameter (2r) is at the nose.
- The distance from nose/chin to cheek is l = 6.5 cm.

Time axis

- Three times,
- Need to solve the effective mouth radius $r(t_b)$.

 ANALYSIS 000000000

Mouth Mechanics Model

• Assumed to be a damped harmonic oscillator:

 $I\theta'' + C\theta' + K\theta = \tau.$

• Convert to a force model:

$$mr'' + cr' + kr = F.$$

• *e*st substitution for homogeneous solution:

$$ms^{2} + cs + k = 0$$
$$s = \frac{-c \pm \sqrt{c^{2} - 4mk}}{2m}.$$

Mouth Mechanics Model

• $c^2 > 4mk$ for overdamped mode.

$$r_h(t) = Ae^{s_+t} + Be^{s_-t}.$$

- Particular solution: $r_p(t) = \frac{F}{k}$.
- Total solution:

$$r(t) = \frac{F}{k} + Ae^{s_+t} + Be^{s_-t}.$$

- However, F(t) is actually a square bump.
- Can solve this ODE with opening and closing force values.

FRAMEWORK 0000 ANALYSIS 00000000

Mouth Mechanics Model

• Suppose the dog's input force switches from *F*₁ to *F*₂ at time *T*. *r*(*T*) and *r'*(*T*) for the *F*₁ solution can be used as initial conditions for the *F*₂ solution.

$$r(t) = \begin{cases} \frac{F_1}{k} + A_1 e^{S_+ t} + B_1 e^{s_- t} & \text{if } t_1 \leq t < t_1 + T \\ \frac{F_2}{k} + A_2 e^{S_+ t} + B_2 e^{s_- t} & \text{if } t \geq t_1 + T. \end{cases}$$

- F_1 initial condition: r(0) = 0, r'(0) = 0.
- Now, need to find values for the constants *m*, *c*, *k*, *F*₁, and *F*₂.

INTRODUCTION	FRAMEWORK	MODEL	ANALYSIS	Experience
000	0000	00000000000000	000000000	000000000

INTRODUCTION

FRAMEWORK 0000 ANALYSIS 00000000 Experience 000000000

INTRODUCTION	FRAMEWORK	MODEL	ANALYSIS	Experience
000	0000	00000000000000000	000000000	000000000

- Constants: m = 0.26 kg, k = 400 N/m, c = 21.5 kg/s.
- Force function: $F(t) = 32 \text{ N} \cdot H(t t_1) 33 \text{ N} \cdot H(t(t_1 + 0.3 \text{ s}))$.

Timing Limit

Want mouth to close when the object reaches cheek.

•
$$t_c = t_a + T_{chomp}$$
,
• $t_b \approx t_c - \frac{l}{\sqrt{(x'_c)^2 + (y'_c)^2}}$.
• Let $T_{chomp} = 0.45 \text{ s}$,
• $l = 6.5 \text{ cm}$.

Assume the speeds at t_b and t_c are close.

Faster objects are harder to catch.

Tangent Line Approximation

- Lack of reference, straight line approximation,
- Observe the current y and y' to decide t_a ,
- Opens $T_{chomp} = 0.45$ s before it thinks the object will reach its cheek (y = 0).
- Solve for t_a :

$$O - y = y' \cdot T_{chomp}$$
$$-y_{\circ} - y'_{\circ} t_{a} + \frac{1}{2}gt_{a}^{2} = (y'_{\circ} - gt_{a})T_{chomp}$$
$$t_{a} = \frac{(y'_{\circ} - gT_{chomp}) + \sqrt{(y'_{\circ} - gT_{chomp})^{2} - 2g(y_{\circ} + T_{chomp}y'_{\circ})}}{g}$$

Tangent Line Approximation

- Fritz assumes the object will continue in a straight line beyond *t_a*,
- t_{c1} : Dog's time estimation,
- t_a , t_{b2} , t_{c2} : Actual time.

Positional Error

Calculate the variables of the two paths:

Dog's perception—linear drop:

- $t_{c1} = t_a + T_{chomp} = \text{linear drop time}$,
- $x'_{c1} = x'_{o}$ (ignore air resistance for now),

•
$$y'_{c_1} = y'_a = y'_o - gt_a$$
.

Actual—parabolic drop:

•
$$t_{c2} = \frac{y'_o + \sqrt{{y'_o}^2 + 2gy_o}}{g} = \text{parabolic drop time},$$

• $x'_{c2} = x'_o$,

• $y'_{c2} = y'_{o} - gt_{c2}$.

where θ_1 = perceived latitudinal angle.

 ANALYSIS 000000000

Orientation Error

- Quantify how the dog's misestimation of head orientation affects catching outcome,
- Focus on latitudinal error $\Delta \theta$,
- Projection of Mouth width r onto normal of trajectory gives width food has to pass through.

 $r_{eff} = r\cos(\Delta\theta).$

Orientation Error

Δ

• Affected by the parabola misestimation:

$$egin{aligned} & \theta = heta_2 - heta_1 \ & = rctan\left(rac{y'_{b2}}{x'_{b2}}
ight) - rctan\left(rac{y'_{b1}}{x'_{b1}}
ight) \ & pprox rctan\left(rac{y'_{c2}}{x'_{c2}}
ight) - rctan\left(rac{y'_{c1}}{x'_{c1}}
ight), \end{aligned}$$

where

 $\theta_1 =$ latitudinal angle in dog's perception, $\theta_2 =$ actual latitudinal angle.

Model Summary

Under all errors, is the effective mouth opening big enough to catch the object?

$$R_{max} = r(t_{b2})\cos(\Delta\theta) - a_x \Delta x,$$

where a_x is a learning factor.

- Variables: y_0, y'_0, x'_0, a_x ,
- Analyze R_{max} as a function of the variables,
- Default configuration: $y_{\circ} = 1.2 \text{ m}, y'_{\circ} = 2 \text{ m/s}, x'_{\circ} = 2 \text{ m/s}, a_x = 0.25,$
- Object is spherical, no air resistance.

Initial Velocity

To make Fritz look bad:

- High x speed (parabola misestimation),
- Low y speed (parabola misestimation),
- High y speed (mouth mechanics).

Initial Height

- Translates to y'_{\circ} .
- Graph is with a 45-degree throw angle.

Experience

Experience

Fix x'_{\circ} at 2 m/s.

- Parabola misestimation (low y-speed),
- Mouth mechanics issue (high y-speed).

Air Resistance

$$F_{drag}=\frac{1}{2}\rho Ac_dv^2.$$

Solve differential equations:

$$\begin{cases} mx'' = -cx'|x'| \\ my'' = -mg - cy'|y'|, \end{cases}$$

where $c = \frac{1}{2}\rho A c_d =$

- 2.15×10^{-4} kg/m for meatball,
- 5.94×10^{-3} kg/m for fried egg,
- 0.01×10^{-2} kg/m for noodle.

Air Resistance

Beneficial!

- y-axis: terminal velocity and linear approximation,
- *x*-axis: slight error.

Non-spherical Shapes

- If the object is non-spherical, the dog must predict its rotation and twist its head.
- If the object is rigid, it has to be caught by the center of mass.
- If the object is deformable, the dog can catch the edge and hold on.

Critial Factors

Tricky throw + clumsy Fritz,

- Initial throw speed (especially horizontal),
- Object size,
- The dog's experience.

Summary

$R < r(t)\cos(\Delta heta) - \Delta x$					
	(Mouth timing	∫ Initial throw			
	Mouth thing	Mouth mechanics limitation			
Success		Initial throw			
(Is the mouth	Position error	Experience			
wide enough to		Air resistance			
fit the object?)		(Object size			
	Angle alignment	{ Object shape			
	l	Object rotation			

Model Limitations

In the model:

- The dog can move to the intended *x*-position-Did not account for the body dynamics.
- Position and velocity are correctly perceived when the dog can see the food.
- Object is spherical, so rotation in flight wasn't modeled.
- The food is rigid enough that if it hits the dog's lips, the catch will fail due to bouncing.

Reflection on Feedback

- Needs more context and specify the problem more clearly;
- Order of topics;
- Data presentation.

Unused Complexities

- We had many ideas for how to model this situation
- Had to use a framework simple enough to be developed fully in reasonable time
- Narrowed the scope of the model to fit in the video and our schedules

Visual Limitation

- Fritz estimates distance based on object's length in its eyes *l*.
- Let *y* be the actual distance.

$$l = \frac{A}{y}$$
$$dl = -\frac{A}{y^2} dy$$
$$dy = -\frac{1}{A} dl y^2$$
$$dy \propto y^2$$

• The farther the distance, the greater the error.

Inverse ODE for Jaw Movement

- The DHO model of the dog's mouth does not take into account the anatomical limit to how wide the jaw can open.
- This can be amended with an ODE with an inverse:

$$mr'' = \frac{k}{(r - r_{max})^n}$$

- With this ODE, the resisting force could be very low until the mouth reaches its maximum width r_{max}
- Possibly more accurate than DHO model across many driving forces
- However, solving this ODE analytically took too much time
- DHO solution matched dog's mouth movement well enough

Data Collection

- We used an AI to gather data
- The AI struggled to gather data
- We should have just used Tracker Video Analysis

Future Work

- Determine what factors still cause error once the dog learns to predict parabolas correctly,
- Account for odd shapes by modeling rotation and the need to catch the center of mass
- Introduce stochastic errors into the ODE to give the catching probability given different throws and learning levels
- This would simulate random errors inherent in any living organism

Alternative approaches from other teams

- Simulate the dog's body dynamics;
- AI-trained dog to model learning;
- Calculate the optimal standing point given a random initial

Works Cited I

Sizing instructions for dog collars.

DTDogCollars Website.

https://www.dtdogcollars.com/ Sizing-Instructions-for-Muzzles-Harness-Collars-Leashes-s/ 192.htm.

📔 Fritz Dog.

Fritz learns to catch compilation 1, 2015.

Fritz Dog.

Fritz learns to catch compilation 2, 2015.

Works Cited II

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei.

ImageNet Dogs.

http://vision.stanford.edu/aditya86/ImageNetDogs/, 2011.

P. C. Sereno.

Taxonomy, morphology, masticatory function and phylogeny of heterodontosaurid dinosaurs.

ZooKeys, 226:1–225, 2012.