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Section 1.4

Exercise Solution 1.4.1. General solution u(t) = t2/2 + C, particular
solution u(t) = t2/2 + 3.

Exercise Solution 1.4.3. General solution u(t) = et +C, particular solu-
tion u(t) = et + 3.

Exercise Solution 1.4.5. General solution u(t) = sin(t) + C, particular
solution u(t) = sin(t) + 1.

Exercise Solution 1.4.7. General solution v(t) = gt, particular solution
v(t) = gt+ v0.

Exercise Solution 1.4.9. General solution u(t) = t3/6+C1t+C2, partic-
ular solution u(t) = t3/6 + 3t+ 1.

Exercise Solution 1.4.11. General solution y(t) = −gt2/2 + C1t + C2,
particular solution y(t) = −gt2/2 + 10.

Exercise Solution 1.4.13. The input salt rate to the tank is 5 liter
min ×

50grams
liter = 250 grams

minute . The outflow rate of salt is 5 liter
min×

u(t)
100

grams
liter = u(t)

20
grams
minute .

The ODE is

u′(t) = 250− u(t)

20

with initial condition u(0) = 0. The solution is u(t) = 5000 − 5000e−t/20

grams. The solution rises from u(0) = 0 and asymptotically approaches u =
5000 grams of salt in the tank. The limiting concentration is 5000/100 = 50
grams per liter, the same as the incoming salt solution.
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Section 1.5

Exercise Solution 1.5.1.

(a) Momentum is mass times velocity, so has dimension MLT−1.

(b) Angular velocity is measured in radians per unit time, so has dimension
T−1.

(c) From force times distance we have [Fd] = [F ][d] = MLT−2L =
ML2T−2.

(d) Pressure is force per area, so has dimension MLT−2L−2 = ML−1T−2.

Exercise Solution 1.5.3. From v′ = P−kv we see that we need [v′] = [kv],
or LT−2 = [k]LT−1, so [k] = T−1.

Exercise Solution 1.5.5. The function u(t) has dimension M (mass), so
[u′(t)] = MT−1. Also, [r] = L3T−1 (volume per time) and [c1] = ML−3

(mass per volume). Also [V ] = L3. Then [rc1] = L3T−1ML−3 = MT−1

and [ru/V ] = L3T−1ML−3 = MT−1. Thus each of u′, rc1, and ru/V has
dimension MT−1 and the ODE is dimensionally consistent.

In the solution u(t) = c1V (1−e−rt/V ) we find that [−rt/V ] = L3T−1TL−3 =
1, so the argument to the exponential is dimensionless, and hence so is the
quantity (1 − e−rt/V ). The quantity [c1V ] = ML−3L3 = M has dimension
mass, and this is consistent with [u] = M .

Exercise Solution 1.5.7. We have [P ] = T , [2π] = 1, [r] = L, [G] =
M−1L3T−2, and [m] = M . Then

[2π
√
r3/(Gm)] = (1)L3/2M1/2L−3/2T 1M−1/2 = T

which is [P ], so this is dimensionally consistent.

Exercise Solution 1.5.9. We have [P ] = T , [ℓ] = L, [m] = M , and
[g] = LT−2. A formula of the form P = ℓambgc requires T = LaM bLcT−2c,
which leads to b = 0, a + c = 0,−2c = 1, so a = 1/2, b = 0, c = −1/2, and
then

P = K
√
ℓ/g

for some dimensionless constant K For the “linearized pendulum” this is
correct, with K = 2π; for the general nonlinear pendulum this is also correct,
but K depends on the initial angle of the pendulum.
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Exercise Solution 1.5.11. We have [f ] = T−1, [λ] = ML−1, [τ ] =
MLT−2, and [ℓ] = L. Then f = λaτ bℓc forces T−1 = MaL−aM bLbT−2bLc

or

a+ b = 0, ,−a+ b+ c = 0, −2b = −1

with solution a = −1/2, b = 1/2, and c = −1. Then

f =
K

ℓ

√
τ/λ

for some dimensionless constant K (which turns out as K = 1/2 in ideal
situations.)
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Section 2.1

Exercise Solution 2.1.1. Integrating factor e−t, general solution u(t) =
Cet − 3, specific solution is u(t) = 6et − 3.

Exercise Solution 2.1.3. Integrating factor e3t, general solution u(t) =
Ce−3t + 1, specific solution is u(t) = 4e−3t + 1.

Exercise Solution 2.1.5. Integrating factor e−t, general solution u(t) =
Cet − sin(t)− cos(t), specific solution is u(t) = 2et − sin(t)− cos(t).

Exercise Solution 2.1.7. Integrating factor e−t2/2, general solution u(t) =
Cet

2/2 − 1, specific solution is u(t) = 3et
2/2 − 1.

Exercise Solution 2.1.9. Integrating factor e− cos(t), general solution u(t) =
Ce− cos(t) − 1, specific solution is u(t) = 5e1e− cos(t) − 1 = 5e1−cos(t) − 1.

Exercise Solution 2.1.12.

(a) [k] = T−1.

(b) Write the ODE as u′(t) + ku(t) = 0 and use integrating factor ekt to
find u(t) = Ce−kt, Then u(0) = u0 implies C = u0, so u(t) = u0e

−kt.
Since k is positive the exponential decays to zero as t increases to
infinity.

(c) The equation u(t + ∆t) = u(t)/2 becomes u0e
−k(t+∆t) = u0e

−kt/2,
which simplifies to e−k∆t = 1/2. Solve for ∆t = ln(2)/k. This does
not depend on the variable t itself.

Exercise Solution 2.1.14. Write the ODE as x′(t) + x(t)/100 = 0.2 and
use integrating factor et/100 to find d(et/100x(t))/dt = 0.2et/100. Integrate to
find et/100x(t) = 20et/100 + C and so x(t) = 20 + Ce−t/100 is the general
solution. Then x(0) = 3 yields 20 + C = 3, so C = −17 and x(t) =
20− 17e−t/100.

Exercise Solution 2.1.16. The rate in is (0.2)(4) = 0.8 kg per minute,
and the rate out is (x(t)/400)(4) = x(t)/100 kg per minute. The ODE is
x′(t) = 0.8− x(t)/100 with x(0) = 0. The solution is x(t) = 80− 80e−t/100.
The amount of salt limits to 80 kg.

Exercise Solution 2.1.19.
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(a) Write the ODE as q′(t) + q(t)/RC = V0/R and use integrating factor
et/RC to obtain

d

dt
(q(t)et/RC) = (V0/R)et/RC .

Integrate to find
et/RCq(t) = V0Cet/RC +A

for some arbitrary constant of integration A. The general solution is
then q(t) = V0C + Ae−t/RC . If q(0) = 0 then A = −V0C and the
solution is q(t) = V0C(1− e−t/RC).

(b) As t → ∞ we find q(t) → V0C.

(c) With [C] = [q]/[V ] = M−1L−2T 2Q2 and [R] = ML2T−1Q−2 we find
[RC] = [R][C] = T .

(d) This occurs when e−t/RC = 1/100, which leads to t = RC ln(100) ≈
4.6RC.
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Section 2.2

Exercise Solution 2.2.1. General solution u(t) = Cet−3, specific solution
is u(t) = 6et − 3.

Exercise Solution 2.2.3. General solution u(t) = Ce−3t + 1, specific so-
lution is u(t) = 4e−3t + 1.

Exercise Solution 2.2.5. General solution u(t) = Ce− cos(t) − 1, specific
solution is u(t) = 5e1e− cos(t) − 1 = 5e1−cos(t) − 1.

Exercise Solution 2.2.7. General solution u(t) = Ce− cos(t), specific solu-
tion is u(t) = e1e− cos(t) = e1−cos(t).

Exercise Solution 2.2.9. General solution u(t) = ee
t
, specific solution is

u(t) = 3ee
t−1.

Exercise Solution 2.2.11. Separate variables as dv/(P − kv) = dt and
integrate to find − 1

k ln |P − kv| = t + C. Then ln |P − kv| = −kt + C and
so P − kv = Ce−kt (C ̸= 0, but again, C = 0 is permissible, it corresponds
to v(t) = P/k). Solve for v = P/k + Ce−kt and then v(0) = 0 implies
C = −P/k, so v(t) = P

k (1− e−kt).

Exercise Solution 2.2.13. It’s much easier to take the hint. With r̃ = r−h
and K̃ = ((1− h/r)K we find that

u′ = r̃u(1−u/K̃) = (r−h)u(1−ru/K(r−h)) = (r−h)u−ru/K = ru(1−u/K)−hu

which is the harvested logistic equation. The solution to the “standard”
logistic equation u′ = r̃u(1− u/K̃) is

u(t) =
K̃

1 + e−r̃t(K̃/u0 − 1)

=
(1− h/r)K

1 + e−(r−h)t(Ku0
(1− h/r)− 1)

.

Exercise Solution 2.2.15. Separate as dx/(0.2−x/100) = dt and integrate
to find −100 ln |0.2 − x/100| = t + C. Solve for x as x = 20 − Ce−t/100.
Then x = 3 when t = 0 yields C = 17, so x(t) = 20− 17e−t/100.
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Section 2.3

Exercise Solution 2.3.1. The ODE is u′ = f(t, u) with f(t, u) = u − 2t.
Then f(0, 0) = 0, f(0, 1) = 1, f(1, 0) = −2, f(1, 1) = −1. Crude slope field
shown in Figure 2.1.

Exercise Solution 2.3.3. The ODE is u′ = f(t, u) with f(t, u) = −u.
Then f(0, 1) = −1, f(0, 2) = −2, f(1, 1) = −1, f(1, 3) = −3. Crude slope
field shown in Figure 2.2.

Figure 2.1: Slope field for Exercise 2.3.1.

Exercise Solution 2.3.5. Slope field shown in Figure 2.3.

Exercise Solution 2.3.7. Slope field shown in Figure 2.4. In this case
u = 0 is an equilibrium solution.

Exercise Solution 2.3.9. Slope field shown in Figure 2.5. In this case
u = 0 and u = 3 are equilibrium solutions.

Exercise Solution 2.3.11. Slope field shown in Figure 2.6. In this case
u = 0 and u = 3 are equilibrium solutions.

Exercise Solution 2.3.13. The phase portrait is in Figure 2.7, solutions
with u(0) = 2 and u(0) = −2 in the right panel.
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Figure 2.2: Slope field for Exercise 2.3.3.

Exercise Solution 2.3.15. The phase portrait is in Figure 2.8, solutions
with v(0) = 0 and v(0) = 15/k in the right panel.

Exercise Solution 2.3.17. The phase portrait is in Figure 2.9, solutions
with u(0) = 1/2, u(0) = 3/2 in the right panel.

Exercise Solution 2.3.19. See Figure 2.10. Solution with u(0) = 0 in-
creases asymptotically to equilibrium at u = c1V , solution with u(0) = 2c1V
decreases asymptotically to equilibrium at u = c1V .

Exercise Solution 2.3.21. Take u′ = (u− 1)(u− 3) (the right side can be
multiplied by any positive constant).

Exercise Solution 2.3.23. Take u′ = −(u− 1)2(u− 3) (the right side can
be multiplied by any positive constant).

Exercise Solution 2.3.25. The ODE is u′ = f(u) with f(u) = hu − u2.
Here u = 0 and u = h are always the only fixed points. We have f ′(u) =
h− 2u. For h > 0 the fixed point at 0 is unstable (f ′(0) = h) and the fixed
point at u = h is stable (f ′(h) = −h). For h < 0 the stability is reversed. A
bifurcation occurs at h = 0. See Figure 2.11 for the bifurcation diagram.
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Figure 2.3: Slope field for Exercise 2.3.5.

Figure 2.4: Slope field for Exercise 2.3.7.
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Figure 2.5: Slope field for Exercise 2.3.9.

Figure 2.6: Slope field for Exercise 2.3.11.
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0 u

Figure 2.7: Phase portrait for u′ = −u (left) and some solutions (right).

11/k v

Figure 2.8: Phase portrait for v′ = 11−kv (left) and some solutions (right).

0 9/10 u

Figure 2.9: Phase portrait for u′(t) = u(t)(1 − u(t)) − u(t)/10 (left) and
some solutions (right).

c1V u

Figure 2.10: Phase portrait for u′(t) = rc1 − ru(t)/V .
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h h

hu = 0

u uu

h < 0 h = 0 h > 0

Figure 2.11: Bifurcation diagram for u′ = hu− u2.
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Section 2.4

Exercise Solution 2.4.1. Here f(t, u) = u+3, which is continuous for all
u and t. Also ∂f

∂u = 1, also continuous everywhere.

Exercise Solution 2.4.3. Here f(t, u) = 1/u, which is continuous near
u = 2 (everywhere except u = 0). Also ∂f

∂u = 1/u2, which is continuous near
u = 2.

Exercise Solution 2.4.6. Solution is u(t) = 2, maximum domain −∞ <
t < ∞.

Exercise Solution 2.4.8. Solution is u(t) = − ln(1− t), maximum domain
−∞ < t < 1.
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Section 3.1

Exercise Solution 3.1.1. Find u2 = 6.0, true solution is u(t) = 4et − 3
with u(1) ≈ 7.873.

Exercise Solution 3.1.3. Find u4 = 2.460, true solution is u(t) =
√
2t+ 4

with u(1) ≈ 2.449.

Exercise Solution 3.1.5. True solution is u(t) = 3 − e−t/3 and u(5) ≈
2.811124397. With h = 1, 0.1, 0.01 Euler estimates are 2.8683, 2.8164, 2.8116,
errors
0.0572, 0.005291, 0.000525, roughly. This is consistent with first order accu-
racy.

Exercise Solution 3.1.7. True solution is u(t) = 2/(1 − 2t), which has
an asymptote at t = 1/2. With h = 0.5, 0.1, 0.01, 0.001 the Euler estimates
are 4, 8.2182, 36.257, 217.64. It’s clear the Euler’s method is reproducing the
asymptotic blow-up.

Exercise Solution 3.1.11. The true solution is u(t) = 1/(1 − t), but
the maximum domain of this solution is (−∞, 1) (given that we started
at t = 0). Euler’s Method with step sizes h = 1, 0.1, 0.01, 0.001 produces
estimates for u(1) equal to 2, 6.13, 30.39, and 193.1. For u(2) we obtain
6, 5.65 × 10103,∞,∞ (the last two are really floating point overflow.) All
Euler estimates are nonsense, since we are trying to push the solution out
of its maximal domain.
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Section 3.2

Exercise Solution 3.2.1. Find u1 = 3.5, u2 = 7.5625. True solution is
u(t) = 4et − 3 with u(1) ≈ 7.873.

Exercise Solution 3.2.3. Find u1 = 2.12132, u2 = 2.23607, u3 = 2.34521, u4 =
2.44950. True solution is u(t) =

√
2t+ 4 with u(1) =

√
6 ≈ 2.44950.

Exercise Solution 3.2.5. For h = 1 we find approximation 2.8035; for
h = 0.1, 2.81106; for h = 0.01, 2.81112. True solution is u(t) = 3 − e−t/3

and u(5) = 3e−5/3 ≈ 2.81112.

Exercise Solution 3.2.7. For h = 0.5 we find approximation 7.0; for
h = 0.1, 23.76; for h = 0.01, 211.2; for h = 0.001, 2086. True solution is
u(t) = 1

1/2−t and u(0.5) is undefined (u limits to ∞ as t → 1/2 from the

left). Clearly the improved Euler iterates try to track this.

Exercise Solution 3.2.10. The true solution is u(t) = 1/(1 − t), but the
maximum domain of this solution is (−∞, 1) (given that we started at t = 0).
The improved Euler method with step sizes h = 1, 0.1, 0.01, 0.001 produces
estimates for u(2) equal to 133.65,∞,∞,∞ (the last three are really floating
point overflow.) All improved Euler estimates are nonsense, since we are
trying to push the solution out of its maximal domain.
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Section 3.3

Exercise Solution 3.3.1. Find u2 = 7.8694, true solution is u(t) = 4et−3
with u(1) = 4e− 3 ≈ 7.8731.

Exercise Solution 3.3.3. Find u4 = 2.44949, true solution is u(t) =√
2t+ 4 with u(1) =

√
6 ≈ 2.44949.

Exercise Solution 3.3.5. For h = 1 we find approximation 2.81108; for
h = 0.1, 2.81112; for h = 0.01, 2.81112. True solution is u(t) = 3 − e−t/3

and u(5) = 3e−5/3 ≈ 2.81112.

Exercise Solution 3.3.7. For h = 0.5 we find approximation 16.98; for
h = 0.1, 82.03; for h = 0.01, 819.9; for h = 0.001, 8199.1. True solution
is u(t) = 1

1/2−t and u(0.5) is undefined (u limits to ∞ as t → 1/2 from the

left). Clearly RK4 tries to track this.

Exercise Solution 3.3.10. The true solution is u(t) = 1/(1 − t), but the
maximum domain of this solution is (−∞, 1) (given that we started at t = 0).
The RK4 method with step sizes h = 1, 0.1, 0.01, 0.001 produces estimates
for u(2) equal to 1.67×1011,∞,∞,∞ (the last three are really floating point
overflow.) All RK4 estimates are nonsense, since we are trying to push the
solution out of its maximal domain.
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Section 3.4

Exercise Solution 3.4.1.

(a) The sum of squares function is

S(a) = (0.1a−0.11)2+(0.6a−0.5)2+(1.1a−0.6)2+(1.4a−0.5)2.

Setting S′(a) = 0 yields minimizer a ≈ 0.472, easily confirmed with a
graph of S(a). The residual is 0.0833. The fit to the data is shown in
Figure 3.12, left panel.

(b) The sum of squares function is

S(a, b) = (0.1a+b−0.11)2+(0.6a+b−0.5)2+(1.1a+b−0.6)2+(1.4a+b−0.5)2.

Setting ∂S
∂a = 0, ∂S∂b = 0 and solving for a and b yields minimizer

a ≈ 0.309, b ≈ 0.180, easily confirmed with a graph of S(a, b). The
residual is 0.0474. Of course this residual is smaller since throwing
b into the computation gives us “more to work with” when fitting the
data (informally). The fit to the data is shown in Figure 3.12, right
panel.

Figure 3.12: Best fit to data for Exercise 3.4.1, u(t) = at (left panel) and
u(a, b, t) = at+ b (right panel).

Exercise Solution 3.4.3. Forming an appropriate sum of squares S(k, P )
and minimizing by solving ∂S

∂k = 0, ∂S
∂P = 0 yields minimizer P ≈ 8.5997, k ≈

0.8072. A plot of the Hill-Keller solution with these parameters and the data
is shown in Figure 3.13.
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Figure 3.13: Position x(t) from Hill-Keller solution with P = 8.5997, k =
0.8072 (blue) and data from Tori Bowie’s 2017 race (red).

Exercise Solution 3.4.5. From the hint it’s easy to see that

S′′(m) = 2
n∑

j=1

x2j .

If any xj is nonzero then this quantity is positive. Also, given that S(m)
is of the form Am2 + Bm + C where A > 0, it’s clear that S(m) limits to
infinity as m → ±∞.
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Section 4.1

Exercise Solution 4.1.1. Suppose the mass is at position u(t) at time t.
In this position the spring on the left exerts force −k1u (pulling the mass
back to the left if u > 0, pushing it right if u < 0) and the spring on the right
exerts a similar force −k2u. If u′ > 0 (mass moving to the right) then the
dashpot on the left exerts force −c1u

′, and the dashpot on the right exerts
force −c2u

′. The total force on the mass is thus −(k1 + k2)u − (c1 + c2)u
′,

and Newton’s Second Law yields mu′′ = −(k1 + k2)u− (c1 + c2)u
′ or

mu′′ + (c1 + c2)u
′ + (k1 + k2)u = 0.

Exercise Solution 4.1.3.

(a) The ODE is

5000u′′(t) + (2× 104)u′(t) + (5× 105)u = 0.

(b) Compute

u(t) =

√
6e−2t

1200
sin(4

√
6t) +

e−2t

100
cos(4

√
6t)

u′(t) = −
√
6

24
e−2t sin(4

√
6t)

u′′(t) =

√
6e−2t

12
sin(4

√
6t)− e−2t cos(4

√
6t).

Simple algebra shows that the ODE is satisfied (write the ODE as
5000(u′′(t)+ 4u′(t)+ 100u(t)) = 0). A plot of the solution is shown in
the left panel of Figure 4.14.

(c) The building goes through a full oscillation in P seconds where 4
√
6P =

2π, so P = π/(2
√
6) ≈ 0.64 seconds.

(d) The acceleration u′′(t) is graphed in the middle panel of Figure 4.14.
Maximum occurs initially, 1 meter per second squared, about 1/9.8 ≈
0.102 g’s.

(e) The ODE is now

5000u′′(t) + (5× 105)u = 0.

A solution of the form u(t) = u0 cos(ω) exists if ω = 10, and taking
u0 = 0.01 yields the initial data. The solution is graphed in the right
panel of Figure 4.14.
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Figure 4.14: Solution u(t) =
√
6e−2t

1200 sin(4
√
6t) + e−2t

100 cos(4
√
6t) (left panel)

and u′′(t) (middle panel), undamped displacement (right panel).

Exercise Solution 4.1.5. The ODE is

10−3q′′(t) + 10q′(t) + 104q(t) = 3.

And equilibrium solution q(t) = q∗ occurs when 104q∗ = 3 (since q′′ = q′ = 0)
and so q∗ = 3×10−4 coulombs. The current in the circuit is I(t) = q′(t) = 0.
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Section 4.2

Exercise Solution 4.2.1. ODE is 3u′′(t) + 24u′(t) + 60u(t) = 0, charac-
teristic equation 3r2 + 24r + 60 = 0, roots −4± 2i, underdamped.

Exercise Solution 4.2.3. ODE is 2u′′(t) + 12u′(t) + 10u(t) = 0, charac-
teristic equation 2r2 + 12r + 10 = 0, roots −1,−5, overdamped.

Exercise Solution 4.2.5. ODE is 2u′′(t) + 4u′(t) + 10u(t) = 0, character-
istic equation 2r2 + 4r + 10 = 0, roots −1± 2i, underdamped.

Exercise Solution 4.2.7. ODE is 2u′′(t) + 12u′(t) + 18u(t) = 0, charac-
teristic equation 2r2 + 12r + 18 = 0, double root −3, critically damped.

Exercise Solution 4.2.9. ODE is 2u′′(t)+8u′(t)+6u(t) = 0, characteristic
equation 2r2 + 8r + 6 = 0, roots −1,−3, overdamped.

Exercise Solution 4.2.11. ODE is u′′(t)+6u′(t)+8u(t) = 0, characteristic
equation r2+6r+8 = 0, roots −2,−4, general solution u(t) = c1e

−2t+c2e
−4t.

Specific solution is u(t) = 11e−2t/2− 7e−4t/2.

Exercise Solution 4.2.13. ODE is 2u′′(t) + 10u′(t) + 12u(t) = 0, charac-
teristic equation 2r2 + 10r + 12 = 0, roots −2,−3, general solution u(t) =
c1e

−2t + c2e
−3t. Specific solution is u(t) = 9e−2t − 7e−3t.

Exercise Solution 4.2.15. ODE is 2u′′(t) + 10u′(t) + 8u(t) = 0, charac-
teristic equation 2r2 + 10r + 86 = 0, roots −1,−4, general solution u(t) =
c1e

−t + c2e
−4t. Specific solution is u(t) = 11e−t/3− 5e−4t/3.

Exercise Solution 4.2.17. ODE is 3u′′(t) + 18u′(t) + 24u(t) = 0, charac-
teristic equation 3r2 + 18r + 24 = 0, roots −2,−4, general solution u(t) =
c1e

−2t + c2e
−4t. Specific solution is u(t) = 11e−2t/2− 7e−4t/2.

Exercise Solution 4.2.19. ODE is u′′(t)+4u′(t)+5u(t) = 0, characteristic
equation r2 + 4r + 5 = 0, roots −2± i, general solution u(t) = c1e

(−2+i)t +
c2e

(−2−i)t. Specific solution is u(t) = (1− 4i)e(−2+i)t +(1+ 4i)e(−2−i)t. The
real-valued general solution is u(t) = d1e

−2t cos(t) + d2e
−2t sin(t) and with

the initial conditions yields specific solution u(t) = 2e−2t cos(t)+8e−2t sin(t).

Exercise Solution 4.2.21. ODE is 2u′′(t) + 16u′(t) + 64u(t) = 0, charac-
teristic equation 2r2 + 16r + 64 = 0, roots −4± 4i, general solution u(t) =
c1e

(−4+4i)t+ c2e
(−4−4i)t. Specific solution is u(t) = (1−3i/2)e(−4+4i)t+(1+

3i/2)e(−4−4i)t. The real-valued general solution is u(t) = d1e
−4t cos(4t) +

d2e
−4t sin(4t) and with the initial conditions yields specific solution u(t) =

2e−4t cos(4t) + 3e−4t sin(4t).
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Exercise Solution 4.2.23. ODE is 2u′′(t) + 8u′(t) + 10u(t) = 0, charac-
teristic equation 2r2 + 8r + 10 = 0, roots −2 ± i, general solution u(t) =
c1e

(−2+i)t + c2e
(−2−i)t. Specific solution is u(t) = (1 − 4i)e(−2+i)t + (1 +

4i)e(−2−i)t. The real-valued general solution is u(t) = d1e
−2t cos(t)+d2e

−2t sin(t)
and with the initial conditions yields specific solution u(t) = 2e−2t cos(t) +
8e−2t sin(t).

Exercise Solution 4.2.25. ODE is 2u′′(t) + 16u′(t) + 50u(t) = 0, char-
acteristic equation 2r2 + 16r + 50 = 0, roots −4 ± 3i, general solution
u(t) = c1e

(−4+3i)t+c2e
(−4−3i)t. Specific solution is u(t) = (1−2i)e(−4+3i)t+

(1 + 2i)e(−4−3i)t. The real-valued general solution is u(t) = d1e
−4t cos(3t) +

d2e
−4t sin(3t) and with the initial conditions yields specific solution u(t) =

2e−4t cos(3t) + 4e−4t sin(3t).

Exercise Solution 4.2.27. ODE is u′′(t)+4u′(t)+4u(t) = 0, characteristic
equation r2 + 4r + 4 = 0, double root −2, general solution u(t) = c1e

−2t +
c2te

−2t. Specific solution is u(t) = 2e−2t + 8te−2t.

Exercise Solution 4.2.29. ODE is 2u′′(t) + 8u′(t) + 8u(t) = 0, charac-
teristic equation 2r2 + 8r + 8 = 0, double root −2, general solution u(t) =
c1e

−2t + c2te
−2t. Specific solution is u(t) = 2e−2t + 8te−2t.

Exercise Solution 4.2.31.

(a) The ODE is 20000u′′(t) + 80000u′(t) + 60000u(t) = 0, with u(0) = 0
and u′(0) = 0.1. The characteristic equations is 20000(r2 + 4r + 3) =
20000(r+1)(r+3) = 0, roots r = −1,−3. The general solution to the
ODE is u(t) = c1e

−t + c2e
−3t and the initial data requires c1 + c2 =

0,−c1−3c2 = 0.1, solution c1 = 0.05, c2 = −0.05. The solution is thus
u(t) = 0.05e−t − 0.05e−3t. This system is overdamped. A plot of u(t)
is shown in the left panel of Figure 4.15.

(b) The ODE is 20000u′′(t)+40000u′(t)+60000u(t) = 0, with u(0) = 0 and
u′(0) = 0.1. The characteristic equations is 20000(r2 + 2r + 3) = 0,
roots r = −1 ± i

√
2. The general solution to the ODE is u(t) =

c1e
(−1+i

√
2)t + c2e

(−1−i
√
2)t and the initial data requires c1 + c2 =

0, (−1 + i
√
2)c1 + (−1 − i

√
2)c2 = 0.1, solution c1 = −i

√
2/40 ≈

−0.0353i, c2 = i
√
2/40 ≈ 0.0353i. The real-valued version of the so-

lution is u(t) =
√
2e−t sin(t

√
2)/20. This system is underdamped. A

plot of u(t) is shown in the right panel of Figure 4.15.

(c) The ODE is 20000u′′(t)+60000u(t) = 0, with u(0) = 0 and u′(0) = 0.1.
The characteristic equations is 20000(r2 + 3) = 0, roots r = ±i

√
3.
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The general solution to the ODE is u(t) = c1e
it
√
3 + c2e

−it
√
3 and the

initial data requires c1 + c2 = 0, i
√
3c1 − i

√
3c2 = 0.1, solution c1 =

−i
√
3/60 ≈ −0.0289i, c2 = i

√
6/60 ≈ 0.0289i. The real-valued version

of the solution is u(t) =
√
3 sin(t

√
3)/30. This system is underdamped.

A plot of u(t) is shown in the left panel of Figure 4.16.

(d) The choice c = 40000
√
3 ≈ 69282 yields a critically damped system.

The ODE is 20000u′′(t)+40000
√
3u′(t)+60000u(t) = 0, with u(0) = 0

and u′(0) = 0.1. The characteristic equations is 20000(r2 + 2
√
3r +

3) = 0, double root r = −
√
3. The general solution to the ODE is

u(t) = c1e
−t

√
3 + c2te

−t
√
3 and the initial data requires c1 = 0 and

c2 = 1/10. The solution is u(t) = te−t
√
3/10. A plot of u(t) is shown

in the right panel of Figure 4.16.

Figure 4.15: Solution to 20000u′′(t) + 80000u′(t) + 60000u(t) = 0 (left) and
20000u′′(t)+40000u′(t)+60000u(t) = 0 (right), both with u(0) = 0, u′(0) =
0.1.

Figure 4.16: Solution to 20000u′′(t)+ 60000u(t) = 0 (left) and 20000u′′(t)+
40000

√
3u′(t) + 60000u(t) = 0 (right), both with u(0) = 0, u′(0) = 0.1.

Exercise Solution 4.2.33.
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(a) This system is an undamped spring-mass system.

(b) The characteristic equation is r2 + gr/L = 0 with roots r = ±i
√
g/L.

The general solution will be of the form

θ(t) = c1 cos(t
√

g/L) + c2 sin(t
√

g/L).

(c) The period is P = 2π/
√
g/L = 2π

√
L/g. This makes perfect sense:

period increases as L increases, decreases as g decreases. Moreover,
[g] = LT−2, [L] = L, and so [P ] = T .

Exercise Solution 4.2.35.

(a) The identity sin(x+ y) = sin(x) cos(y)+ cos(x) sin(y) with x = ωt and
y = ϕ becomes (after multiplying by C)

C sin(ωt+ ϕ) = C sin(ωt) cos(ϕ) + C cos(ωt) sin(ϕ).

Comparison of the right side above to A cos(ωt)+B sin(ωt) shows they
will be identical as functions of t is C sin(ϕ) = A and C cos(ϕ) = B.

(b) Squaring each side of each of C sin(ϕ) = A and C cos(ϕ) = B and
adding yields C2 = A2 +B2, so C =

√
A2 +B2.

(c) Take the quotient of the left and right sides of C sin(ϕ) = A and
C cos(ϕ) = B to obtain tan(ϕ) = A/B or ϕ = arctan(A/B) if B > 0.
If B < 0, A > 0 then ϕ = arctan(A/B)+π, while if B < 0, A < 0 then
ϕ = arctan(A/B)− π.
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Section 4.3

Exercise Solution 4.3.1. uh(t) = c1e
−4t + c2e

−5t, up(t) = e−3t. General
solution u(t) = e−3t+c1e

−4t+c2e
−5t, specific solution u(t) = e−3t+11e−4t−

10e−5t.

Exercise Solution 4.3.3. uh(t) = c1e
−4t cos(4t)+c2e

−4t sin(4t), up(t) = 1.
General solution u(t) = 1 + c1e

−4t cos(4t) + c2e
−4t sin(4t), specific solution

u(t) = 1 + e−4t cos(4t) + 7e−4t sin(4t)/4.

Exercise Solution 4.3.5. uh(t) = c1e
−t + c2e

−3t, up(t) = 3t− 4. General
solution u(t) = 3t−4+c1e

−t+c2e
−3t, specific solution u(t) = 3t−4+9e−t−

3e−3t.

Exercise Solution 4.3.7. uh(t) = c1e
−t + c2e

−4t, up(t) = − cos(3t)/5 −
sin(3t)/15. General solution u(t) = c1e

−t + c2e
−4t − cos(3t)/5− sin(3t)/15,

specific solution u(t) = 4e−t − 9e−4t/5− cos(3t)/5− sin(3t)/15.

Exercise Solution 4.3.9. uh(t) = c1e
−3t/2 + c2te

−3t/2, up(t) = t2/9 −
5t/27 + 4/27. General solution u(t) = c1e

−3t/2 + c2te
−3t/2 + t2/9− 5t/27 +

4/27, specific solution u(t) = 50e−3t/2/27 + 161te−3t/2/27 + t2/9− 5t/27 +
4/27.

Exercise Solution 4.3.11. uh(t) = c1e
−2t + c2e

−5t, up(t) = −e−3t(2t2 +
2t+3). General solution u(t) = −e−3t(2t2+2t+3)+c1e

−2t+c2e
−5t, specific

solution u(t) = −e−3t(2t2 + 2t+ 3) + 7e−2t − 2e−5t.

Exercise Solution 4.3.13. uh(t) = c1e
−t cos(3t) + c2e

−t sin(3t), up(t) =
e−2t. General solution u(t) = e−2t + c1e

−t cos(3t) + c2e
−t sin(3t), specific

solution u(t) = e−2t + e−t cos(3t) + 2e−t sin(3t).

Exercise Solution 4.3.15. uh(t) = c1e
−2t cos(3t) + c2e

−2t sin(3t), up(t) =
te−2t. General solution u(t) = te−2t+ c1e

−2t cos(3t)+ c2e
−2t sin(3t), specific

solution u(t) = te−2t + 2e−2t cos(3t) + 2e−2t sin(3t).

Exercise Solution 4.3.17. uh(t) = c1e
−t + c2e

−4t, up(t) = − cos(2t).
General solution u(t) = − cos(2t) + c1e

−t + c2e
−4t, specific solution u(t) =

− cos(2t) + 5e−t − 2e−4t.

Exercise Solution 4.3.19. uh(t) = c1e
−2t + c2e

−5t, up(t) = 5t/2 − 1/4.
General solution u(t) = 5t/2−1/4+ c1e

−2t+ c2e
−5t, specific solution u(t) =

5t/2− 1/4 + 47e−2t/12− 5e−5t/3.
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Exercise Solution 4.3.21. uh(t) = c1e
−t cos(t)+c2e

−t sin(t), up(t) = (5t−
2) cos(t) + (10t− 14) sin(t). General solution u(t) = (5t− 2) cos(t) + (10t−
14) sin(t)+c1e

−t cos(t)+c2e
−t sin(t), specific solution u(t) = (5t−2) cos(t)+

(10t− 14) sin(t) + 4e−t cos(t) + 16e−t sin(t).

Exercise Solution 4.3.23. uh(t) = c1 cos(t) + c2 sin(t), up(t) = t, general
solution u(t) = t+ c1 cos(t) + c2 sin(t), specific solution u(t) = t+2 cos(t) +
2 sin(t).

Exercise Solution 4.3.24. uh(t) = c1e
−4t+c2e

−5t, up(t) = 2te−4t, general
solution u(t) = 2te−4t + c1e

−4t + c2e
−5t, specific solution u(t) = 2te−4t +

11e−4t − 9e−5t.

Exercise Solution 4.3.26. uh(t) = c1e
−t+c2e

−3t, up(t) = −te−3t, general
solution u(t) = −te−3t + c1e

−t + c2e
−3t, specific solution u(t) = −te−3t +

5e−t − 3e−3t.

Exercise Solution 4.3.28. uh(t) = c1e
−t cos(t) + c2e

−t sin(t), up(t) =
−te−t cos(t), general solution u(t) = −te−t cos(t)+c1e

−t cos(t)+c2e
−t sin(t),

specific solution u(t) = −te−t cos(t) + 2e−t cos(t) + 6e−t sin(t).

Exercise Solution 4.3.30. uh(t) = c1e
−2t cos(2t) + c2e

−2t sin(2t), up(t) =
4te−2t sin(2t), general solution u(t) = 4te−2t sin(2t)+c1e

−2t cos(2t)+c2e
−2t sin(2t),

specific solution u(t) = 4te−2t sin(2t) + 2e−2t cos(2t) + 7e−2t sin(2t)/2.

Exercise Solution 4.3.32. uh(t) = c1 cos(t)+c2 sin(t), up(t) = −t cos(t)/2,
general solution u(t) = −t cos(t)/2 + c1 cos(t) + c2 sin(t), specific solution
u(t) = −t cos(t)/2 + 2 cos(t) + 7 sin(t)/2.

Exercise Solution 4.3.33. Substituting up(t) = Aeat into mu′′(t)+cu′(t)+
ku(t) = eat produces A(ma2+ ca+k)eat = eat, so that A(ma2+ ca+k) = 1.
Since a is not a root of the characteristic equation, ma2+ ca+ k ̸= 0 and so
we can solve uniquely for A as A = 1/(ma2 + ca+ k).

Exercise Solution 4.3.35.

(a) The solution is now

u(t) ≈ −0.03 + 0.005e−1.51t + 0.0251e−215.9t.

The graph is shown in the left panel of Figure 4.17. The maximum
deflection is now −0.03, but the solution is much more “abrupt” near
t = 0, e.g., subjects the rider to a much higher acceleration.
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(b) The solution is now

u(t) ≈ −0.03− 0.403e−13.04t sin(12.49t) + 0.03e−13.04t cos(12.49t).

The graph is shown in the right panel of Figure 4.17. The maximum
deflection is now −0.146 (which would actually bottom out the shock
at a 140mm travel). A significantly underdamped system would feel
unpleasantly “bouncy.”

Figure 4.17: Solution to shock absorber ODE with c = 104 (left) and c =
1000 (right).
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Section 4.4

Exercise Solution 4.4.1. G(ω) = 1/
√
(2ω2 − 8)2 + ω2. Resonance occurs

at ω =
√
62/4 ≈ 1.969. A plot is shown in Figure 4.18. Periodic response

is −9 sin(4 t)
74 − 3 cos(4 t)

148 with amplitude 3
√
37/148 ≈ 0.123.

Exercise Solution 4.4.3. G(ω) = 1/2
√
ω4 − 16ω2 + 100. Resonance oc-

curs at ω = 2
√
2 ≈ 2.828. A plot is shown Figure 4.19. Periodic response

is 5 sin(2 t)
26 + 15 cos(2 t)

52 with amplitude 5
√
13/52 ≈ 0.347.

Exercise Solution 4.4.5. The gain is the same as part (d), G(ω) =
1/2

√
100ω4 − 999ω2 + 2500, and again resonance occurs at ω = 3

√
222/20 ≈

2.235. A plot is shown in Figure 4.20. Periodic response is −(5.26 ×
10−4) sin(10t)− (5.54×10−6) cos(10t), amplitude 5.26×10−4. Much smaller
than (d), even though the amplitude of the driving force is the same.

Exercise Solution 4.4.7. G(ω) = 1/
√

(ω2 − 1)2 + 100ω2. Resonance does
not occur here. A plot is shown in Figure 4.21. Periodic response is
−6 cos(2 t)

409 + 40 sin(2 t)
409 ≈ (−0.0147 cos (2.0 t) + 0.0978 sin (2.0 t)) with ampli-

tude 2/
√
409 ≈ 0.0989.
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Figure 4.18: Gain function for Exercise 4.4.1.

Exercise Solution 4.4.10. The gain function is

G(ω) =
1√

(Lω2 − 1/C)2 +R2ω2
.

If resonance occurs for ω > 0 then G′(ω) = 0 at that frequency, which leads
to

G′(ω) = − ω(2CL2ω2 + CR2 − 2L)

C((Lω2 − 1/C)2 +R2ω2)3/2
= 0.
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Figure 4.19: Gain function for Exercise 4.4.3.
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Figure 4.20: Gain function for Exercise 4.4.5.

The numerator is zero for ω > 0 when 2CL2ω2+R2C−2L = 0, which yields

ω =

√
4L/C − 2R2

2L
.

Exercise Solution 4.4.12. The gain function is

G(ω) =
1

(mω2 − k)2 + c2ω2
.

Resonance occurs at ωres =
√
k/m− (c/m)2/2. Then (mω2

res − k)2 =
c4/4m2 while c2ω2

res = c4/2m2 + kc2/m. Then

(mω2
res − k)2 + c2ω2

res = kc2/m− c4/4m2 = c2(k/m− c2/4m2).

Then
√

(mω2
res − k)2 + c2ω2

res = c
√
k/m− c2/4m2 = cωnat so that the peak

gain at resonance is

G(ωres) =
1

cωnat
.
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Figure 4.21: Gain function for Exercise 4.4.7.

Exercise Solution 4.4.14.

(a) Here ωres ≈ 0.98, ω− ≈ 0.748, ω+ ≈ 1.166, and Q ≈ 2.345.

(c) Here ωres ≈ 3.162, ω− ≈ 3.137, ω+ ≈ 3.187, and Q ≈ 63.24.

(e) In this case no real computation is needed—it’s clear the we should
take “Q = ∞”.

Note that in (b)-(d) the quantity Q scales in proportion to 1/c.

Exercise Solution 4.4.16.

(a) Here the solution is u(t) ≈ −5.263 cos(t)+5.263 cos(0.9t) with ω0 = 1,
ω = 0.9, and δ = 0.1. The period of the beats is 20π ≈ 62.8. See
Figure 4.22

(c) Here the solution is u(t) ≈ −2.564 cos(2t)+2.564 cos(1.9t) with ω0 = 2,
ω = 1.9, and δ = 0.1. The period of the beats is 20π ≈ 62.8. See Figure
4.23
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Figure 4.22: Solution u(t) for part (a) of Exercise 4.4.16.
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Figure 4.23: Solution u(t) for part (c) of Exercise 4.4.16.
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Section 4.5

Exercise Solution 4.5.1. We find [k] = T−1. If tc = kαuβ0 then taking
the dimension of each side yields T = T−αMβ which forces α = −1, β = 0,
and so tc = k−1. Since [u0] = M , any characteristic mass scale of the form

uc = kαuβ0 has M = T−αMβ, so α = 0, β = 1, and uc = u0. With τ =
t/tc = kt or t = τ/k and u(t) = ucū(τ) = u0ū(kt) we find du/dt = ku0

dū
dτ

and the ODE du/dt = −ku becomes ku0
dū
dτ = −ku0ū or dū/dt = −ū with

initial data ū(0) = u0/u0 = 1.

Exercise Solution 4.5.3. We find [u′] = ΘT−1, and since [u] = [A] = Θ
we must have k = T−1. We try a characteristic time scale of the form

tc = kαAβ.

This leads to M0L0T 1Θ0 = M0T−αL0Θβ with solution α = −1, β = 0.
The only characteristic scale of this form is tc = 1/k. Similarly consider a
characteristic scale for u of the form

uc = kαAβ.

This leads to M0L0T 0Θ1 = M0T−αL0Θβ with solution α = 0, β = 1. The
only characteristic scale of this form is uc = A.

Take τ = t/tc = kt (so t = τ/k) and ū = u/uc = u/A (so u(t) =
Aū(τ)). Then du/dt = A

tc
dū/dτ = kAdū/τ . The Newton cooling ODE

du/dt = −k(u−A) becomes kAdū/dτ = −k(Aū−A) or

dū

dτ
= −(ū− 1).

The initial condition u(0) = u0 becomes ū(0) = u0/A. The characteristic
scale uc = A is exactly the ambient temperature to which all solutions decay.

Exercise Solution 4.5.5. We have [u] = M and so [u′] = MT−1. Also
[V ] = L3, [r] = L3T−1 and [c1] = ML−3. A characteristic time scale is of
the form

tc = V αrβcγ1

which leads to M0L0T 1 = MγL3α+3β−3γT−β. We conclude that γ = 0, 3(α+
β − γ) = 0,−β = 1, with solution α = 1, β = −1, γ = 0. That is, tc = V/r.

A characteristic mass scale uc for u is of the form

uc = V αrβcγ1
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which leads to M1L0T 0 = MγL3α+3β−3γT−β. We conclude that γ = 1, 3(α+
β − γ) = 0,−β = 0, with solution α = 1, β = 0, γ = 1. That is, uc = c1V .

We then have τ = t/tc = rt/V or t = V τ/r. Also, ū(τ) = u(t)/uc =
u(t)/(c1V ) or u(t) = c1V ū(τ). Then du/dt = c1V

dū
dτ

dτ
dt = rc1dūdτ . The

original ODE du/dt = rc1 − ru/V becomes, after cancellations,

dū

dτ
= 1− ū(τ).
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Section 5.1

Exercise Solution 5.1.1.

(a) The solution is u1(t) ≈ 5.78− 0.78e−kt for 0 < t < 12.

(b) The initial data for u2(t) is u2(12) = u1(12) ≈ 5.683 mg. Then u2(t) ≈
8.67 − 2.99e−k(t−12). This can also be expressed as u2(t) ≈ 8.67 −
23.82e−kt.

(c) The function u3(t) will satisfy u3(18) = u2(18) + 5 ≈ 7.61 mg, with
u′3 = −ku3+1 for t > 18. The solution is u3(t) ≈ 5.78+6.83e−k(t−18)

or alternatively, as u3(t) ≈ 5.78 + 153.79e−kt.

(d) The solution is plotted in Figure 5.24.
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Figure 5.24: Amount of morphine (mg) in patient’s system.

Exercise Solution 5.1.5. The relevant ODE for 0 < t < 0.003 is 10q′(t)+
104q(t) = 2 with initial condition q(0) = 0. The solution is q = q1 where
q1(t) = (1 − e−1000t)/5000. For t > 0.003 the ODE becomes 10q′(t) +
104q(t) = 5 with initial condition q(0.003) = q1(0.003) ≈ 0.00019. The solu-
tion to this ODE is q = q2 with q2(t) ≈ 5× 10−4 − (6.226× 10−3)e−1000t ≈
5×10−4− (3.1×10−4)e−1000(t−0.003). At t = 0.005 the charge is q2(0.005) ≈
4.58× 10−4.
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Section 5.2

Exercise Solution 5.2.1. F (s) = 6/s3.

Exercise Solution 5.2.3. P (s) = (s+ 3)/((s+ 3)2 + 49)

Exercise Solution 5.2.6. Use linearity. f(t) = t− 2

Exercise Solution 5.2.8. Write G(s) = 2 s
s2+4

+ 2
s2+4

so g(t) = 2 cos(2t)+
sin(2t).

Exercise Solution 5.2.10. From L−1(2/s3) = t2 it follows that f(t) =
t2e−3t.

Exercise Solution 5.2.11. The poles of F (s) are at s = −1 and s = −2
(both multiplicity 1), so f(t) is a linear combination of e−t and e−2t.

Exercise Solution 5.2.13. The poles of F (s) are at s = i and s = −i, both
of multiplicity 1, so f(t) is a linear combination of eit and e−it, or sin(t)
and cos(t).

Exercise Solution 5.2.15. F (s) has a pole at s = 1 of multiplicity 3 and
poles at s = −1± i of multiplicity 1, so f(t) will contain terms et, tet, t2et,
and e(−1+i)t, e(−1−i)t. These last two terms are equivalent to e−t sin(t) and
e−t cos(t).

Exercise Solution 5.2.18. Laplace transform both sides of the ODE and
fill in the initial data to find sU(s) − 6 = 2U(s), so U(s) = 6/(s − 2) and
u(t) = 6e2t.

Exercise Solution 5.2.21. Laplace transform both sides of the ODE, fill
in the initial data, and collect the U(s) terms on the left, all other terms on
the right to find (s2 + 3s+ 2)U(s) = 6s+ 22. Then

U(s) =
6s+ 22

s2 + 3s+ 2
=

16

s+ 1
− 10

s+ 2

after a partial fraction decomposition. Then u(t) = 16e−t − 10e−2t.

Exercise Solution 5.2.23. Laplace transform both sides of the ODE, fill
in the initial data, and collect the U(s) terms on the left, all other terms on
the right to find (s2 + 2s+ 10)U(s) = s+ 4. Then

U(s) =
s+ 4

s2 + 2s+ 10
=

s+ 4

(s+ 1)2 + 32
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after completing the square in the denominator. This can also be written

U(s) =
3

(s+ 1)2 + 32
+

s+ 1

(s+ 1)2 + 32

which has inverse transform u(t) = e−t sin(3t) + e−t cos(3t).

Exercise Solution 5.2.25. Laplace transform both sides of the ODE, fill
in the initial data, and collect the U(s) terms on the left, all other terms on
the right to find (3s2 + 6s+ 6)U(s) = 3s. Then

U(s) =
s

s2 + 2s+ 2
=

s

(s+ 1)2 + 1

after completing the square in the denominator. This can also be written

U(s) =
s+ 1

(s+ 1)2 + 1
− 1

(s+ 1)2 + 1

which has inverse transform u(t) = e−t cos(t)− e−t sin(t).

Exercise Solution 5.2.33.

(a) If f(t) = 1 then F (s) = 1/s. Also, limt→0+ f(t) = 1 and lims→∞ sF (s) =
1.

(c) If f(t) = et then F (s) = 1/(s − 1). Also, limt→0+ f(t) = 1 and
lims→∞ sF (s) = 1.

Exercise Solution 5.2.34.

(a) If f(t) = 4 then F (s) = 4/s. Here F has a pole at s = 0 of mul-
tiplicity 1, so the theorem is applicable. Also, limt→∞ f(t) = 4 and
lims→0+ sF (s) = 4.

(c) If f(t) = t4e−t then F (s) = 24/(s+1)5. Here F has a pole at s = −1 so
the theorem is applicable. Also, limt→∞ f(t) = 0 and lims→0+ sF (s) =
0.

Exercise Solution 5.2.37. This equation is nonlinear. There is no simple
way to relate the transform L(u2(t)) to L(u(t)).

Exercise Solution 5.2.38.

(a) From the rule for first derivatives we have

L(f ′′′) = L((f ′′)′) = sL(f ′′)− f ′′(0).

Using the rule for L(f ′′) = s2F (s) − sf(0) − f ′(0) yields L(f ′′′) =
s3F (s)− s2f(0)− sf ′(0)− f ′′(0).
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Exercise Solution 5.2.39.

(a) When k = 1 the expression is (−1)(1/t)2F ′(1/t) = 1/(1 + t)2 (use
F ′(s) = −1/(s+1)2.) A plot of 1/(1+ t)2 and e−t is shown in the left
panel of Figure 5.25.

(b) When k = 2 the expression is ((−1)2/2)(2/t)3F ′′(2/t) = 1/(1 + t/2)3

(use F ′′(s) = 2/(s+ 1)3.) A plot of 1/(1 + t/2)3 and e−t is shown in
the right panel of Figure 5.25.
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Figure 5.25: Left panel: Graph of e−t (red,solid) and 1/(1 + t)2 (blue,
dashed). Right panel: Graph of e−t (red,solid) and 1/(1 + t/2)3 (blue,
dashed).



39

Section 5.3

Exercise Solution 5.3.1. f(t) = 7H(t− 5).

Exercise Solution 5.3.3. f(t) = 2(1−H(t−3))+5(H(t−3)−H(t−6))−
3H(t− 6) = 2 + 3H(t− 3)− 8H(t− 6).

Exercise Solution 5.3.6. We find

� F (s) = 7e−5s/s.

� F (s) = 2/s+ 3e−3s/s− 8e−6s/s.

Exercise Solution 5.3.7. The inverse transform of 2/s2 is 2t, so by the
second shifting theorem f(t) = 2H(t− 3)(t− 3).

Exercise Solution 5.3.9. The inverse transform of (3s + 2)/(s2 + 4) =
3s/(s2 + 4) + 2/(s2 + 4) is 3 cos(2t) + sin(2t) so g(t) = H(t− 5)(3 cos(2(t−
5)) + sin(2(t− 5))).

Exercise Solution 5.3.12. Transform both sides of the ODE and use the
initial data to find sU(s)− 1 = −2U(s)+4e−5s/s. Then U(s) = 1/(s+2)+
4e−5s/(s(s + 2)). The inverse transform of 1/(s + 2) is e−2t. The inverse
transform of 1/(s(s + 2)) = 1/(2s) − 1/(2(s + 2)) is 1/2 − e−2t/2 so the
inverse transform of 4e−5s/(s(s+2)) is 4H(t−5)(1− e−2(t−5))/2. All in all
u(t) = e−2t + 2H(t− 5)(1− e−2(t−5)). Graph shown in Figure 5.26.
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Figure 5.26: Graph of solution for Exercise 5.3.12.
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Exercise Solution 5.3.15. Transforming both sides and using the initial
data yields s2U(s) + 4sU(s) + 3U(s) = e−s/s so that U(s) = e−s

s(s2+4s+3)
=

e−s

s(s+1)(s+3) . Then

U(s) = e−s

(
1

3s
− 1

2(s+ 1)
+

1

6(s+ 3)

)
.

An inverse transform yields u(t) = H(t − 1)(1/3 − e−(t−1)/2 + e−3(t−1)/6).
Graph shown in Figure 5.27.

Exercise Solution 5.3.17. Laplace transform and fill in the initial data to
find (s2 + 4s+ 4)U(s)− s− 6 = 4/s+ 8e−3s/s. Then

U(s) =
s+ 6

(s+ 2)2
+

4

s(s+ 2)2
+

8e−3s

s(s+ 2)2
.

A partial fraction decomposition shows

s+ 6

(s+ 2)2
=

1

s+ 2
+

4

(s+ 2)2
.

and

4

s(s+ 2)2
=

1

s
− 1

s+ 2
− 2

(s+ 2)2
.

Use this to find

u(t) = e−2t + 4te−2t + 1− e−2t − 2te−2t

+ 2H(t− 3)(1− e−2(t−3) − 2(t− 3)e−2(t−3))

= 1 + 2te−2t + 2H(t− 3)(1− e−2(t−3) − 2(t− 3)e−2(t−3)).

Graph shown in Figure 5.28.

Exercise Solution 5.3.19. The ODE is u′(t) = −ku(t)+ 1+0.5H(t− 12)
(recall k = 0.173) with initial condition u(0) = 5. Laplace transforming,
using the initial data, and then solving for U(s) yields

U(s) =
5

s+ k
+

1

s(s+ k)
+

e−12s

2s(s+ k)

Inverse transforming yields

u(t) = 5e−kt +
1− e−kt

k
+H(t− 12)

1− e−k(t−12)

2k
.

A graph is shown in Figure 5.29.
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Figure 5.27: Graph of solution to Exercise 5.3.15.
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Figure 5.28: Graph of solution to Exercise 5.3.17.
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Figure 5.29: Plot of morphine level (mg).
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Section 5.4

Exercise Solution 5.4.2. Transform to find sU(s)−1 = −3U(s)+3e−3s−
6e−5s/s so U(s) = 1/(s+3)+ 3e−3s/(s+3)− 6e−5s/(s(s+3)) with inverse
transform u(t) = e−3t + 3H(t− 3)e−3(t−3) − 2H(t− 5)(1− e−3(t−5)). Graph
shown in Figure 5.30.
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Figure 5.30: Graph of solution to Exercise 5.4.2.

Exercise Solution 5.4.4. Transform to find (s2 + 4s + 3)U(s) = e−s, so
U(s) = e−s/(s2 + 4s+ 3) and u(t) = H(t− 1)(e−(t−1) − e−3(t−1))/2. Graph
in Figure 5.31.

Exercise Solution 5.4.6. Transform to find (s2+4s+4)U(s)−s−6 = 1/s+
5e−2s, so U(s) = (s+6)/(s2+4s+4)+1/(s(s2+4s+4))+5e−2s/(s2+4s+4).
An inverse transform yields u(t) = 1/4 + e−2t(14t + 3)/4 + 5H(t − 2)(t −
2)e−2(t−2). Graph in Figure 5.32.

Exercise Solution 5.4.9.

(a) The ODE is 4u′′(t)+16u′(t)+116u(t) = 20δ(t−5) with u(0) = u′(0) =
0, if u(t) denotes the mass position.

(b) Transform both sides to find (4s2+16s+116)U(s) = 20e−5s, so U(s) =
5e−5s/(s2 + 4s + 29). An inverse transform shows that u(t) = H(t −
5)e−2(t−5) sin(5(t − 5)). The mass remains motionless up until time
t = 5, at which time the blow sets the mass in motion; it oscillates
and decays back to position u = 0.
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Figure 5.31: Graph of solution to Exercise 5.4.4.
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Figure 5.32: Graph of solution to Exercise 5.4.6.
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Section 5.5

Exercise Solution 5.5.2. F1(s) = 1/s2, F2(s) = 1/(s−1), p(t) = et−t−1,
and P (s) = 1/(s2(s− 1)).

Exercise Solution 5.5.4. F1(s) = F2(s) = 1/(s2 + 1), p(t) = (sin(t) −
t cos(t))/2, and P (s) = 1/(s2 + 1)2.

Exercise Solution 5.5.6. F1(s) = 1/s2 + 3/s, F2(s) = e−2s, p(t) = H(t−
2)(t+ 1), and P (s) = e−2s/s2 + 3e−2s/s.

Exercise Solution 5.5.7. Unit impulse response is L−1(1/(s+4)) = e−4t.

Exercise Solution 5.5.9. Unit impulse response is L−1(1/s) = H(t) or 1.

Exercise Solution 5.5.11. Unit impulse response is L−1(1/(s2 + 1)) =
sin(t).

Exercise Solution 5.5.13. Unit impulse response is L−1(1/(s2+4s+4)) =
te−2t.

Exercise Solution 5.5.16. Laplace transform the ODE and use the initial
data to find (as + b)U(s) = F (s). We can compute U(s) = 1/(s(s + 5))
and F (s) = 1/s, from which it follows that (as + b)/(s(s + 5)) = 1/s or
(as+ b)/(s+ 5) = 1. We conclude that a = 1 and b = 5.

Exercise Solution 5.5.18. From U(s) = G(s)F (s) = F (s)/(ms2+ cs+ k)
along with U(s) = 4e−s((s + 1)(s + 5)) and F (s) = 4e−5s we find G(s) =
1/(ms2 + cs+ k) = 1/(s2 + 6s+ 5). Then m = 1, c = 6, and k = 5.

Exercise Solution 5.5.24. In each case let’s use the convolution theorem
(though they can be done directly from the definition of convolution).

� Commutativity: This is equivalent to the s-domain statement F1(s)G(s) =
G(s)F1(s), which is clearly true.

� Distributivity: This is equivalent to the s-domain statement (aF1(s)+
bF2(s))G(s) = aF1(s)G(s) + bF2(s)G(s), also clearly true.

� Associativity: This is equivalent to the s-domain statement (F1(s)F2(s))G(s) =
F1(s)(F2(s)G(s)), also true.
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Section 5.6

Exercise Solution 5.6.1. Substitute u(t) = r′(t)+kr(t)
K into y′(t) = −ky(t)+

Ku(t) to find ODE

y′(t) = −ky(t) + r′(t) + kr(t).

With y(0) = r(0) it is easy to check that y(t) = r(t) is the unique solution to

this ODE. If we Laplace transform both sides of u(t) = r′(t)+kr(t)
K we obtain

U(s) = (sR(s) + kR(s))/K = Gc(s)R(s). This corresponds to the s-domain
computation.

Exercise Solution 5.6.3.

(a) We find Gc(s) = Kp. With Gp(s) = 1/s we then have G(s) =
Gp(s)Gc(s)/(1 +Gp(s)Gc(s)) = Kp/(s+Kp).

Exercise Solution 5.6.4.

(a) We have Gc(s) = Kp +Ki/s+Kds. Given Gp(s) = 1/s we find

G(s) =
Gp(s)Gc(s)

1 +Gp(s)Gc(s)
=

Kds
2 +Kps+Ki

(Kd + 1)s2 +Kps+Ki
.
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Section 6.1

Exercise Solution 6.1.1. Nonlinear (has x1x2).

Exercise Solution 6.1.3. Nonlinear.

Exercise Solution 6.1.5. Nonlinear (x1/x2).

Exercise Solution 6.1.7. Linear, variable coefficient, homogeneous.

Exercise Solution 6.1.9. Linear, constant coefficient, nonhomogeneous.

Exercise Solution 6.1.11. Linear, variable coefficient, nonhomogeneous.

Exercise Solution 6.1.12. With x1 = u and x2 = u′

ẋ1 = x2

ẋ2 = −4x1/3− 5x2/3

with x1(0) = 7 and x2(0) = 5.

Exercise Solution 6.1.14. With x1 = u and x2 = u′

ẋ1 = x2

ẋ2 = −x1/2− cos(x2)

with x1(0) = 3 and x2(0) = −1.

Exercise Solution 6.1.16. With x1 = u, x2 = u′, and x3 = u′′,

ẋ1 = x2

ẋ2 = x3

ẋ3 = −5x1 − x2 − 2x3

with x1(0) = 1, x2(0) = 0, and x3(0) = −1.

Exercise Solution 6.1.18. Let x1 = u1, x2 = u′1, and x3 = u2. Then

ẋ1 = x2

ẋ2 = −x2 + x3 + sin(t)

ẋ3 = −3x1 + x3

with x1(0) = 1, x2(0) = 3, and x3(0) = −2.
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Section 6.2

Exercise Solution 6.2.1. Matrix is

A =

[
7 −4
20 −11

]
with λ1 = −1, λ2 = −3, and

v1 =

[
1
2

]
, v2 =

[
2
5

]
.

A general solution is

x(t) = c1e
−t

[
1
2

]
+ c2e

−3t

[
2
5

]
.

The initial data is obtained with c1 = −1, c2 = 2.

Exercise Solution 6.2.3. Matrix is

A =

[
1 −1
5 −3

]
with λ1 = −1 + i, λ2 = −1− i, and

v1 =

[
2 + i
5

]
, v2 =

[
2− i
5

]
.

A complex-valued general solution is

x(t) = c1e
(−1+i)t

[
2 + i
5

]
+ c2e

(−1−i)t

[
2− i
5

]
.

A real-valued general solution is

x(t) = d1e
−t

[
2 cos(t)− sin(t)

5 cos(t)

]
+ d2e

−t

[
2 sin(t) + cos(t)

5 sin(t)

]
.

The initial data is obtained with d1 = 2/5, d2 = −4/5.

Exercise Solution 6.2.5. Matrix is

A =

 −6 9 −4
−6 11 −6
−10 21 −12


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with λ1 = −4, λ2 = −2, λ3 = −1, and

v1 =

12
4

 , v2 =

−1
0
1

 , v3 =

11
1

 .

A general solution is

x(t) = c1e
−4t

12
4

+ c2e
−2t

−1
0
1

+ c3e
−t

11
1

 .

The initial data is obtained with c1 = 1, c2 = 0, c3 = −2.

Exercise Solution 6.2.8. Matrix is

A =

[
3 −1
4 −1

]
with double eigenvalue λ = 1, and eigenvector

v =

[
1
2

]
.

By solving (A − λI)v1 = v we obtain v1 = ⟨0,−1⟩ (or more generally,
v1 = ⟨t1, 2t1−1⟩ for a free variable t1). We can construct a general solution

x(t) = c1e
t

[
1
2

]
+ c2e

t

[
t

2t− 1

]
.

The initial data is obtained with c1 = 1, c2 = −1.

Exercise Solution 6.2.10. Matrix is

A =

[
−10 −8
8 6

]
with double eigenvalue λ = −2, and eigenvector

v =

[
−1
1

]
.

By solving (A − λI)v1 = v we obtain v1 = ⟨1/8, 0⟩ (or more generally,
v1 = ⟨1/8 − t1, t1⟩ for a free variable t1). We can construct a general
solution

x(t) = c1e
−2t

[
−1
1

]
+ c2e

−2t

[
−t+ 1/8

t

]
.

The initial data is obtained with c1 = 0, c2 = 16.
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Exercise Solution 6.2.12.

(a) The characteristic equation is r2+3r+2 = 0, roots r1 = −1, r2 = −2.
A general solution is

x(t) = c1e
−t + c2e

−2t.

(b) The equivalent system is ẋ1 = x2 and ẋ2 = −2x1 − 3x2. The relevant
matrix is

A =

[
0 1
−2 −3

]
(c) The eigenvalues are λ1 = −1 and λ2 = −2, with eigenvectors

v1 =

[
1
−1

]
and v2 =

[
1
−2

]
.

The general solution is then

x(t) = c1e−t

[
1
−1

]
+ c2e

−2t

[
1
−2

]
.

Then x1(t) is of precisely the same form as x(t) in part (a).

(d) The equivalent system is ẋ1 = x2 and ẋ2 = −kx1/m − cx2/m. The
relevant matrix is

A =

[
0 1

−k/m −c/m

]
The eigenvalues are λ1 = −c+

√
c2−4mk
2m and λ2 = −c−

√
c2−4mk
2m . These

are precisely the roots of the characteristic equation mr2 + cr+ k = 0.
The eigenvectors have the asserted form, namely

v1 =

[
1
λ1

]
and v2 =

[
1
λ2

]
.

Then general system has a general solution

x(t) = c1e
λ1t

[
1
λ1

]
+ c2e

λ2t

[
1
λ2

]
.

Since r1 = λ1 and r2 = λ2, x1(t) is of exactly the same form as
x(t) = c1e

r1t + c2e
r2t.
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Section 6.3

Exercise Solution 6.3.1. Laplace transforming and solving for X1(s), X2(s)
yields

X1(s) =
3s+ 1

s2 + 4s+ 3

X2(s) =
8s+ 4

s2 + 4s+ 3
.

An inverse transform shows that x1(t) = 4e−3t − e−t and x2(t) = 10e−3t −
2e−t.

Exercise Solution 6.3.3. Laplace transforming and solving for X1(s), X2(s)
yields

X1(s) =
s2 − s− 6

s(s+ 1)(s+ 3)

X2(s) =
2(s2 − 3s− 9)

s(s+ 1)(s+ 3)
.

An inverse transform shows that x1(t) = −2 + 2e−t + e−3t and x2(t) =
−6 + 5e−t + 3e−3t.

Exercise Solution 6.3.5. Laplace transforming and solving for X1(s), X2(s)
yields

X1(s) =
s(s− 3)

(s+ 1)(s2 + 1)

X2(s) =
s(3s− 5)

(s+ 1)(s2 + 1)
.

An inverse transform shows that x1(t) = 2e−t− cos(t)−2 sin(t) and x2(t) =
4e−t − cos(t)− 4 sin(t).

Exercise Solution 6.3.7. Laplace transforming and solving for X1(s), X2(s), X3(s)
yields

X1(s) =
s3 + 2s2 + s+ 6

s(s+ 1)(s+ 2)(s+ 3)

X2(s) =
s+ 4

(s+ 2)(s+ 3)

X3(s) = − s2 + 10s+ 3

s(s+ 1)(s+ 3)
.
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An inverse transform shows that x1(t) = 1 + e−3t + 2e−2t − 3e−t, x2(t) =
2e−2t − e−3t, and x3(t) = −1− 3e−t + 3e−3t.

Exercise Solution 6.3.9.

A =

[
7 −4
20 −11

]
and f(t) = e−2t

[
3
7

]
.

A guess of the form xp(t) = e−2tv with f(t) = e−2tw where w = ⟨3, 7⟩ leads
to (A+ 2I)v = −w and then v = (A+ 2I)−1w = ⟨1, 3⟩. So

xp(t) = e−2t

[
1
3

]
.

A homogeneous general solution is

xh(t) = c1e
−3t

[
2
5

]
+ c2e

−t

[
1
2

]
and the general solution to the nonhomogeneous system is

x(t) = c1e
−3t

[
2
5

]
+ c2e

−t

[
1
2

]
+ e−2t

[
1
3

]
.

The initial data yields c1 = −2, c2 = 5.

Exercise Solution 6.3.11.

A =

[
3 −2
10 −6

]
and f(t) =

[
2
−2

]
.

A guess of the form xp(t) = v with f(t) = w where w = ⟨2,−2⟩ leads to
Av = −w and then v = (A)−1w = ⟨8, 13⟩. So

xp(t) =

[
8
13

]
.

A homogeneous general solution is

xh(t) = c1e
−2t

[
2
5

]
+ c2e

−t

[
1
2

]
and the general solution to the nonhomogeneous system is

x(t) = c1e
−2t

[
2
5

]
+ c2e

−t

[
1
2

]
+

[
8
13

]
.

The initial data yields c1 = 3, c2 = −13.
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Exercise Solution 6.3.13.

A =

[
3 −2
10 −6

]
and f(t) = cos(t)

[
5
12

]
+ sin(t)

[
−3
−12

]
.

Again follow the hints: take a guess of the form xp(t) = cos(t)v1 + sin(t)v2

with f(t) = cos(t)w1 + sin(t)w2 where w1 = ⟨5, 12⟩ and w2 = ⟨−3,−12⟩.
Then solving the linear system (A2+I)v1 = −(Aw1+w2) yields v1 = ⟨0, 2⟩
and then v2 = Av1 +w1 = ⟨1, 0⟩. A particular solution is

xp(t) = cos(t)

[
0
2

]
+ sin(t)

[
1
0

]
.

A homogeneous general solution is

xh(t) = c1e
−2t

[
2
5

]
+ c2e

−t

[
1
2

]
and the general solution to the nonhomogeneous system is

x(t) = c1e
−2t

[
2
5

]
+ c2e

−t

[
1
2

]
+ cos(t)

[
0
2

]
+ sin(t)

[
1
0

]
.

The initial data yields c1 = 1, c2 = −2.
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Section 6.4

Exercise Solution 6.4.1. The eigenvalues and eigenvectors lead to

D =

[
−2 0
0 −1

]
and P =

[
3 2
2 1

]
.

Then

etA = PetDP−1 =

[
−3e−2t + 4e−t 6e−2t − 6e−t

−2e−2t + 2e−t 4e−2t − 3e−t

]
.

For Putzer’s algorithm (with λ1 = −2, λ2 = −1) we find

P0 =

[
1 0
0 1

]
P1 =

[
4 −6
2 −3

]
r1(t) = e−2t

P2 =

[
0 0
0 0

]
r2(t) = e−t − e−2t.

Putzer’s algorithm yields the same result as diagonalization.

The solution to ẋ = Ax with x(0) = ⟨1, 2⟩ is

x(t) =

[
−8 e−t + 9 e−2 t

−4 e−t + 6 e−2 t

]
.

Exercise Solution 6.4.3. The eigenvalues and eigenvectors lead to

D =

[
−1 0
0 2

]
and P =

[
1 1
2 3

]
.

Then

etA = PetDP−1 =

[
−2 e2 t + 3 e−t e2 t − e−t

−6 e2 t + 6 e−t 3 e2 t − 2 e−t

]
.
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For Putzer’s algorithm (with λ1 = −1, λ2 = 2) we find

P0 =

[
1 0
0 1

]
P1 =

[
−6 3
−18 9

]
r1(t) = e−t

P2 =

[
0 0
0 0

]
r2(t) = e2t/3− e−t/3.

Putzer’s algorithm yields the same result as diagonalization.

The solution to ẋ = Ax with x(0) = ⟨0,−2⟩ is

x(t) =

[
−2 e2 t + 2 e−t

−6 e2 t + 4 e−t

]
.

Exercise Solution 6.4.5. This matrix has one eigenvalue of −2 and a dou-
ble eigenvalue λ = −1, defective. With eigenvalues in the order −2,−1,−1
and Putzer’s algorithm we find

P0 =

1 0 0
0 0 1
0 0 1


P1 =

1 1 1
1 0 1
1 −2 1


r1(t) = e−2t

P2 =

 2 −2 2
1 −1 1

−1 1 −1


r2(t) = e−2t + e−t

P3 =

0 0 0
0 0 0
0 0 0


r3(t) = (t− 1)e−t + e−2t.
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Putzer’s algorithm yields

etAt = r1(t)P0 + r2(t)P1 + r3(t)P2

=


(2 t− 1) e−t + 2 e−2 t (−2 t+ 3) e−t − 3 e−2 t (2 t− 1) e−t + e−2 t

e−tt − (t− 1) e−t e−tt

(−t+ 2) e−t − 2 e−2 t (t− 3) e−t + 3 e−2 t (−t+ 2) e−t − e−2 t

 .

The solution to ẋ = Ax with x(0) = ⟨1, 0,−1⟩ is

x(t) =


e−2 t

0

−e−2 t

 .
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Section 7.1

Exercise Solution 7.1.1. The vectors are shown in the left panel of Figure
7.33.

Exercise Solution 7.1.2. The vectors are shown in the right panel of Fig-
ure 7.33.

Figure 7.33: Vectors for Exercises 7.1.1 (left panel) and 7.1.2 (right panel).

Exercise Solution 7.1.5. A direction field and a few solutions are shown
in Figure 7.34. Solution converge to either (3, 0) or (0, 3). It appears that
one species must go extinct, the other limits to its carrying capacity.

Exercise Solution 7.1.8. A direction field and a few solutions are shown
in Figure 7.35. Solutions form closed orbits, indicating that the pendulum
never stops moving. This makes perfect sense (no friction).
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Figure 7.34: Direction field for competing species with r1 = 1, r2 = 1,
K1 = 3, K2 = 3, a = 2, and b = 2, and a few solution trajectories.
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Figure 7.35: Direction field for undamped pendulum equation (as a first
order system), with a few solution trajectories.
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Section 7.2

Exercise Solution 7.2.1. See Figure 7.36. Eigenvalues are real, −2 and
−4.

Exercise Solution 7.2.3. See Figure 7.37. Eigenvalues are real, 2 and 4.

Exercise Solution 7.2.5. SeeFigure 7.38. Eigenvalues are complex, −1±
2i.

Figure 7.36: Direction field for Exercise 7.2.1.

Exercise Solution 7.2.7. See Figure 7.39.

Exercise Solution 7.2.9. See the left panel in Figure 7.40.
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Figure 7.37: Direction field for Exercise 7.2.3.

Figure 7.38: Direction field for Exercise 7.2.5.
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Figure 7.39: Phase portraits and solution curves for Exercise 7.2.7.
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Figure 7.40: Phase portraits and solution curves for Exercise 7.2.9.
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Section 7.3

Exercise Solution 7.3.1. See Figure 7.41 for the phase portrait, Figure
7.42 for solution sketches with the given initial conditions. The solution
with initial conditions x1(0) = −1, x2(0) = 3 does not extended past about
t ≈ 1.2. The fixed points are (−2,−2) and (1, 1). The Jacobian is

J(x1, x2) =

[
−2x1 −1

1 −1

]
.

Then

J(−2,−2) =

[
4 −1
1 −1

]
.

has approximate eigenvalues 3.79 and −0.79, so this is a saddle point. Also

J(1, 1) =

[
−2 −1
1 −1

]
.

has approximate eigenvalues −1.5±0.866i, so this is an asymptotically stable
spiral point.

Exercise Solution 7.3.3. See Figure 7.43 for the phase portrait, Figure
7.44 for solution sketches with the given initial conditions. The fixed points
are (−3, 0) and (−1, 1). The Jacobian is

J(x1, x2) =

[
x2 x1 + 2x2
1 −2

]
.

Then

J(−3, 0) =

[
0 −3
1 −2

]
.

has eigenvalues −1 ± i
√
2, so this is an asymptotically stable spiral point.

Also

J(−1, 1) =

[
1 1
1 −2

]
.

has approximate eigenvalues 1.3 and −2.3, so this is a saddle point.
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Figure 7.41: Phase portrait for Exercise 7.3.1.

Figure 7.42: Individual solutions components for Exercise 7.3.1, x1(t) (red,
solid) and x2(t) (blue, dashed) for x1(0) = 0, x2(0) = 4 (left panel) and
x1(0) = 4, x2(0) = −2 (right panel).
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Figure 7.43: Phase portrait for Exercise 7.3.3.

Figure 7.44: Individual solutions components for Exercise 7.3.3, x1(t) (red,
solid) and x2(t) (blue, dashed) for x1(0) = −3, x2(0) = 1 (left panel) and
x1(0) = −2, x2(0) = −3 (right panel).
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Section 7.4

Exercise Solution 7.4.1.

(a) The equation −ax2+x22 = 0 forces x2 = 0 or x2 = a and then x1−x2 =
0 yields x1 = 0 or x1 = a. The fixed points are (0, 0) and (a, a).

(b) The x1 nullcline consists of the horizontal lines x2 = 0 and x2 = a. For
x2 < 0 we find ẋ1 > 0 so solutions move in the direction of increasing
x1 (to the right). For 0 < x2 < a solutions move to the left, and for
x2 > a solutions move to the right. This nullcline is shown in the left
panel of Figure 7.45.

(c) The x2 nullcline consists of the diagonal line x2 = x1. For x2 < x1
we find ẋ2 < 0 so solutions move in the direction of decreasing x2
(down). For x2 > x1 solutions upward. This nullcline is shown in the
right panel of Figure 7.45.

(d) The Jacobian is

J(x1, x2) =

[
= 0 −a+ 2x2

1 −1

]
.

At the fixed point (0, 0) we find

J(0, 0) =

[
= 0 −a

1 −1

]
.

The determinant D of this matrix equals a, which is positive by as-
sumption, so (0, 0) is always stable. The trace T of this matrix is −1.
If 0 < a < 1/4 (so 0 < D < T 2/4) then (0, 0) is an asymptotically
stable node and if a > 1/4 then (0, 0) is an asymptotically stable spiral
point.

At (a, a) the Jacobian is

J(a, a) =

[
0 a
1 −1

]
.

The determinant here is D = −a, so if a > 0 this is a saddle.

(e) See Figure 7.46 for the case a > 1/4 and Figure 7.47 for the case
a < 1/4. The solutions have the same general behavior, except when
a < 1/4 they do not spiral as they approach the fixed point (0, 0).
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Figure 7.45: Nullclines for x1 (left) and x2 (right) for Problem 7.4.1.

Figure 7.46: Phase portrait for system in Problem 7.4.1, a > 1/4.
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Figure 7.47: Phase portrait for system in Problem 7.4.1, a < 1/4.

Exercise Solution 7.4.3. In each case the Jacobian matrix is

J(v1, v2) =

[
r1(1− 2v1 − āv2) −r1av1

−r2bv2 r2(1− 2v2 − b̄v1)

]
.

The eigenvalues of J(0, 0) in every case are r1 and r2, both positive, so the
origin is always an unstable node.

(a) See Figure 7.48. The fixed points here are (0, 0), (0, 1), and (1, 0).
At (0, 1) the eigenvalues are 0 and −r2, so this is not a hyperbolic
equilibrium point. At (1, 0) the eigenvalues are −r1 < 0 and r2(1−b̄) >
0, so this is a saddle. Although we can’t use the Hartman-Grobman
Theorem at (0, 1), it certainly looks stable.
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Figure 7.48: Phase portrait for Problem 7.4.3 part (a).
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Section 7.5

Exercise Solution 7.5.1.

(a) We set t0 = 0, t1 = 0.5, t2 = 1.0 and x0 = ⟨1, 2⟩. Then with f(t,x) =
⟨x1−x2, x1+x2⟩ we have true solution x(t) = ⟨et(cos(t)−2 sin(t)), et(2 cos(t)+
sin(t))⟩ with x(1.0) ≈ ⟨−3.11, 5.22⟩.

x1 = x0 + (0.5)f(0, ⟨1, 2⟩) = ⟨0.5, 3.5⟩

and

x2 = x1 + (0.5)f(0.5, ⟨0.5, 3.5⟩) = ⟨−1, 5.5⟩.

(b) We set t0 = 0, t1 = 0.5, t2 = 1.0 and x0 = ⟨1, 2⟩. Then with f(t,x) =
⟨x1 + x2, x1 + x2⟩ we have true solution x(t) = ⟨−1/2 + 3e2t/2, 1/2 +
3e2t/2⟩ with x(1.0) ≈ ⟨10.58, 11.58⟩. Also

x1 = x0 + (0.5)f(0, ⟨1, 2⟩) = ⟨2.5, 3.5⟩

and

x2 = x1 + (0.5)f(0.5, ⟨2.5, 3.5⟩) = ⟨5.5, 6.5⟩.

(c) We set t0 = 0, t1 = 0.5, t2 = 1.0 and x0 = ⟨0, 0, 1⟩. Define f(t,x) =
⟨x1x2 + 1− t3, x1 + x2 + t− t2, x2x3 − 1− t2 + t3⟩. Compute

x1 = x0 + (0.5)f(0, ⟨0, 0, 1⟩) = ⟨0.5, 0, 0.5⟩

and

x2 = x1 + (0.5)f(0.5, ⟨0.5, 0, 0.5⟩) = ⟨0.9375, 0.375,−0.0625⟩.

(d) The error for each step size is 0.567, 0.0604, and 0.00607, approxi-
mately proportional to h.

(e) The error for each step size is 0.175, 0.0196, and 0.00199, approxi-
mately proportional to h.

Exercise Solution 7.5.4.

(a) First, the analytical solution is x(t) = e−0.25t.

Set t0 = 0, t1 = 0.5, t2 = 1.0 and x0 = 1. Then x1 satisfies x1 =
(0.5)(−0.25x1) + 1, which leads to x1 ≈ 0.889. Then x2 satisfies x2 =
(0.5)(−0.25x2) + 0.889, which leads to x1 ≈ 0.790. The true solution
value is x(1) = e−0.25 ≈ 0.779.
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Figure 7.49: Left panel: step size h = 0.25 for ODE x′ = −10x with x(0) = 1
for Euler’s method (dotted/blue), the implicit Euler method (dashed/red)
and true solution x(t) = e−10t (solid/black). Middle panel: same, step size
h = 0.125. Right panel: same, step size h = 0.05.

(b) Set t0 = 0, t1 = 1, t2 = 2 and x0 = 1. Then x1 satisfies x1 = 0.5x1(2−
x1) + 1, which leads to x1 =

√
2 ≈ 1.4142. Then x2 satisfies x2 =

0.5x2(2 − x2) + 1.4142, which leads to x2 ≈ 1.682. The true solution
is x(t) = 2/(1 + e−t) so x(2) = 2/(1 + e−2) ≈ 1.762.

(c) We have t1 = 1, t2 = 2, t3 = 3 and x0 = ⟨1, 3⟩. Then x1 ≈ ⟨−0.167, 0.167⟩,
x2 ≈ ⟨−0.194,−0.139⟩, and x3 ≈ ⟨−0.116,−0.106⟩. The true solution
is x(t) = ⟨2e−5t − e−t, 4e−5t − e−t⟩ and x(3) ≈ ⟨−0.0498,−0.0498⟩.

(d) With t0 = 0, t1 = 0.2, t2 = 0.4, t3 = 0.6, t4 = 0.8, t5 = 1.0 and x0 =
⟨1, 3⟩ we find iterates

x1 ≈ ⟨0.589, 2.402⟩,x2 ≈ ⟨0.204, 1.968⟩,x3 ≈ ⟨−0.125, 1.660⟩,
x4 ≈ ⟨−0.385, 1.448⟩,x5 ≈ ⟨−0.579, 1.303⟩.

Exercise Solution 7.5.5.

(a) See the left panel of Figure 7.49 for step size h = 0.25, the middle
panel for h = 0.15, and the right panel for h = 0.05. According to
(7.48) (with λ = 10) the iterates here converge to zero when h < 0.2,
which is in accordance with the figure. From Reading Exercise 7.5.4
the iterates should remain positive when h < 0.1, which again seems
correct.

(b) The analytical solution is x1(t) = 3e−t − 2e−5t, x2(t) = 3e−t − 4e−5t.
See Figure 7.50 for parametric plots. When h = 1.0 the solution goes
well outside the view range.
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Figure 7.50: Left panel: parametric plot x1(t) vs x2(t) for step size h = 1.0
for Euler’s method (dotted/blue), the implicit Euler method (dashed/red)
and true solution x1(t) = 3e−t − 2e−5t, x2(t) = 3e−t − 4e−5t (solid/black).
Middle panel: same, step size h = 0.25. Right panel: same, step size h = 0.1.

Exercise Solution 7.5.6.

(a) The true solution is x(t) = t − 1 + 2e−t and x(1) = 2/e. The errors
for implicit Euler with step sizes h = 0.1, 0.01, 0.001, and 0.0001 are
0.0353276965, 0.0036635421, 0.0003677258, 0.0000367826, respectively.

(b) The analytical solution is x1(t) = 6e−t−52e−5t/25+13t/5−73/25, x2(t) =
6e−t − 104e−5t/25 + 11t/5− 71/25. The errors for h = 0.1, 0.01, and
0.001 are 0.104268966843117747, 0.0117885987798727332,
and 0.00119297073597383397.

Exercise Solution 7.5.9.

(a) The system is ẋ1 = x2, ẋ2 = −101x1 − 2x2 with x(0) = ⟨1, 0⟩.

(b) The eigenvalues and eigenvectors of A are −1±10i and ⟨−1−10i, 101⟩
and ⟨−1 + 10i, 101⟩, respectively. A real-valued general solution is

x(t) = c1

[
e−t sin(10t)

e−t(10 cos(10t)− sin(10t))

]
+c2

[
e−t cos(10t)

−e−t(cos(10t) + 10 sin(10t))

]
.

With the given initial data the solution is

x(t) = e−t

[
cos(10t) + sin(10t)/10

−101 sin(10t)/10

]
.

The solution spirals toward the asymptotically stable fixed point at
⟨0, 0⟩.
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Figure 7.51: Left panel: True solution (solid/black), Euler estimate (dot-
ted/blue) and implicit Euler (dashed/red), step size h = 0.1. Right panel:
Same, but with h = 0.005.

(c) The true solution value is x(5) ≈ ⟨0.0063, 0.0173⟩. Implicit Euler gives
estimate ⟨1.52×10−9, 1.79×10−9⟩. Standard Euler’s method explodes.
A plot is shown in the left panel of Figure 7.51.

(d) A step size h ≤ 0.005 tames Euler’s method. With h = 0.005 implicit
Euler gives estimate ⟨0.00158, 0.0106⟩. Standard Euler’s method gives
⟨0.0233, 0.0134⟩. A plot is shown in the right panel of Figure 7.51.
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Section 7.6

Exercise Solution 7.6.1.

(b) Compute D1 = a1, D2 = a1a2−a3, and D3 = (a1a2−a3)a3. The roots
of the polynomial p(z) = z3+a1z

2+a2z+a3 all have negative real part
exactly when D1, D2, and D3 are all positive, so a1 > 0, a1a2−a3 > 0,
and a3(a1a2 − a3) > 0. The last condition a3(a1a2 − a3) > 0 can be
replaced by a1a2 − a3 > 0 when a3 > 0.

Exercise Solution 7.6.3.

(a) The system is ẋ1 = x2, mẋ2 = 0 (or just ẋ2 = 0, since m > 0). Then
f(x) = ⟨x2, 0⟩.

(b) We have ∇P = ⟨0,m⟩ and then ∇P · f = 0, so P is a first integral and
represents a conserved quantity. The function P is just the momentum
mẋ of the particle, so this is conservation of momentum.

In this very simple setting, in both (b) and (c) here the essential fact is that
ẋ is constant.

Exercise Solution 7.6.5. It’s easy to check that x1 = x2 = 0 is an isolated
fixed point. A direction field is shown in Figure 7.52, with a few solution
curves and the level curves for the function V (x1, x2) = x21 + x22.

The linearized system at the origin has Jacobian matrix

J(0, 0) =

[
0 0
0 0

]
with double eigenvalue 0, which does not allow us to make any conclusion
about stability. With V (x1, x2) = x21 + x22 with have ∇V = ⟨2x1, 2x2⟩ and
with f(x) = ⟨−x31,−x32 we find ∇V ·f = −2(x41+x42) < 0 for (x1, x2) ̸= (0, 0).
We conclude that this fixed point is asymptotically stable.

Exercise Solution 7.6.7. This system has infinitely many fixed points, all
along the diagonal line x2 = −x1/2; see Figure 7.53, in which the direction
field is plotted. The fixed points are shown along the dashed blue line, and
a few solution trajectories are shown as solid black curves. The Jacobian at
each fixed point is

J =

[
−1 −2
−2 −4

]
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Figure 7.52: Direction field and solution curves (solid black) for system
ẋ1 = −x31, ẋ2 = −x32, with level curves for V (x1, x2) = x21 + x22 (dashed
blue).

with eigenvalues 0 and −5, which does not (by itself) allow us to make con-
clusions about the stability of any of these fixed points. For the Lyapunov
approach, if we take V (x1, x2) = x21 + x22 as suggested, a straightforward
computation shows that ∇V · f = −2x21 − 8x1x2 − 8x22. This last expression
factors as −2(x1 − 2x2)

2, which is non-positive for all x1 and x2. We can
conclude that fixed point at (0, 0) (and in fact, any of the fixed points) is sta-
ble. We cannot conclude that any given fixed point is asymptotically stable,
since they are not isolated. In fact by solving the system analytically we can
see that the solution trajectories that start at a point (a, b) are straight lines
that converge to the fixed point ((4a− 2b)/5, (−2a+ b)/5).

Exercise Solution 7.6.9. Straightforward algebra shows that this system
has an isolated fixed point at x1 = x2 = 0. The Jacobian at (0, 0) is the zero
matrix with double eigenvalue 0, which does not allow us to make conclusions
about the stability of this fixed point. For the Lyapunov approach, if we take
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Figure 7.53: Direction field and fixed points (dashed blue line) for system
ẋ1 = −x1 − 2x2, ẋ2 = −2x1 − 4x2, with solution trajectories (solid black).

V (x1, x2) = x41 + x42 as suggested, a straightforward computation shows that

∇V · f = 0

Thus this is a stable fixed point, but we cannot assert asymptotic stability.
In fact, the solutions form closed orbits.

Exercise Solution 7.6.10. A bit of easy algebra shows that x1 = x2 = x3 =
0 is the only fixed point for this system. With V (x1, x2, x3) = ax21+bx22+cx23
we obtain

∇V · f = −4 ax1
2x2

4 − 8 bx1
2x2

4 − 4 ax1
2x3

2 − 4 cx3
4 − 4 bx2

2 − 4 cx3
2

which is easily seen to be non-positive for any choice of a, b, c all positive
(which also makes V itself positive definite). Thus the origin is stable, but
no choice for a, b, c works to prove asymptotic stability (if x2 = x3 = 0 we
can take any value for x1.) The Jacobian at the origin is

J(0, 0, 0) =

0 0 0
0 −2 0
0 0 −2

 .
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Section 8.1

Exercise Solution 8.1.1. Start with the continuity equation ∂ρ
∂t +

∂q
∂x = 0

and use the given fact that ∂ρ
∂t = 0 to find ∂q

∂x = 0. That is, q is independent

of x. Conversely if ∂q
∂x = 0 it is immediate that ∂ρ

∂t = 0, so ρ does not depend
on time.

Exercise Solution 8.1.2. u(x, t) = 3e−π2t2 sin(πx). See left panel in Figure
8.54.

Exercise Solution 8.1.3. u(x, t) = 3e−π2t2 sin(πx)+5e−36π2t sin(6πx). See
right panel in Figure 8.54.

Figure 8.54: Figures for Exercises 8.1.2 (left) and 8.1.3 ( right). In each case
t = 0 is in red, t = 0.01 is blue, t = 0.05 is green, t = 0.5 is black. In each
case the solution decays to 0 as t increases, at all points.

Exercise Solution 8.1.6. u(x, t) = 3e−π2t cos(πx). See top left panel in
Figure 8.55.

Exercise Solution 8.1.7. u(x, t) = 4+3e−π2t cos(πx). See top right panel
in Figure 8.55.
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Figure 8.55: Figures for Exercises 8.1.6 (left) and 8.1.7 ( right). In each case
t = 0 is in red, t = 0.01 is blue, t = 0.05 is green, t = 0.5 is black. In each
case the solution decays in time to a constant value (whatever the average
value of u(x, 0) is on the interval).
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Section 8.2

Exercise Solution 8.2.1. For n ≤ 1 we obtain sn(x) = 0 and for n ≥ 2
find sn(x) = f(x) = 3 cos(2πx). Then ∥f − sn∥2 ≈ 0.212 for n = 0, 1 and
∥f − sn∥2 = 0 for n ≥ 2. This graph is omitted.

Exercise Solution 8.2.3. You should find that

s0(x) = 1

s1(x) = 1− 8 cos(πx/2)

π2

s3(x) = 1− 8 cos(πx/2)

π2
− 8 cos(π3x/2)

9π2

s5(x) = 1− 8 cos(πx/2)

π2
− 8 cos(π3x/2)

9π2
− 8 cos(5πx/2)

25π2
.

Also, s2 = s1 and s4 = s3. Then ∥f − s0∥2 ≈ 0.816, ∥f − s1∥2 ≈ 0.098, ∥f −
s5∥2 ≈ 0.022. A plot is shown in Figure 8.56, left panel.

Exercise Solution 8.2.5. The approximation s10 is

s10(x) ≈ −0.053 cos(πx/3)+0.186 cos(2πx/3)+ · · ·− 0.026 cos(10πx/3).

The errors are ∥f − s3∥2 ≈ 0.882, ∥f − s5∥2 ≈ 0.488, ∥f − s10∥2 ≈ 0.027. A
plot is shown in Figure 8.56, right panel.

Exercise Solution 8.2.7. The coefficients here are bk = 4 sin(kπx)/(kπ)
when k is odd, bk = 0 for k even. Then ∥f−s1∥2 = 0.435, ∥f−s3∥2 = 0.315,
∥f − s10∥2 = 0.201. Plots of sn for n = 1, 3, 10 are shown in Figure 8.57.

Exercise Solution 8.2.8. We find s1(x) = 0, sn(x) = 3 sin(2πx) for n =
2, 3, and sn(x) = f(x) = 3 sin(2πx) − 4 sin(4πx) for n ≥ 4. The errors are
∥f−s1∥2 = 3.536, ∥f−s2∥2 = 2.828, ∥f−s10∥2 = 0. Graph here is omitted.
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Figure 8.56: Graphs of f(x) and sn(x) for various values of n for Exercises
8.2.3 (left) and 8.2.5 (right).

Figure 8.57: Graphs of f(x) and sn(x) for various values of n for Exercise
8.2.7.
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Section 8.3

Exercise Solution 8.3.1. The approximate solution is

u(x, t) ≈ 0.918e−12.3t sin(1.57x) + 0e−49.3t sin(3.14x)

+ 0.133e−110t sin(4.71x).

Note b2 = 0 here. Graph shown in the left panel of Figure 8.58.

Exercise Solution 8.3.2. The approximate solution is

u(x, t) ≈ −0.360e−2.46t sin(1.57x) + e−9.86t sin(3.14x)

− 0.388e−22.2t sin(4.71x).

Graph shown in the right panel of Figure 8.58.

Figure 8.58: Solutions to Exercises 8.3.1 (left) and 8.3.2 (right).

Exercise Solution 8.3.5. The approximate solution is

u(x, t) ≈ 1

30
− 3

π4
e−4π2t cos(2πx)

≈ −0.033− 0.031e−39.4t cos(6.28x).

(The coefficient a2 = 0 here). Graph shown in the left panel of Figure 8.59.

Exercise Solution 8.3.6. The approximate solution is

u(x, t) ≈ 0.500− 0.374e−2.46t cos(1.57x)

+ 0.162e−22.2t cos(4.71x)− 0.500e−39.4t cos(6.28x)

+ 0.188e−61.6t cos(7.85x).

Here a2 = 0. Graph shown in the right panel of Figure 8.59.
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Figure 8.59: Solutions to Exercises 8.3.5 (left) and 8.3.6 (right).

Exercise Solution 8.3.9.

(a) The approximate solution is

u(x, t) ≈ 1.01e−3.08t sin(0.785x) + 0.499e−27.7t sin(2.36x)

− 0.207e−77t sin(3.92x)− 0.0172e−151t sin(5.50x).

Graph shown in Figure 8.60.

Figure 8.60: Solution to Exercise 8.3.9 part (a).
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Exercise Solution 8.3.12. The Fourier coefficients for f(x) are all zero, of
course. The Fourier cosine coefficients a0(t) to a3(t) for r(x, t) with respect
to x are

a0(t) = 2e−t, a1(t) = −8e−t/π2, a2(t) = 0, a3(t = −8e−t/(9π2).

Solving for the ϕk(t) functions produces (rounded to three significant figures)

ϕ0(t) = 2− 2e−t, ϕ1(t) = 0.552(e−2.47t − e−t, ϕ2(t) = 0,

ϕ3(t) = 0.00425(e−22.2 − e−t).

The approximation solution is

u(x, t) ≈ ϕ0(t)/2 + ϕ1(t) cos(πx/2) + ϕ2(t) cos(πx) + ϕ3(t) cos(3πx/2)

This is shown in the left panel of Figure 8.61.

Exercise Solution 8.3.14. The Fourier coefficients for f(x) are approxi-
mately f0 = 2.0, f1 = −0.360, f2 = −1.0, f3 = 0.330, f4 = 0.0, f5 = 0.0208.
The Fourier cosine coefficients a0(t) to a5(t) for r(x, t) = x− 2 with respect
to x are independent of time (since r is too) and given by a0(t) = 0, a1(t0 =
−1.62, a2(t) = 0, a3(t) = −0.180, a4(t) = 0, a5(t) − 0.0646. More generally
ak(t) = 0 if k is even and ak(t) = −16/(k2π2) if k is odd.

Solving for the ϕk(t) functions produces (rounded to three significant fig-
ures)

ϕ0(t) = 2, ϕ1(t) = −0.876 + 0.516e−1.85t, ϕ2(t) = −e−7.40t,

ϕ3(t) = −0.018 + 0.342e−16.7t, ϕ4(t) = 0,

ϕ5(t) = −0.0014 + 0.0223e−46.3t.

The approximate solution is

u(x, t) ≈ 1+ϕ1(t) cos(πx/4)+ϕ2(t) cos(πx/2)+ · · ·+ϕ5(t) cos(5πx/4).

This is shown in the right panel of Figure 8.61.
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Figure 8.61: Solutions to Exercises 8.3.12 (left) and 8.3.14 (right).
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Section 8.4

Exercise Solution 8.4.1. The solution is ρ(x, t) = f(x − 2t) = (x −
2t)/((x− 2t)2 + 1). See Figure 8.62.

Figure 8.62: Solution to advection equation for Exercise 8.4.1.

Exercise Solution 8.4.4. In this case the solution is u(x, t) = cos(πt) sin(πx)
and is exact (it is exact for any N ≥ 2). Solution graphed in the left panel
of Figure 8.63.

Exercise Solution 8.4.5. In this case the solution is u(x, t) = cos(πt) sin(πx)+
3 sin(2πt) sin(2πx)/(2π) and is exact (it is exact for any N ≥ 4). Solution
graphed in the right panel of Figure 8.63.

Exercise Solution 8.4.8. We find D = P1P2 where P1 = d/dt + I and
P2 = d/dt + 8I (or vice-versa). The solution or roots for P1 and P2 are
c1e

−t and c2e
−8t for any constants c1, c2.
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Figure 8.63: Solution to wave equation for Exercises 8.4.4 (left) and 8.4.5
(right).
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Appendix A

Exercise Solution A.6.1.

(a) Re(z) = 3, Im(z) = 4, Re(w) = 1, and Im(w) = −1. Also z + w =
4+3i, z−w = 2+5i, zw = 7+i, and z/w = −1/2+7i/2. Also |z| = 5,
|w| =

√
2, and |zw| = |z||w| = 5

√
2. Also z = 3 − 4i, w = 1 + i, and

zw = 7−i. Finally, ez = e3 cos(4)+ie3 sin(4), ew = e cos(1)−ie sin(1),

ezew = e4(cos(1) cos(4)+sin(1) sin(4))+ie4(sin(4) cos(1)−sin(1) cos(4)),

and ez+w = e4 cos(3) + ie4 sin(3). That ezew = ez+w follows by apply-
ing the given trigonometric identity.

(b) Re(z) = 3, Im(z) = 0, Re(w) = 0, and Im(w) = 1. Also z+w = 3+ i,
z − w = 3 − i, zw = 3i, and z/w = −3i. Also |z| = 3, |w| = 1, and
|zw| = |z||w| = 3. Also z = 3, w = −i, and zw = −3i. Finally,
ez = e3, ew = ei = cos(1) + i sin(1),

ezew = e3 cos(1) + ie3 sin(1)

and ez+w = e3+i = e3 cos(1) + ie3 sin(1).

(c) Re(z) = 0, Im(z) = π, Re(w) = 1, and Im(w) = π/2. Also z +
w = 1 + 3iπ/2, z − w = −1 + iπ/2, zw = −π2/2 + iπ, and z/w =

π2

2(1+π2/4)
+ i π

1+π2/4
. Also |z| = π, |w| =

√
4 + π2/2, and |zw| =

|z||w| = π
√
4 + π2/2. Also z = −iπ, w = 1− iπ/2, and zw = −π2/2−

iπ. Finally, ez = −1, ew = ie,

ezew = −ie

and ez+w = e1+3iπ/2 = −ie.

Exercise Solution A.6.2. Expand z2 = (x + iy)2 = x2 + 2ixy − y2 and
set z2 = i to find x2 − y2 = 0 and 2xy = 1. The solutions pairs are (x, y)
equals (

√
2/2,

√
2/2) and (−

√
2/2,−

√
2/2), so that z =

√
2/2 + i

√
2/2 and

z = −
√
2/2− i

√
2/2 are the solutions.

Exercise Solution A.6.3.

(a) Roots z = 2 with multiplicity 3, z = i with multiplicity 1, z = −3 with
multiplicity 2, and z = −i with multiplicity 1. The roots do not appear
in conjugate pairs, so p(z) does not have real coefficients.



89

(b) Roots z = −1 − i with multiplicity 2, z = 0 with multiplicity 7, and
z = i with multiplicity 4. The roots do not appear in conjugate pairs,
so p(z) does not have real coefficients.

(c) Write z2 + 1 = (z − i)(z + i) so that p(z) = (z − i)14(z + i)14. The
roots are then z = i with multiplicity 14 and z = −i with multiplicity
14. The roots are in conjugate pairs, so p(z) has real coefficients (also
clear if we just compute (z2 + 1)14).

Exercise Solution A.6.4. First, it’s easy to see that z = 0 is a root, and
we are given that z = i is a root. Since p has real coefficients z = −i must
be a root. Thus p(z) = z(z− i)(z+ i)q(z) = (z3 + z)q(z) for some quadratic
polynomial. A polynomial division shows that q(z) = p(z)/(z3 + z) = z2 −
2z + 2. The two roots of q are z = 1 ± i, and these are the two additional
roots for p(z).

Exercise Solution A.6.5.

(a) The zeros are z = 0 and z = 3. The poles are z = 1 and z = ±2i. The
partial fraction decomposition is

r(z) =
−2/5

z − 1
+

7/10 + 2i/5

z − 2i
+

7/10− 2i/5

z + 2i
.

(b) The zeros are z = −1 and −1 (double root). The poles are z = 1 and
z = −1± i. The partial fraction decomposition is

r(z) =
4/5

z − 1
+

1/10 + i/5

z + 1 + i
+

1/10− i/5

z + 1− i
.

(c) The only zero is z = 0. The poles are z = ±i and z = ±2i. The partial
fraction decomposition is

r(z) =
1

z − i
+

1

z + i
− 1

z − 2i
− 1

z + 2i
.
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Appendix B

Exercise Solution B.6.1.

D =

[
2 0
0 −5

]

P =

[
−4 1
3 1

]
Exercise Solution B.6.2.

D =

[
5 0
0 −5

]

P =

[
1 1
5 −5

]
Exercise Solution B.6.3.

D =

[
2 0
0 −3

]

P =

[
1 1
5 0

]
Exercise Solution B.6.4.

D =

[
−3 0
0 5

]

P =

[
−2 6
1 1

]
Exercise Solution B.6.5.

D =

[
i 0
0 −i

]

P =

[
−i i
1 1

]
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Exercise Solution B.6.6.

D =

[
4 + 6i 0

0 4− 6i

]

P =

[
−1− 2i −1 + 2i

3 3

]
Exercise Solution B.6.7.

D =

1 0 0
0 −1 0
0 0 2



P =

0 −3 0
0 1 −1
1 9 3


Exercise Solution B.6.8. If we begin with Av = λv and conjugate both
sides we obtain Av = λv. But from the familiar properties of conjugation
we have Av = Av and λv = λv, so that

Av = λv.

But since A has real entries we have A = A and so

Av = λv.

This is precisely the statement that overlinev is an eigenvector for A with
eigenvalue λ.

Thus if λ is an eigenvalue for A so is λ. This is an empty statement
if λ is real, but it means that complex eigenvalues must come in conjugate
pairs.


