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Portable

Comparatively large screen

Tactile interface

The Role of iPads in Constructing Collaborative 
Learning Spaces (Fisher, Lucas and Galstyan, 2013)

Using Slopes to Enhance Learning in Ordinary 
Differential Equations (K. Lucas and T. Lucas, 2022)
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Physical assumptions

Mathematical expressions

Think before you solve


Equilibrium solutions

Graphical analysis


Slopefields, Phase Planes, etc

Analytical Solutions

jm Class Approach



jm Local Ecology 

California Newt - Taricha torosa




jm Population Models

Invasive Crayfish - Procambarus clarkii




jm Crayfish Models

Exponential Growth/Decay:   y’ = ay

Exponential Growth with Constant 
Removal:   y’ = ay - r

Logistic Growth:   y’ = ay(1-y/b)

Logistic Growth with Constant 
Removal:   y’ = ay(1-y/b) - r

Logistic Growth with Proportional 
Removal:   y’ = ay(1-y/b) - ry



A bifurcation occurs when a small change 
in a parameter value leads to a qualitative 
change in the long term behavior of the 
solution to a differential equation. 

jm Bifurcation



Main Goal: Understand and analyze a 
mathematical model using techniques 
learned in class


Slopefields/Phase Planes, Equilibrium 
Analysis, Numerical/Algebraic 
Solutions, ...


Teams of 3-4 Students

Final Poster Presentation 


Judged by math and science faculty

Images provided by Slopes
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Printing:
Mountain Lions vs. Deer

Three Models Examining Predator Prey Dynamics

Background
Over the last 16 months, Pepperdine has issued 17 warnings regarding mountain lions 
spotted on campus. In an effort to understand the dynamics behind this rise in sightings (and 
the Malibu ecosystem in general), we use predator/prey systems of differential equations. 
Within California, mountain lions feed primarily on deer, and deer are preyed on primarily 
by mountain lions. Given the omnipresent nature of deer on campus, this likely extends to 
our local ecosystem. We aim to better understand this relationship, we compare three 
predator/prey models with increasing complexity. 

Basic Model and Coefficient Estimates
In its most nascent form, our model includes two species (mountain lions and deer), and 
models deer using exponential growth. The variables x and y represent deer (prey) and 
mountain lion (predator) populations, respectively. The equations are displayed below.

!" = $! − &!'
'" = −(' + *!'

Coefficients:

While the true values of some parameters are unknown, zoological research can be used to 
guide many of these choices:
• Deer’s maximum growth rate is estimated using reproduction statistics. 

• At any given time, 66% of female deer are pregnant. Deer have an average litter size 
of 1.9, are pregnant for about 203 days, and exhibit balanced sex ratios. 

• If we observed a deer population and returned 203 days later, we would therefore 
expect to see 62.7% more deer. Therefore, without external constraints the 
population will grow according to the equation x = (,-./012 , with c denoting the 
starting population, and t denoting change in time (in years). 

• The location of equilibriums is estimated using food intake requirements.
• Should the growth in the deer population produce exactly the amount of meat 

required to sustain the mountain lion population, no change should occur in either.
• The average mountain lion requires 6.57 pounds of meat per day to survive. As the 

average mule deer weighs 177 pounds, with at most 133 pounds being edible 
biomass, a mountain lion’s survival requires 0.049 deer per day, which is 18.0 per 
year. 

First Model Behavior
The phase plane has two equilibrium points: a saddle point at (0,0) and a center at (c/d, a/b). 
Only in cases of complete extinction and at (c/d, a/b) are both populations at rest. A phase 
plane is shown below, along with a graph of each population. Coefficients were informed by 
the research described above. Except in the case when an initial value is zero, populations 
continuously orbit around the center. 

Logistic Growth and Ratio Dependence
Our second model introduces the concepts of logistic growth and density dependence. The 
equations are displayed below.
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Logistic growth is introduced by the addition of (1-x/k) to the part of the equation controlling 
deer growth. This takes resource scarcity into account, and ensures that the deer population 
do not expand beyond its carrying capacity (k). The importance of this feature is highlighted 
by a potential behavior observable in the first model: without mountain lions the deer 
population will expand infinitely. While California’s natural carrying capacity for deer is an 
unexpectedly contentious topic, the deer population peaked at approximately 2 million before 
declining substantially to its current level of 540,000. 
Density dependence is introduced by the denominator now beneath both interaction terms. 
The effect of this change is best explained by an example. Say that an environment has 100 
deer and 1 mountain lion. Say that a second environment has 10 deer and 10 mountain lions. 
Under our first model, both interaction terms end up the same: 100 times some interaction 
coefficient. This is obviously a departure from how deer and mountain lions interact in 
reality. Thus, the new model makes the effectiveness of predation dependent on this ratio 
between species. The most effective ratio can be determined using the value the coefficients 
(in this case just f, as one can always be omitted). For example, if f = 1, the second 
environment would yield a larger interaction term under the new model. 

To ensure comparability between models, values of coefficients representing biological 
constants (a, c) remain unchanged from the previous model, and interaction coefficients (b, 
d) are appropriately scaled to adjust for the new terms. 

The phase plane of the second model is shown below. As the model is not linear, the 
Jacobian (matrix below) serves as a useful linear approximation.

Second Model Behavior

Adding a Third Species

Third Model Behavior

While all three models share similar equilibrium points (between mountain lions and deer), 
behavior around these points differs substantially between models. Furthermore, each 
addition of complexity made our models more fragile. While both species refused to die in 
the first model, far more scenarios involved extinction in the third model. This could be due 
to the nature of natural ecosystems, or the nature of mathematical models. 

Dubey, B., and Upadhyay, R.K. Persistence and Extinction of One-Prey and Two-Predators System. Nonlinear Analysis: Modeling and Control. 2004, 
Vol 9, No. 4. 

Green et. al., Reproductive Characteristics of Female White-Tailed Deer, Theriogenology, Volume 94, 2017.
Longhurst et. al., The California Deer Decline and Possibilities for Restoration, California Nevada Wildlife Transactions, Wildlife Society, 1976.

Pettorelli et. al., Predation, Individual Variability and Vertebrate Population Dynamics, Oecologia, 2011.
Pierce, Becky et. al. Selection of Mule Deer by Mountain Lions and Coyotes: Effects of Hunting Style, Body Size, and Reproductive 

Status.” 2000. Journal of Mammalogy, Volume 81, Issue 2. 
Xiao, Dongmei and Ruan, Shigui. Global dynamics of a ratio-dependent predator-prey system. Journal of Mathematical Biology. 2000. 

a Rate of growth without predation.
b Rate at which predation (interactions) decreases deer population.
c Rate at which mountain lions die without prey.
d Rate at which predation (interaction) increases mountain lion population.

When compared to empirical data, it becomes clear that both models discussed though this 
point are incomplete. Just 5,000 wild mountain lions roam California—well below what our 
two-species model predicts. While a wildlife policy of suppressing dangerous mountain lions 
while protecting deer from predation is likely the largest culprit, it is also worth considering 
other interactions within our ecosystem. Our third and final model maintains the concepts 
discussed in its antecedent while adding a third species: coyotes. The equations are displayed 
below, with y1 denoting mountain lions and y2 denoting coyotes.
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Most	new	parameters	are	direct	extensions	of	the	previous	model	(b2,	c2,	d2).	The	new	

term	gy2 in	each	denominator	generalizes	the	ratio	to	consider	all	three	species.	New	
interaction	terms	between	mountain	lions	and	coyotes	are	also	included	(my1y2,	ny1y2).	
Coyotes live in the same environments as mountain lions, and consume the same prey (deer). 
As mountain lions and coyotes are directly antagonistic to each other (beyond the indirect 
effects of consuming deer), both coefficients are negative. As mountain lions are far larger 
predators than coyotes (137 pounds vs 31 pounds), it can be assumed that n is the larger 
coefficient. 

a = 0.875, b = 0.02, c = 0.2, d = 0.000265

Initial Conditions: Deer = 600, Mountain Lion = 40

Equilibrium points: (755, 44), (0,0)

Conclusion, Sources

Y$(Z&[$< $\ 0,0 :
0.87 0

0 −0.2
, λ1= 0.87, λ2= -0.2 (unstable, saddle)

Y$(Z&[$< $\ 755, 44 :
0 −15.1

−0.012 0
, λ1= 0.417i, λ2= −0.417i (unstable,

non−generic , (Z<5[c;,* as center using numerical methods.)
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Parameters:

a = 0.875, b = 1.8, c = 0.2, 

d = 0.1, f = 0.44, k = 1000

Equilibrium points: (757, 44), (0,0), (1000, 0)

Jacobian:

A plot of all three populations is shown below. Using our starting conditions and 
parameters (as well as reasonable variations thereof), the mountain lions (green) and 
coyotes (blue) engage in conflict, suppressing the population of each. The mountain lions 
eventually win, sending the coyotes into extinction. A numeric solver was used to find the 
equilibrium that all three species approach. 

Parameters:
a = 0.875, b1 = 1.8, b2 = 1.8, 
c1 = 0.2, c2 = 0.1, f = 0.44, 
k = 1000, m = 0.007, n = 0.017, 
d1 = 0.1, d2 = 0.092, g = 2
Equilibrium: The deer population approaches 
759.7, the mountain lion population approaches 
44.5, and the coyote population approaches 
extinction. 

Using this Jacobian, the equilibrium points can be categorized. The Jacobian for the only 
equilibrium where both species survive is shown below, along with the useful indicators it 
provides. 

J =
−0.45896 −3.1775
0.0014 −0.2347

λ1= −0.257
λ2= −0.437

\c Y = −0.694

*,\ Y = 0.112

This makes (757, 44) a nodal sink (stable). Using the same techniques, (0,0) and (1000, 0) 
can both be categorized as saddle points. 
When initial populations are non-zero, they will eventually sink into a single equilibrium of 757 
deer and 44 mountain lions. Unlike the previous model, the equilibrium is always approached 
(nodal sink) rather than circled around (center). 
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Logistic growth is introduced by the addition of (1-x/k) to the part of the equation controlling 
deer growth. This takes resource scarcity into account, and ensures that the deer population 
do not expand beyond its carrying capacity (k). The importance of this feature is highlighted 
by a potential behavior observable in the first model: without mountain lions the deer 
population will expand infinitely. While California’s natural carrying capacity for deer is an 
unexpectedly contentious topic, the deer population peaked at approximately 2 million before 
declining substantially to its current level of 540,000. 
Density dependence is introduced by the denominator now beneath both interaction terms. 
The effect of this change is best explained by an example. Say that an environment has 100 
deer and 1 mountain lion. Say that a second environment has 10 deer and 10 mountain lions. 
Under our first model, both interaction terms end up the same: 100 times some interaction 
coefficient. This is obviously a departure from how deer and mountain lions interact in 
reality. Thus, the new model makes the effectiveness of predation dependent on this ratio 
between species. The most effective ratio can be determined using the value the coefficients 
(in this case just f, as one can always be omitted). For example, if f = 1, the second 
environment would yield a larger interaction term under the new model. 
To ensure comparability between models, values of coefficients representing biological 
constants (a, c) remain unchanged from the previous model, and interaction coefficients (b, 
d) are appropriately scaled to adjust for the new terms. 

The phase plane of the second model is shown below. As the model is not linear, the 
Jacobian (matrix below) serves as a useful linear approximation.

Second Model Behavior

Adding a Third Species

Third Model Behavior

While all three models share similar equilibrium points (between mountain lions and deer), 
behavior around these points differs substantially between models. Furthermore, each 
addition of complexity made our models more fragile. While both species refused to die in 
the first model, far more scenarios involved extinction in the third model. This could be due 
to the nature of natural ecosystems, or the nature of mathematical models. 

Dubey, B., and Upadhyay, R.K. Persistence and Extinction of One-Prey and Two-Predators System. Nonlinear Analysis: Modeling and Control. 2004, 

Vol 9, No. 4. 

Green et. al., Reproductive Characteristics of Female White-Tailed Deer, Theriogenology, Volume 94, 2017.

Longhurst et. al., The California Deer Decline and Possibilities for Restoration, California Nevada Wildlife Transactions, Wildlife Society, 1976.

Pettorelli et. al., Predation, Individual Variability and Vertebrate Population Dynamics, Oecologia, 2011.

Pierce, Becky et. al. Selection of Mule Deer by Mountain Lions and Coyotes: Effects of Hunting Style, Body Size, and Reproductive 
Status.” 2000. Journal of Mammalogy, Volume 81, Issue 2. 

Xiao, Dongmei and Ruan, Shigui. Global dynamics of a ratio-dependent predator-prey system. Journal of Mathematical Biology. 2000. 

By Jeremiah Rondeau, Rachel Simmons, Jacob Zimbelman

a Rate of growth without predation.
b Rate at which predation (interactions) decreases deer population.
c Rate at which mountain lions die without prey.
d Rate at which predation (interaction) increases mountain lion population.

When compared to empirical data, it becomes clear that both models discussed though this 
point are incomplete. Just 5,000 wild mountain lions roam California—well below what our 
two-species model predicts. While a wildlife policy of suppressing dangerous mountain lions 
while protecting deer from predation is likely the largest culprit, it is also worth considering 
other interactions within our ecosystem. Our third and final model maintains the concepts 
discussed in its antecedent while adding a third species: coyotes. The equations are displayed 
below, with y1 denoting mountain lions and y2 denoting coyotes.
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Most	new	parameters	are	direct	extensions	of	the	previous	model	(b2,	c2,	d2).	The	new	
term	gy2 in	each	denominator	generalizes	the	ratio	to	consider	all	three	species.	New	
interaction	terms	between	mountain	lions	and	coyotes	are	also	included	(my1y2,	ny1y2).	
Coyotes live in the same environments as mountain lions, and consume the same prey (deer). 
As mountain lions and coyotes are directly antagonistic to each other (beyond the indirect 
effects of consuming deer), both coefficients are negative. As mountain lions are far larger 
predators than coyotes (137 pounds vs 31 pounds), it can be assumed that n is the larger 
coefficient. 	

a = 0.875, b = 0.02, c = 0.2, d = 0.000265

Initial Conditions: Deer = 600, Mountain Lion = 40

Equilibrium points: (755, 44), (0,0)

Conclusion, Sources

Y$(Z&[$<	$\	 0,0 :	
0.87 0

0 −0.2
, λ1= 0.87, λ2= -0.2 (unstable, saddle)

Y$(Z&[$<	$\	 755, 44 :	
0 −15.1

−0.012 0
, 	λ1= 0.417i, λ2= −0.417i (unstable, 

non−generic, (Z<5[c;,*	as center using numerical methods.)
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Parameters:

a = 0.875, b = 1.8, c = 0.2, 
d = 0.1, f = 0.44, k = 1000

Equilibrium points: (757, 44), (0,0), (1000, 0)

Jacobian:

A plot of all three populations is shown below. Using our starting conditions and 
parameters (as well as reasonable variations thereof), the mountain lions (green) and 
coyotes (blue) engage in conflict, suppressing the population of each. The mountain lions 
eventually win, sending the coyotes into extinction. A numeric solver was used to find the 
equilibrium that all three species approach. 

Parameters:

a = 0.875, b1 = 1.8, b2 = 1.8, 

c1 = 0.2, c2 = 0.1, f = 0.44, 

k = 1000, m = 0.007, n = 0.017, 

d1 = 0.1, d2 = 0.092, g = 2

Equilibrium: The deer population approaches 
759.7, the mountain lion population approaches 
44.5, and the coyote population approaches 
extinction. 

Using this Jacobian, the equilibrium points can be categorized. The Jacobian for the only 
equilibrium where both species survive is shown below, along with the useful indicators it 
provides. 

J =
−0.45896 −3.1775
0.0014 −0.2347

λ1= −0.257
λ2= −0.437										

\c Y = −0.694

*,\ Y = 0.112

This makes (757, 44) a nodal sink (stable). Using the same techniques, (0,0) and (1000, 0) 
can both be categorized as saddle points. 
When initial populations are non-zero, they will eventually sink into a single equilibrium of 757 
deer and 44 mountain lions. Unlike the previous model, the equilibrium is always approached 
(nodal sink) rather than circled around (center). 
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Tumor Growth Effects on Healthy and Immune Cells

When cells divide, there is a small chance that mutations occur and that these mutations will 
create tumor cells. However, the body has many ways of protecting itself and preventing tumor 
cells from continuing to divide. One of the mechanisms the body employs is the destruction of 
tumor cells with immune cells. If the body doesn’t destroy tumor cells, they will compete with 
healthy cells for resources, potentially endangering the healthy cells. The rate of growth of tumor 
cells, combined with the strength of the immune system, informs cancer treatment options.

We adapted our model from Alharbi et al. [1] We assumed that normal cells turn immediately into 
tumor cells and that the immune cells modeled are killer T cells. The equilibria are measured in 
concentration of cells; for example, the concentration of tumor cells at equilibrium equals the 
number of tumor cells at equilibrium divided by the initial number of tumor cells.

Introduction Simple Model Graphs

Complex Model Analysis

Diagram

Equilibrium Analysis

Assumptions:
1.  Immune cells are killer T cells
2.  Immune cells naturally die
3.  In the absence of tumor cells, immune cells are 

created at a constant rate
4. A tumor already exists

T-nullclines (blue) and I-nullcline (orange)  
intersect at the equilibrium points:
• (0, 1.2281) which is a saddle upon 

appearance 
• (0.4847, 2.4288) which is a spiral sink 

upon appearance

Complex Model: Involving Normal Cells

Sources
[1] Alharbi, S.A.; Rambely, A.S. A New ODE-Based Model for Tumor Cells and Immune 

System Competition. Mathematics 2020, 8, 1285. 
[2] Unni, Pranav, and Padmanabhan Seshaiyer. “Mathematical Modeling, Analysis, and 

Simulation of Tumor Dynamics with Drug Interventions.” Computational and mathematical 
methods in medicine vol. 2019 4079298. 8 Oct. 2019, doi:10.1155/2019/4079298

[3] Yin A, Moes DJAR, van Hasselt JGC, Swen JJ, Guchelaar HJ. A Review of Mathematical 
Models for Tumor Dynamics and Treatment Resistance Evolution of Solid Tumors. CPT 
Pharmacometrics Syst Pharmacol. 2019 Oct;8(10):720-737. doi: 10.1002/psp4.12450. Epub 
2019 Aug 9. PMID: 31250989; PMCID: PMC6813171.

Simple Model: Tumor Cells vs Immune Cells

Additional Assumption:
5. Normal cells immediately turn into tumor cells, rather than first turning into abnormal cells

Simple Model Phase Plane

At the equilibrium point (0, 1.2281) the 
eigenvalues of the Jacobian are

Since there is one positive and one negative 
eigenvalue, we classify this point as a saddle

At the equilibrium point (0.4847, 2.4288) 
the eigenvalues of the Jacobian are

Since there are two negative and complex 
eigenvalues, we classify this point as a spiral sink

Based on our unchanged complex model (b), involving the presence of normal cells mildly 
increases tumor cell concentration, while normal cells are severely impacted by their 
interaction with tumor cells. When evaluating our complex model with a less aggressive tumor 
growth rate (a), all the cell’s concentrations take longer to reach equilibrium as they are 
interacting more competitively. The normal cell concentration is less affected by tumor 
presence and ultimately reaches a higher equilibrium concentration. When evaluating our 
complex model with a more aggressive tumor growth rate (c), all cell concentrations reach 
equilibrium more quickly than the unchanged complex model (b). In this case, normal cells are 
severely impacted and completely die out, whereas tumor cells reach a higher equilibrium than 
in all other cases. Immune cells also reach a higher equilibrium, indicating a healthy immune 
response from our host. By assumption 4, we will not be considering the unstable equilibria.

Simple Model Systems Graph

Pepperdine University
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Simple Model Analysis
According to our model, if we do not begin with the presence of at least one tumor, there will be 
no recorded tumor growth and the immune cells will stabilize at an equilibrium concentration of 
1.2281 cells per initial cell count. Assuming the presence of at least one tumor, both tumor and 
immune cells will initially grow before entering competition and eventually leveling off to an 
equilibrium concentration of 0.4847 tumor cells per initial cell count and 2.4288 immune cells per 
initial cell count. In this scenario, immune cells successfully repress tumor growth.  By 
assumption 4, we will not be considering the unstable equilibrium.

5$ = −0.57, 
5% = 0.2622.

1&
12 = #!& 3 − &

#"
− ##&'

1'
12 = 4 − +' + (&'

) + &

5$ = −0.1870 + 0.2326?,
5% = −0.1870 − 0.2326?.

Stable Equilibrium Values (for T0 = I0 = 1.0)
• T = 0.4847 
• I = 2.4288 
These equilibrium values coincide with 
the stable equilibrium we found through 
the nullclines of the phase plane

Stable Equilibrium**: 
T = 0.6737; I = 3.0900; 
N = 0.2041

(a)Less Aggressive
 #! 	= 0.1426

(b) Unchanged
 #!  = 0.4426

(c) More Aggressive
 #!  = 0.8426

J(0, 1.2281, 0) has the 
eigenvalues:

5$ = −0.57
5% = 0.4312
5& = 0.2622

J(0.6737, 3.0900, 0.2041) 
has the eigenvalues:

5$ = −0.1299 + 0.3628?
5% = −0.1299 − 0.3628?
5& = −0.0859
This represents a spiral sink

Stable Equilibrium**:
T = 0.6737; I = 3.0900; 
N = 0.5469

Stable Equilibrium **:
T = 0.8396; I = 3.8098; 
N = 0.0000

5$ = 213760
5% = −0.57
5& = −0.4312

This represents a saddle This represents a saddle

The Jacobian of the simple system is:

The Jacobian of the complex system is:

*Concentration of cells refers to the number of current cells of type (T/I/N) / number of initial cells (T/I/N)

**for T0 = I0 = N0 = 1.0
As we increase tumor growth rate aggression, cell concentrations reach equilibrium more quickly. 

J(0, 1.2281, 3.34 × 105)
has the eigenvalues:
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tumor cells with immune cells. If the body doesn’t destroy tumor cells, they will compete with 
healthy cells for resources, potentially endangering the healthy cells. The rate of growth of tumor 
cells, combined with the strength of the immune system, informs cancer treatment options.

We adapted our model from Alharbi et al. [1] We assumed that normal cells turn immediately into 
tumor cells and that the immune cells modeled are killer T cells. The equilibria are measured in 
concentration of cells; for example, the concentration of tumor cells at equilibrium equals the 
number of tumor cells at equilibrium divided by the initial number of tumor cells.
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Simple Model: Tumor Cells vs Immune Cells

Additional Assumption:
5. Normal cells immediately turn into tumor cells, rather than first turning into abnormal cells

Simple Model Phase Plane

At the equilibrium point (0, 1.2281) the 
eigenvalues of the Jacobian are

Since there is one positive and one negative 
eigenvalue, we classify this point as a saddle

At the equilibrium point (0.4847, 2.4288) 
the eigenvalues of the Jacobian are

Since there are two negative and complex 
eigenvalues, we classify this point as a spiral sink

Based on our unchanged complex model (b), involving the presence of normal cells mildly 
increases tumor cell concentration, while normal cells are severely impacted by their 
interaction with tumor cells. When evaluating our complex model with a less aggressive tumor 
growth rate (a), all the cell’s concentrations take longer to reach equilibrium as they are 
interacting more competitively. The normal cell concentration is less affected by tumor 
presence and ultimately reaches a higher equilibrium concentration. When evaluating our 
complex model with a more aggressive tumor growth rate (c), all cell concentrations reach 
equilibrium more quickly than the unchanged complex model (b). In this case, normal cells are 
severely impacted and completely die out, whereas tumor cells reach a higher equilibrium than 
in all other cases. Immune cells also reach a higher equilibrium, indicating a healthy immune 
response from our host. By assumption 4, we will not be considering the unstable equilibria.
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Simple Model Analysis
According to our model, if we do not begin with the presence of at least one tumor, there will be 
no recorded tumor growth and the immune cells will stabilize at an equilibrium concentration of 
1.2281 cells per initial cell count. Assuming the presence of at least one tumor, both tumor and 
immune cells will initially grow before entering competition and eventually leveling off to an 
equilibrium concentration of 0.4847 tumor cells per initial cell count and 2.4288 immune cells per 
initial cell count. In this scenario, immune cells successfully repress tumor growth.  By 
assumption 4, we will not be considering the unstable equilibrium.

5$ = −0.57, 
5% = 0.2622.
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5$ = −0.1870 + 0.2326?,
5% = −0.1870 − 0.2326?.

Stable Equilibrium Values (for T0 = I0 = 1.0)
• T = 0.4847 
• I = 2.4288 
These equilibrium values coincide with 
the stable equilibrium we found through 
the nullclines of the phase plane

Stable Equilibrium**: 
T = 0.6737; I = 3.0900; 
N = 0.2041

(a)Less Aggressive
 #! 	= 0.1426

(b) Unchanged
 #!  = 0.4426

(c) More Aggressive
 #!  = 0.8426

J(0, 1.2281, 0) has the 
eigenvalues:

5$ = −0.57
5% = 0.4312
5& = 0.2622

J(0.6737, 3.0900, 0.2041) 
has the eigenvalues:

5$ = −0.1299 + 0.3628?
5% = −0.1299 − 0.3628?
5& = −0.0859
This represents a spiral sink

Stable Equilibrium**:
T = 0.6737; I = 3.0900; 
N = 0.5469

Stable Equilibrium **:
T = 0.8396; I = 3.8098; 
N = 0.0000

5$ = 213760
5% = −0.57
5& = −0.4312

This represents a saddle This represents a saddle

The Jacobian of the simple system is:

The Jacobian of the complex system is:

*Concentration of cells refers to the number of current cells of type (T/I/N) / number of initial cells (T/I/N)

**for T0 = I0 = N0 = 1.0
As we increase tumor growth rate aggression, cell concentrations reach equilibrium more quickly. 

J(0, 1.2281, 3.34 × 105)
has the eigenvalues:
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According to our model, if we do not begin with the presence of at least one tumor, there will be 
no recorded tumor growth and the immune cells will stabilize at an equilibrium concentration of 
1.2281 cells per initial cell count. Assuming the presence of at least one tumor, both tumor and 
immune cells will initially grow before entering competition and eventually leveling off to an 
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2 Models Examining SIR Dynamics
Infection of T-Cells by HIV

Since the first reported cases of HIV in the 1980s, this 
infectious disease has skyrocketed in cases as well as deaths 
resulting from the virus. In an effort to better understand 
the innerworkings of the disease from a viral level, we will use 
an SIR model that closely examines the infection of CD4+ T-
cells by the HIV virus. Within the body, when the HIV virus is 
introduced, T-cells become susceptible to infection by the 
virus. Once a virus comes in contact with a T-cell, that T-cell 
becomes infected. After a certain amount of time, the T-cell 
bursts, leaving more viruses. To represent this, we will utilize 2 
models in increasing complexity.

Background

[1] Bagnoli, F., Lio, P., & Sguanci, L. (2006). Modeling viral coevolution: HIV 
multi-clonal persistence and competition dynamics. Physica A: Statistical 
Mechanics and its Applications, 366, 333-346.
[2] Chao, D. L., Davenport, M. P., Forrest, S., & Perelson, A. S. (2004). A 
stochastic model of cytotoxic T cell responses. Journal of Theoretical 
Biology, 228(2), 227-240.
[3] Luo, J., Wang, W., Chen, H., & Fu, R. (2016). Bifurcations of a 
mathematical model for HIV dynamics. Journal of Mathematical Analysis 
and Applications, 434(1), 837-857.
[4] Perelson, A. S., Kirschner, D. E., & De Boer, R. (1993). Dynamics of HIV 
infection of CD4+ T cells. Mathematical biosciences, 114(1), 81-125.

Sources

Our second model introduces logistic growth of T-cells, the 
clonal amplification rate of T-cells after simulation by infected 
T-cells, and the removal rate of infected T-cells and virus by 
CTL responses and antibodies, respectively.

Logistic Growth and Clonal 
Amplification

Both models had a change in stability for the first equilibrium 
as ! varies . That equilibrium shifted from unstable to stable at 
!=4.8 in the first model. In the second model that equilibrium 
shifted from stable to unstable when ! is between 412-413. 
When ! is below the critical value,  the virus population does 
not grow and cells do not become infected.

The virus in the second equilibrium increased as we increased 
!. When ! is above the critical value, the virus equilibrium 
increases significantly due to the increased bursting of virus 
after an infected T-cell dies.

Conclusions

In its most nascent form, our model includes three 
populations (Helper T-Cells, Infected T-Cells, and Free Virus) 
and models virus growth and infection rate. The variables T, I, 
and V represent Helper T-Cells (Susceptible), Infected T-Cells 
(Infected), and Viruses (Recovered), respectively. This model 
deviates from the standard SIR model by introducing a free 
virus population that grows proportionally to the death of 
infected cells. That constant of proportionality n is the burst 
coefficient from when infected cells die and release the virus. 
The equations are displayed below and represent a mm of an 
infected body at any given place.

Basic Model and Coefficient Estimates

For n=4 the equilibrium (5000,0,0) is a sink with eigenvalues
(-0.02,-0.037, -2.60) and the other equilibrium is not positive for 
I and V.  Below is a plot that shows the stable equilibrium. 

The equilibrium points are !
"!
, 0,0 	& #""
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#""

− "!
% , !$#"" −
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% ,	 for our 

parameters (5000,0,0) & (24000/n, 416.7-2000/n, 173.6n-833.3).
The Jacobian for the system is:

First Model Behavior

For n=100, (5000,0,0) is a saddle with eigenvalues -0.02, 2.31, 
and -4.95. The equilibrium (240, 396.7, 16527.8) is a spiral sink 
with eigenvalues are −2.68, −0.189±0.223". The virus population 
grows and solutions tend toward the second equilibrium.#$

#% = ' − )%$ − *+$
#,
#% = *+$ − )&,

#+
#% = !, − -+

' is scaled to match [2]. The burst coefficient varies in the literature. For 
both our complex model and basic model we will explore !=100 and !=500, 

with the addition of !=10 for the basic model.

−)% − *+ 0 −*$
*+ −)& *$
0 ! −-

The parameters /%, /&, and /'	are scaled to match [4]

Clonal Amplification
Clonal amplification is introduced with the addition of the 
term /%,$ to ',, which is the part of the equation that controls 
the production of new T-cells. This takes into account the 
cloning of healthy T-cells when healthy T-cells interact with 
infected T-cells. This is very similar to the term in the basic 
model *+$ where the creation of infected T-cells is 
proportional to  interaction with T-cells with a coefficient of 
infection. This is an important addition because one of the tell-
tale signs of an infection is a large increase in the white blood 
cell count which will affect the population of healthy T-Cells 
and in turn, the rest of the populations. This clonal 
amplification is carried into the rest of the populations.

Logistic Growth
Logistic growth is introduced with the addition of (1−$/1) 
multiplied by ('+ /%,$) which was added with the clonal 
amplification. This is an important addition because without it 
as %→∞ the population of T-cells could also go to infinity which 
as we know, is impossible in the body. This allows for a more 
grounded and accurate model to real life.

This model has a lower T-cell equilibrium than the first model 
due to the addition of a carrying capacity.

For n=500, (5000,0,0) is a saddle with eigenvalues 5.56, -0.004, 
and -9.89. The equilibrium (48, 412.7, 85972.2) is a spiral sink 
with eigenvalues−2.73, −0.06±0.187". The virus population 
grows and solutions tend toward the second equilibrium.

#$
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Second Model Behavior
The points (1153, 0, 0) is an equilibrium for all !.  We suspect 
this is the only positive equilibrium !=100. There is a second 
equilibrium (71, 385, 69791) for !=500.  The Jacobian is

− '
4 + /%, −

2/%,$
4 − )% − *+ /%$ −

/%$&
4 −*$

*+ − /&, −)& − /&$ *$
−/'+ − *+ ! −- − /'$ − *$

For n=100 the eigenvalues of (1153, 0, 0) are −0.087, -8.578, 
and -1.008. All eigenvalues are negative. The equilibrium is a 
nodal sink and is stable for its long-term behavior.

For n=500, (1153, 0, 0) is a saddle because the eigenvalues are 
−0.087, 0.25, and -9.83.   The equilibrium (71, 385, 69791) is a 
nodal sink because the eigenvalues are -3.493, -0.687, -0.300.  
Solutions tend toward this stable equilibrium.

Parameter Description Value Reference
' Rate of production of new T-Cells 100 #89(%::(' [4]
)% Rate of death of uninfected cells 0.02 #89(% [4]
* Infection coefficient 2.4×10()	::' #89(% [4]
)& Rate of death of infected cells 0.24	#89(% [4]
n Burst coefficient of the virus >8?"@A [4]
c Rate of clearance of free virus 2.4	#89(% [4]
T0 Initial T-cell population 1000 cells ::(' [4]
I0 Initial infected cell population 0 cells ::(' [4]
V0 Initial virus population 0.001 cells ::(' [4]

Parameter Description Value Reference
/% Clonal amplification rate of T-cells after 

stimulation by infected cells

0.001	#89(% [1]

/& Removal rate of infected cells by CTL 

responses

0.001	#89(% [1]

/' Removal rate of free virus by antibodies 0.005 #89(% [1]

k Carrying capacity of Helper T-cells 1500	::(' [4]
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[1] Bagnoli, F., Lio, P., & Sguanci, L. (2006). Modeling viral coevolution: HIV 
multi-clonal persistence and competition dynamics. Physica A: Statistical 
Mechanics and its Applications, 366, 333-346.
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Sources

Our second model introduces logistic growth of T-cells, the 
clonal amplification rate of T-cells after simulation by infected 
T-cells, and the removal rate of infected T-cells and virus by 
CTL responses and antibodies, respectively.

Logistic Growth and Clonal 
Amplification

Both models had a change in stability for the first equilibrium 
as ! varies . That equilibrium shifted from unstable to stable at 
!=4.8 in the first model. In the second model that equilibrium 
shifted from stable to unstable when ! is between 412-413. 
When ! is below the critical value,  the virus population does 
not grow and cells do not become infected.

The virus in the second equilibrium increased as we increased 
!. When ! is above the critical value, the virus equilibrium 
increases significantly due to the increased bursting of virus 
after an infected T-cell dies.

Conclusions

In its most nascent form, our model includes three 
populations (Helper T-Cells, Infected T-Cells, and Free Virus) 
and models virus growth and infection rate. The variables T, I, 
and V represent Helper T-Cells (Susceptible), Infected T-Cells 
(Infected), and Viruses (Recovered), respectively. This model 
deviates from the standard SIR model by introducing a free 
virus population that grows proportionally to the death of 
infected cells. That constant of proportionality n is the burst 
coefficient from when infected cells die and release the virus. 
The equations are displayed below and represent a mm of an 
infected body at any given place.

Basic Model and Coefficient Estimates

For n=4 the equilibrium (5000,0,0) is a sink with eigenvalues
(-0.02,-0.037, -2.60) and the other equilibrium is not positive for 
I and V.  Below is a plot that shows the stable equilibrium. 
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parameters (5000,0,0) & (24000/n, 416.7-2000/n, 173.6n-833.3).
The Jacobian for the system is:

First Model Behavior

For n=100, (5000,0,0) is a saddle with eigenvalues -0.02, 2.31, 
and -4.95. The equilibrium (240, 396.7, 16527.8) is a spiral sink 
with eigenvalues are −2.68, −0.189±0.223". The virus population 
grows and solutions tend toward the second equilibrium.#$
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' is scaled to match [2]. The burst coefficient varies in the literature. For 
both our complex model and basic model we will explore !=100 and !=500, 

with the addition of !=10 for the basic model.
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The parameters /%, /&, and /'	are scaled to match [4]

Clonal Amplification
Clonal amplification is introduced with the addition of the 
term /%,$ to ',, which is the part of the equation that controls 
the production of new T-cells. This takes into account the 
cloning of healthy T-cells when healthy T-cells interact with 
infected T-cells. This is very similar to the term in the basic 
model *+$ where the creation of infected T-cells is 
proportional to  interaction with T-cells with a coefficient of 
infection. This is an important addition because one of the tell-
tale signs of an infection is a large increase in the white blood 
cell count which will affect the population of healthy T-Cells 
and in turn, the rest of the populations. This clonal 
amplification is carried into the rest of the populations.

Logistic Growth
Logistic growth is introduced with the addition of (1−$/1) 
multiplied by ('+ /%,$) which was added with the clonal 
amplification. This is an important addition because without it 
as %→∞ the population of T-cells could also go to infinity which 
as we know, is impossible in the body. This allows for a more 
grounded and accurate model to real life.

This model has a lower T-cell equilibrium than the first model 
due to the addition of a carrying capacity.

For n=500, (5000,0,0) is a saddle with eigenvalues 5.56, -0.004, 
and -9.89. The equilibrium (48, 412.7, 85972.2) is a spiral sink 
with eigenvalues−2.73, −0.06±0.187". The virus population 
grows and solutions tend toward the second equilibrium.
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Second Model Behavior
The points (1153, 0, 0) is an equilibrium for all !.  We suspect 
this is the only positive equilibrium !=100. There is a second 
equilibrium (71, 385, 69791) for !=500.  The Jacobian is
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For n=100 the eigenvalues of (1153, 0, 0) are −0.087, -8.578, 
and -1.008. All eigenvalues are negative. The equilibrium is a 
nodal sink and is stable for its long-term behavior.

For n=500, (1153, 0, 0) is a saddle because the eigenvalues are 
−0.087, 0.25, and -9.83.   The equilibrium (71, 385, 69791) is a 
nodal sink because the eigenvalues are -3.493, -0.687, -0.300.  
Solutions tend toward this stable equilibrium.

Parameter Description Value Reference
' Rate of production of new T-Cells 100 #89(%::(' [4]
)% Rate of death of uninfected cells 0.02 #89(% [4]
* Infection coefficient 2.4×10()	::' #89(% [4]
)& Rate of death of infected cells 0.24	#89(% [4]
n Burst coefficient of the virus >8?"@A [4]
c Rate of clearance of free virus 2.4	#89(% [4]
T0 Initial T-cell population 1000 cells ::(' [4]
I0 Initial infected cell population 0 cells ::(' [4]
V0 Initial virus population 0.001 cells ::(' [4]

Parameter Description Value Reference
/% Clonal amplification rate of T-cells after 

stimulation by infected cells

0.001	#89(% [1]

/& Removal rate of infected cells by CTL 

responses

0.001	#89(% [1]

/' Removal rate of free virus by antibodies 0.005 #89(% [1]

k Carrying capacity of Helper T-cells 1500	::(' [4]
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clonal amplification rate of T-cells after simulation by infected 
T-cells, and the removal rate of infected T-cells and virus by 
CTL responses and antibodies, respectively.

Logistic Growth and Clonal 
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as ! varies . That equilibrium shifted from unstable to stable at 
!=4.8 in the first model. In the second model that equilibrium 
shifted from stable to unstable when ! is between 412-413. 
When ! is below the critical value,  the virus population does 
not grow and cells do not become infected.

The virus in the second equilibrium increased as we increased 
!. When ! is above the critical value, the virus equilibrium 
increases significantly due to the increased bursting of virus 
after an infected T-cell dies.
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and models virus growth and infection rate. The variables T, I, 
and V represent Helper T-Cells (Susceptible), Infected T-Cells 
(Infected), and Viruses (Recovered), respectively. This model 
deviates from the standard SIR model by introducing a free 
virus population that grows proportionally to the death of 
infected cells. That constant of proportionality n is the burst 
coefficient from when infected cells die and release the virus. 
The equations are displayed below and represent a mm of an 
infected body at any given place.

Basic Model and Coefficient Estimates

For n=4 the equilibrium (5000,0,0) is a sink with eigenvalues
(-0.02,-0.037, -2.60) and the other equilibrium is not positive for 
I and V.  Below is a plot that shows the stable equilibrium. 

The equilibrium points are !
"!
, 0,0 	& #""

$% ,
#
$

!$
#""

− "!
% , !$#"" −

"!
% ,	 for our 

parameters (5000,0,0) & (24000/n, 416.7-2000/n, 173.6n-833.3).
The Jacobian for the system is:

First Model Behavior

For n=100, (5000,0,0) is a saddle with eigenvalues -0.02, 2.31, 
and -4.95. The equilibrium (240, 396.7, 16527.8) is a spiral sink 
with eigenvalues are −2.68, −0.189±0.223". The virus population 
grows and solutions tend toward the second equilibrium.#$

#% = ' − )%$ − *+$
#,
#% = *+$ − )&,

#+
#% = !, − -+

' is scaled to match [2]. The burst coefficient varies in the literature. For 
both our complex model and basic model we will explore !=100 and !=500, 

with the addition of !=10 for the basic model.

−)% − *+ 0 −*$
*+ −)& *$
0 ! −-

The parameters /%, /&, and /'	are scaled to match [4]

Clonal Amplification
Clonal amplification is introduced with the addition of the 
term /%,$ to ',, which is the part of the equation that controls 
the production of new T-cells. This takes into account the 
cloning of healthy T-cells when healthy T-cells interact with 
infected T-cells. This is very similar to the term in the basic 
model *+$ where the creation of infected T-cells is 
proportional to  interaction with T-cells with a coefficient of 
infection. This is an important addition because one of the tell-
tale signs of an infection is a large increase in the white blood 
cell count which will affect the population of healthy T-Cells 
and in turn, the rest of the populations. This clonal 
amplification is carried into the rest of the populations.

Logistic Growth
Logistic growth is introduced with the addition of (1−$/1) 
multiplied by ('+ /%,$) which was added with the clonal 
amplification. This is an important addition because without it 
as %→∞ the population of T-cells could also go to infinity which 
as we know, is impossible in the body. This allows for a more 
grounded and accurate model to real life.

This model has a lower T-cell equilibrium than the first model 
due to the addition of a carrying capacity.

For n=500, (5000,0,0) is a saddle with eigenvalues 5.56, -0.004, 
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For n=100 the eigenvalues of (1153, 0, 0) are −0.087, -8.578, 
and -1.008. All eigenvalues are negative. The equilibrium is a 
nodal sink and is stable for its long-term behavior.
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−0.087, 0.25, and -9.83.   The equilibrium (71, 385, 69791) is a 
nodal sink because the eigenvalues are -3.493, -0.687, -0.300.  
Solutions tend toward this stable equilibrium.
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Masked and Unmasked SIR Model

dSM/dt

dSU/dt

dIU/dt

dIM/dt

= -a(1-b)2 SMIM - a(1-b)SMIU  

= -a(1-b)SUIM - aSUIU

= a(1-b)SUIM + aSUIU  - cIU

= a(1-b)2SMIM + a(1-b)SMIU  - cIM

= c(IM+ IU)dR/dt



Analysis of Varying Effectiveness

25% Mask Effectiveness 75% Mask Effectiveness
Masked 50%
Unmasked 50%

Red = SM
Green = SU
Blue = IM
Purple = IU
Yellow = R

Time (days) Time (days)

Key observation: Wearing masks reduces infections in both the masked and 
unmasked populations.



% Recovered vs % Masked Population

Mask effectiveness = 0.75
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