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Anatomy of a Neuron

• Cell Body (Soma): The cell body, or soma, is the central part of the neuron that contains the 
nucleus and other organelles. It is responsible for the basic life processes of the cell.

• Dendrites: Dendrites are branched extensions protruding from the cell body. They receive 
signals from other neurons or sensory receptors and transmit these signals toward the cell 
body.

• Axon: The axon is a long, slender projection that extends from the cell body. It conducts 
electrical impulses away from the cell body toward other neurons, muscles, or glands.

• Axon Terminals (Axon Endings): The axon terminals are small branches at the end of the axon 
that form synapses with other neurons, muscles, or glands. They release neurotransmitters to 
transmit signals to the next cell.

• Synapse: A synapse is a junction or connection between the axon terminals of one neuron 
and the dendrites or cell body of another neuron. It is the site where information is 
transferred from one neuron to another.

• Neurotransmitters: Neurotransmitters are chemical messengers that transmit signals across 
the synapse. They are released from vesicles in the axon terminals and bind to receptors on 
the receiving neuron, initiating a response.



Electrical and Chemical 
Transmission

• Neurons communicate with each other through a 
combination of electrical and chemical signals.

• The transmission of signals within neurons is 
primarily electrical, while the communication 
between neurons occurs through chemical 
transmission at synapses.

The combination of electrical and chemical signals allows for the transmission of information within neurons and between 
neurons in complex neural networks, enabling various functions of the nervous system, including sensory processing, motor 
control, and cognitive processes.



The Action Potential, 
a Rapid Change in 
Membrane Potential

• The action potential is a 
rapid and transient change 
in the membrane potential 
of a neuron, essential for 
the transmission of 
electrical signals along the 
length of the neuron. 

• It is a key mechanism in the 
communication within the 
nervous system. 



❑As an action potential travels down the axon, there is a change in polarity across 
the membrane. 

❑The Na+ and K+ gated ion channels open and close as the membrane reaches the threshold 
potential, in response to a signal from another neuron. 

❑This creates a change in polarity between the outside of the cell and the inside. 
❑The impulse travels down the axon in one direction only, to the axon terminal where it 

signals other neurons.



Transforming Neural impulse from one neuron to another one

At the beginning of the action 
potential, the Na+ channels 
open and Na+ moves into the 
axon, causing depolarization.

Repolarization occurs when the 
K+ channels open and K+ moves 
out of the axon. 



Example of a propagating action 
potential (high voltage in red, 
low voltage in blue) in the 
dendritic.



➢Neurons communicate by generating 
action potentials (potential difference 
through their cell membranes), which 
propagate along the axon towards the 
synapses of other cells. 

➢There exist various models, based on 
systems of ordinary differential equations, 
describing the dynamics of action-
potential generation: The Hodgkin-Huxley 
equations, the FitzHugh-Nagumo 
equations, the Morris-Lecar equations, 
etc.
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The Morris-Lecar 
Model 

• The Morris-Lecar model 
combines the relative simplicity 
of the FitzHugh-Nagumo Model 
with the biological detail of the 
Hodgkin-Huxley model.



➢ The Morris-Lecar model describes neurons 
as circuits with Ca and K voltage gated ion 
channels and a leak. 

➢Calcium and potassium channels were used 
because Morris and Lecar found that the 
barnacle muscle fiber's production of 
oscillatory behavior depended on external 
calcium concentration and potassium 
conductance.

➢ In our body, neurons are in a salt solution, 
so there are charged ions, in particular K 
and Ca ions, that generate electrical 
potentials and move in response to 
potentials.

➢When ions move through cell membranes, 
currents are produced as a result. Thus, we 
can think of neurons as circuits.



➢One of the simplest models for the production of action potentials is a model 
proposed by Kathleen Morris and Harold Lecar. 

➢The model has three channels: a potassium channel, a leak, and a calcium channel.



Biological Parameters of the M-L Model



✓As parameters are varied, there may be 
qualitative changes in the dynamics of a model. 

✓Fixed points can appear, disappear, or change 
their stability as we change the parameter 
values. 

✓We call such qualitative changes in a model's 
dynamics bifurcations.

✓ The special parameter values at which 
bifurcations occur are called bifurcation points.

✓Saddle-node and Hopf bifurcations are very 
common and can describe the single-spike 
properties of the spike-generating mechanisms 
of most neurons.



✓There are many ionic mechanisms of spike generation, but only four generic bifurcations of 
equilibria.

✓This transition from a stable steady state to a stable limit cycle through variation of a parameter is 
called a Hopf bifurcation. 

✓ It is one way in which periodic motion can arise from a previously stationary system, or vice versa.

✓ Here for the Hopf case, the equilibrium point is a stable focus that has a pair of complex 
conjugate eigenvalues with negative real part.

✓ With increasing the injected current, the real part of the eigenvalues changes from negative to 
zero and with further increasing, to positive. 

✓ It means that the stable focus loses its stability and a limit cycle appears. 

✓With increasing the injected current, the amplitude of the limit cycle also increases.



We can see different behaviors of the neuron 
from resting to spiking (the stable constant 
solutions are corresponding to the resting 
state and spiking state shows the existence of 
periodic solutions.)

We have a continual series of action 
potentials. Thus, we have a periodic 
solution to the Morris-Lecar equations 
at 𝐼𝑎𝑝𝑝 = 100.

At  the MorrisLecar model is excitable because at large enough perturbations in voltage, an action 
potential is generated, while at small perturbations from rest, the voltage quickly decays back to the 
resting state.



an excitable system with 

threshold at about  -20 mV

while a big enough 

perturbation will 

generate an action 

potential

a small perturbations in voltage, which is represented by the 
perturbation that lies to the `left' of the middle branch of the 
V -nullcline, will return to rest



❑ The first Lyapunov coefficients for two Hopf points are positive. Thus, there should exist an unstable limit 

cycle, bifurcating from the equilibrium and it indicates the appearance of SubCritical Hopf Bifurcation.



The curve above the fixed-point curve 

represents the maximum voltages on the 

periodic orbits and the curve below the 

fixed-point curve represents the minimum 

voltages.

Continuation of Equilibrium points



Fractional-Order Neuron Model 
explore different dynamical classes of the 

model



Fractional-Order Neuron Model 
explore different dynamical classes of the model

To find the fractional order Morris-Lecar model, we define the fractional differential operator 
as the form

where 𝜸 > 0 is the order of derivative and 𝑫𝜸  denotes the fractional derivative and can be obtained 
using:

𝐽𝑘 is an integral operator which is called the Riemann-Liouville operator of order 𝒌 and has the 
following form



Fractional-Order Neuron Model 
explore different dynamical classes of the model

To descretize the model, we apply Grünwald-Letinkov approximation on our model equations 
based on nonstandard finite difference method (NSFDM) or Micken’s scheme. Therefore, we have

Next, we discretize the equation



Fractional-Order Neuron Model 
explore different dynamical classes of the model

Fractional calculus as a new approach for modeling has been used widely to study the non-linear 
behavior of physical and biological systems with some degrees of fractionality or fractality using 
differential and integral operators with non-integer orders.



Fractional-Order Neuron Model Trajectories



Current Study in multiscale 
modeling of brain dynamics

25



There are two main approaches to analyze and modeling of 
networks of neurons:
The details of action potentials or spikes are important and does 
matter.
We need to pay attention to the firing rates of populations not 
the timing of individual neurons when we model and analyze the 
neural activities.
 

Novel advances in mathematical approaches and rigorous theories, 
such as topological and computational methods for describing and 

extracting macroscopic activity states of neural populations and 
deriving principles of their emergence from underlying synaptic, 

cellular and network dynamics.
 There is also considerable promise in analyses and applications of 

learning algorithms as multiscale dynamical systems.

Multiscale modeling of brain dynamics



Current Study in multiscale modeling of brain dynamics

Basically, we have three main categories for components of a network:

1. The intrinsic properties of the cells within the neuronal networks.

2. The synaptic properties of the neuronal connections.

3. The topological properties of the network connections.

The first and the second components of the network contain multi time scales and depend on the 
parameters, however, the third component does not include multiple time scales and depends on the 
parameters of network.



1. The intrinsic properties of the cells within the neuronal networks.

• When we talk about the intrinsic properties of the neuronal cells, their channel gating 
variables are crucial in determining the neuronal cells dynamics. 

• These channels may be activate or inactivate on disparate time scales.

• We assume a general two dimensional neuronal model:

including 𝒗 as the membrane potential of the cell, 𝒘 the channel gating variable which displays a 
channel state variable that either activates or inactivates on a slower time scale compare to other 
processes, and a small positive parameter 𝝐 .



2. The synaptic properties of the neuronal connections.

We follow the following three dimensional differential equations to model 
a pair of mutually coupled neurons:



3. The topological properties of the network connections.

Finally, for studying the third components of the network, network architecture, we 
may assume that the network has sparse or dense connectivity. 

In this case, we assume that cells communicate with a small or large number of 
cells. There are other types of network architecture such as local or global, random 
or structured. 





Thank you for your attention.
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