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Abstract

Formulating a versatile population growth model affords
an opportunity to survey some of the important concepts that
are presented during a first course in ordinary differential equa-
tions. While the full model is nonlinear with respect to the
dependent variable, it can be solved explicitly, yielding an im-
plicit representation of the solution using the separation of
variables method, which suggests that an analysis of the long
term behavior of all solutions might be challenging. Fortu-
nately, the fact that there are three equilibrium solutions of-
fers a gateway to the geometrical theory of differential equa-
tions: the phase line, the stability of the equilibria, and the
long term behavior of the entire family of solutions. For many
students, this experience offers a compelling answer to their
query concerning the utility of calculus itself.
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Curriculum and course syllabus

Objectives: The principal course objectives are to provide an intro-
duction to the techniques used for the solution of elementary differ-
ential equations and the qualitative analysis of their solutions. Fur-
thermore, a primary goal is to offer a research experience which
conveys the essentials of mathematical research, at least at an el-
ementary level. The traditional first year calculus sequence (MAT
151-MAT 152) serves as the course prerequisite.



Curriculum and course syllabus

Learning Outcome: At the end of the semester you should be able
to: 1) Classify a differential equation according to its type and or-
der; 2) Solve elementary (ordinary) first order and (ordinary) linear
second order initial value problems; 3) Analyze the phase plane
behavior of the solution set of a (non-linear) differential equation.
Considerations will include the location of equilibrium and periodic
solutions as well as describing the long term behavior of solutions;
4) Relate the behavior of a mathematical model to real time situa-
tions; and 5) Formulate and analyze a simple research problem.
A detailed report describing the research, pertinent conclusions,
and next steps will be the outcome of the process. Performing a
related literature search and the development of a bibliography
are expected components of the report.



Model Building 1: The Malthusian Law

dp _

i
The Malthusian law is based upon the asumption that the growth
rate of an isolated population is proportional to the instantaneous
population. The principal assumption is that the population is iso-
lated and there is an unlimited supply of resources necessary to
sustain it. This also introduces the first Linear Homogeneous Equa-
tion in the course and

rp

e Integrating Factor
e General Solutions

e Solutions of the Initial Value Problem



e Linear Homogeneous Equation
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The solution as presented in Equation (4) is the general solution.



As we shall see, the initial value problem is an important concept
within the context of ordinary differential equations. Given an initial
state of a realizable system, the objective is to determine the evolu-
tion of the system for future time. Several possibilities are possible.
The system may exist for all future time or it may cease to exist af-
ter some finite time interval. Such behavior is dependent upon the
natural laws being used to formulate the model.



Model Building 2: The Logistic Law

The Logistic Law incorporates an additional factor that takes into
account the possibility that a population will eventually outgrow its
resources and no longer be sustainable. An additional linear factor

(¢ — dp), where constants ¢ > 0, d > 0, so that a new equation

d

p = —
a rp(c — dp), (6)

to help account for this possibility. Indeed, for small values of p
the linear factor is positive but once p > 2 thene —dp < O
and the growth rate of the population becomes negative. In other
words, once p > cEl the right hand side of the differential equation
is negative and thus the population begins to decrease.



Model Building 3: Critical Thresholds

If a population is too small for there to be sufficient procreation, then
it will eventually die out. Large predators are an example of this
phenomenon. Unless the population exceeds a critical threshold
for there to be sufficient social encounters, the population is not
viable. Another linear factor can be added to the right hand side of
the differential equation to account for this possibility, specifically,

a—bp,a>0,b>0

where
a C
b~ d
Thus, the resulting differential equation is
dp
—- = —p(a — bp)(c — dp). (7

dt



The model now has the desired properties. If p < %, then the
right hand side is negative since all three factors are positive and
the population decreases. When % <p< (—ci the right hand side
is positive since the first and third factors are positive but the a§ec-
ond one is negative. Thus, the population increases when 3 <

p < 2 Finally, if p > 2 then the first factor is positive whereas
the other two are negative implying that the right hand side is neg-
ative. Therefore, the population decreases as it should once the
maximum sustainable population is exceeded.



Separation of Variables

The models above also provide examples for the Separation of Vari-
ables approach.

Such is the case for the population growth model. In particular, the
differential equation may be rewritten as

dp p p)
— =—kp(1—=)(1-= 8
dt p ( v) ( S &
where
a C
k=ac, V=—,and S = —.
b d
Dividing both sides of Equation (8) by the terms on the right hand

side finally gives
1 dp
p(1-3)(1-%§dt

—k. )



Now the left hand side only depends upon p and the right hand side
only depends upon t. In other words, the differential equation takes
the form

)P = gt

and if p is assumed to be an implicit function of ¢, then an implicit
solution may be obtained by integrating each side with respect to ¢,

i.e.
/f(p)% dt = /g(t) dt.

Anti-differentiation yields an implicit solution

F(p) = G(t) + C, where F'(t) = f(t), G'(t) = g(t).



Power Series Solutions

If the coefficients of p and its derivative are complicated functions
of the independent variable ¢, a closed form representation of the
solution y(t) may be of little value for analyzing its long term behav-
ior as t — oo nor for obtaining numerical approximations. Power
series methods are sometime a first attempt to produce numerical
approximations to otherwise unwieldly expressions for y(t).

p(t) =) axt" (10)
k=0
so that

P(t) =) kapt' ' = > (k+ Darth = (k+ Lapt".
k=0 k=—1 k=0
(11)
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Once an initial condition is given, say p(0) = 1, it is then possible
to recursively generate the coefficients of the power series. The
initial condition implies ag = 1. Subsequently,
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Putting everything together, we see that the power series represen-
tation for the solution p(¢) is
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Equilibria

The population growth model has three distinguished solutions, namely,
p=0,p=Vandp=S.

These three constant solutions or equilibrium solutions as they are
called, play a signficant role in understanding the behavior of the
solutions of the population growth model and

e Stable vs Unstable Equilibrium

e Sink vs Source vs Node



The Phase Line

The stability properties of the three equilibria are evident if several
solutions are plotted on the p-axis using the information that we
have about the sign of p’(¢). The p-axis is known as the phase
line. Furthermore, given any differential equation of the form

dp

E - f(p)a
where f(p) is differentiable, the second derivative of a solution p(t)
may be found from the relationship

d?p ,

2z = T (). (14)
Consequently, it is possible to obtain a plot of the solutions in the
tp-plain using the information afforded by the phase line and the

sign of p”(t).



The preceeding analysis of the long term behavior of the solutions
of the population growth model is typical of the geometric thoery
of differential equations which was developed by Henri Poincare
during the latter half of the nineteenth century. Its utility derives from
its capability to determine the long term behavior of a differential
equation’s solutions without having explicit analytical expressions
for them which is often the case.



Linearization

If a nonlinear autonomous differential equation has several equilib-
ria, it can be a challenge to determine the local behavior of the so-
lutions near each one not withstanding the availability of a closed
form representation of the global solution, especially when one
extends the analysis to higher dimensions. Another approach
is to analyze the linearized differential equation near each of the
equilibria and then endeavor to deduce the global behavior of the
solutions from the composite local behaviors. To be specific, we
consider the nonlinear autonomous equation-a special case of (6)
dp

- =p(p—1). 15)

There are two equilibria, p = 0 and p = 1.



The linearizationatp = 0 is

v

d | -
2 — _p, with the phase line as shown right, ? p=0sink

dt i




Linearization of the differential equation near the equilibriump = 1
withu =p —1is

d
d_itl/ = u, with the phase line, 7




Combining both local behaviors on the entire phase line produces
the phase portrait shown below




Bifurcaton

Lastly, we consider the situation when the right hand side of an
autonomous differential equation also depends upon a parameter.
Specifically, we generalize Equation (15) to include a real parame-
ter p-another special case of (6)

d

p — —_
== p(p — p). (18)

There are three cases to consider, © > 0, u = 0, and p < 0.



1. >0
When p > 0 there are two critical points, namely, p = 0 and
p = wp. The same linearization analysis that was applied to
Equation (15) demonstrates that p = p is a source whereas
p = 0 is a sink. The phase line is depicted in Figure 4.




2. u=0
In this case, the differential equation takes the form
dp 9
— = p2. 19
at P (19)
Now there is only one equilibrium, p = 0. However, the lin-
earized differential equation is degenerate, that is,

dp

— =0 20
dt (20)
and there are only constant solutions p(t) = p(0) = pe. The
right hand side of the nonlinear Equation (19) is positive so
that solutions are always increasing. Thus, p = 0 is a node

and the phase line is as illustrated in Figure 5.






3. un<o0
For convenience, we set © = —o so that & > 0 and the
differential equation (18) becomes

dp
— =p(p+o) =p*+op. (21)
dt

Plainly, there are two critical points, p = 0 and p = —o. At

p = 0, the linearized differential equation is

dp_

— 22
o op (22)

which implies that p = 0 is a source cf. Figure below,



The linearized differential equation at p = —o is found by first
obtaining the Taylor series expansion of the right hand side
of Equation (21) G(p) about p = —o so that the linearized
differential equation is

du

. = —ou, o >0 (23)

from which it follows that © = 0 is a sink or equivalently,



p = —o = pu < 0is asink. The combined phase portrait is
presented in Figure below

And the bifurcation diagram having u as the horizontal axis is
given below:






Thanks for your attention!




Appendix A - Solving Equation (9)

The solution of the population growth model differential equation
1 dp
p(1—2)(1-2) dt
is achieved by using the separation of variables technique. Anti-
differentiate of the left hand side requires the use of the separation
of variables technique, that is, we let

1 A B C
PA-B)(1-3) 7 1-3p) (-
where A , B ,and C are constants to be determined. Combining
the terms on the right hand side into a single fraction yields
1
p(1-%)(1-%)

= —k




A(1-3p) (1——p)+Bp(1——p)+Cp(1——p)
p(1-%)(1-5%)

Expanding the numerator of the right hand side gives
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and then equating coefficients of like powers of p affords a system




of equations for the constants A, B and, C,

A =1

1 1
—( +—)A+ B+ C=0,

v 's
1 1 1
—~ A - B — —C =0
VS S %

Using the fact that A = 1, the former system is equivalent to the
reduced system

1 1
~(y+s) + B+ C =0



that is,
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Similarly,

; 1+1
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Putting everything together, we finally have the desired partial frac-
tion expansion
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If p = p(t), then anti-differentiation of the right hand side yields
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Finally, the laws of logarithms imply

p\—(=V/9) p\ —A=5/V)
1 In(1-—— In(1-—= = —kt
npn ( V) o ( S)
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) (1 - %)(g_l) (1 B g)(i—l) g

Please note that solving for p explicitly in terms of ¢ is out of reach.
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e p = 0sink



The linearizationatp = 0 is

v

d _ .
P = —p, with the phase line as shown right, ¢ p=0sink

dt o




