Student Solutions

For Version 2.0 (HTML)



Section 1.4

Exercise Solution 1.4.1. General solution u(t) = t2/2 + C, particular
solution u(t) = t2/2 + 3.

Exercise Solution 1.4.3. General solution u(t) = e' + C, particular solu-
tion u(t) = e' + 3.

Exercise Solution 1.4.5. General solution u(t) = sin(t) + C, particular
solution u(t) = sin(t) + 1.

Exercise Solution 1.4.7. General solution v(t) = gt, particular solution
v(t) = gt + vp.

Exercise Solution 1.4.9. General solution u(t) = t3/6 + C1t + Cs, partic-
ular solution u(t) =t3/6 + 3t + 1.

Exercise Solution 1.4.11. General solution y(t) = —gt?/2 + Cit + O,
particular solution y(t) = —gt?/2 + 10.

Exercise Solution 1.4.13. The input salt rate to the tank is 5 x

min
grams __ grams - e lit u(t) grams __ u(t) grams
50587 = 2505255 . The outflow rate of salt is 55 X 768 Frtar: = 90" ianis -
The ODEFE is
t
u'(t) = 250 — @

20

with, initial condition u(0) = 0. The solution is u(t) = 5000 — 5000e /20
grams. The solution rises from u(0) = 0 and asymptotically approaches u =
5000 grams of salt in the tank. The limiting concentration is 5000/100 = 50
grams per liter, the same as the incoming salt solution.



Section 1.5

Exercise Solution 1.5.1.

(a) Momentum is mass times velocity, so has dimension MLT™!.

(b) Angular velocity is measured in radians per unit time, so has dimension
T

(c) From force times distance we have [Fd] = [F|[d] = MLT ?L =
ML?T—2.

(d) Pressure is force per area, so has dimension MLT 2L~2 = ML~'T~2.

Exercise Solution 1.5.3. From v' = P—kv we see that we need [v'] = [kv],
or LT2 = [k]LT™!, so [k] =T~!.

Exercise Solution 1.5.5. The function u(t) has dimension M (mass), so
[u/(t)] = MT~t. Also, [r] = L3T~1 (volume per time) and [c1] = ML™3
(mass per volume). Also [V] = L3. Then [re;) = LT *ML™3 = MT~!
and [ru/V] = L3T'ML™3 = MT~'. Thus each of ' ,rci, and ru/V has
dimension MT ™' and the ODE is dimensionally consistent.
In the solution u(t) = ¢V (1—e~"/V) we find that [—rt/V] = L3T'TL™3 =

1, so the argument to the exponential is dimensionless, and hence so is the
quantity (1 — eV, The quantity [c;V] = ML™3L?> = M has dimension
mass, and this is consistent with [u] = M.

Exercise Solution 1.5.7. We have [P] =T, 2n] = 1, [r] = L, [G] =
M=YL3T=2, and [m] = M. Then

27/r3/(Gm)] = (V) L3 2MY2L3PT M2 = T

which is [P], so this is dimensionally consistent.

Exercise Solution 1.5.9. We have [P] = T, [{] = L, [m] = M, and
[g] = LT~2. A formula of the form P = (*mPg° requires T = L*M°LeT %,
which leads to b=0,a+c=0,—-2c=1, soa=1/2,b=0,c=-1/2, and
then

P=K\/l/g

for some dimensionless constant K For the “linearized pendulum?” this is
correct, with K = 2x; for the general nonlinear pendulum this is also correct,
but K depends on the initial angle of the pendulum.



Exercise Solution 1.5.11. We have [f] = T7!, [\] = ML, [r] =
MLT™2, and [(] = L. Then f = X% forces T~' = M*L~*MPL*T—2 ¢
or

a+b=0, ,—a+b+c=0, —-2b=-1

with solution a = —1/2,b =1/2, and ¢ = —1. Then

f="VT

for some dimensionless constant K (which turns out as K = 1/2 in ideal
situations.)



Section 2.1

Exercise Solution 2.1.1. Integrating factor e, general solution u(t) =
Ce! — 3, specific solution is u(t) = 6e! — 3.

Exercise Solution 2.1.3. Integrating factor €3, general solution u(t) =
Ce 3t + 1, specific solution is u(t) = 4e3 + 1.

Exercise Solution 2.1.5. Integrating factor e~t, general solution u(t) =
Cel — sin(t) — cos(t), specific solution is u(t) = 2! — sin(t) — cos(t).

Exercise Solution 2.1.7. Integrating factor e*t2/2, general solution u(t) =
Cet’/2 — 1, specific solution is u(t) = 3et’/2 — 1.

Exercise Solution 2.1.9. Integrating factor e~ () general solution u(t) =
Ce= (1) — 1, specific solution is u(t) = bele™ () — 1 = 5el-cost) _ 1,

Exercise Solution 2.1.12.
(a) [k] = 71

(b) Write the ODE as u'(t) + ku(t) = 0 and use integrating factor ekt to
find u(t) = Ce™, Then u(0) = ug implies C' = ug, so u(t) = uge .
Since k is positive the exponential decays to zero as t increases to
nfinity.

(c) The equation u(t + At) = u(t)/2 becomes uge *EHAD = yoe=kt /2,
which simplifies to et = 1/2. Solve for At = In(2)/k. This does
not depend on the variable t itself.

Exercise Solution 2.1.14. Write the ODE as 2'(t) + x(t)/100 = 0.2 and
use integrating factor e/1% to find d(e!/™0x(t))/dt = 0.2¢!/190. Integrate to
find e!/10z(t) = 20et/1%0 + C' and so x(t) = 20 + Ce /10 is the general
solution. Then x(0) = 3 yields 20 + C = 3, so C = —17 and z(t) =
20 — 17¢~4/100,

Exercise Solution 2.1.16. The rate in is (0.2)(4) = 0.8 kg per minute,
and the rate out is (x(t)/400)(4) = =(t)/100 kg per minute. The ODE is
2/ (t) = 0.8 — z(t) /100 with £(0) = 0. The solution is x(t) = 80 — 80e~t/100,
The amount of salt limits to 80 kg.

Exercise Solution 2.1.19.



(a) Write the ODE as ¢'(t) + q(t)/RC = Vo /R and use integrating factor
'R to obtain

@ (a1 = (Vo R)e!/ €.

Integrate to find

6t/RCq(t) _ Vocet/RC + A
for some arbitrary constant of integration A. The general solution is
then q(t) = VoC + Ae YEC. If q(0) = 0 then A = —V,C and the
solution is q(t) = VoC (1 — e ¥/ HC),

(b) Ast — oo we find q(t) — VC.

(c) With [C] = [q]/[V] = M L72T2Q? and [R] = ML*T'Q~? we find
[RC] = [R][C] =T.

(d) This occurs when e—t/RC = 1/100, which leads to t = RC'In(100) =
4.6RC.



Section 2.2

Exercise Solution 2.2.1. General solution u(t) = Ce' —3, specific solution
is u(t) = 6e' — 3.

Exercise Solution 2.2.3. General solution u(t) = Ce™3! + 1, specific so-
lution is u(t) = 4e=3" + 1.

Exercise Solution 2.2.5. General solution u(t) = Ce™ ) — 1, specific
solution is u(t) = Hele= (1) — 1 = pel—cos(t) _ 1,

Exercise Solution 2.2.7. General solution u(t) = Ce™ ") specific solu-
1,—cos(t) — elfcos(t)_

tion is u(t) = e'e
Exercise Solution 2.2.9. General solution u(t) = e, specific solution is
u(t) = 3¢ 1,

Exercise Solution 2.2.11. Separate variables as dv/(P — kv) = dt and
integrate to find —In|P — kv| =t + C. Then In|P — kv| = —kt + C and
so P —kv=Ce * (C #0, but again, C = 0 is permissible, it corresponds
to v(t) = P/k). Solve for v = P/k+ Ce " and then v(0) = 0 implies
C=—P/k, sov(t)=L(1—e ).

Exer~cise Solution 2.2.13. It’s much easier to take the hint. With7? =r—nh
and K = ((1 — h/r)K we find that

v = fu(l—u/K) = (r—h)u(l—ru/K(r—h)) = (r—h)u—ru/K = ru(l—u/K)—hu

which is the harvested logistic equation. The solution to the “standard”
logistic equation u' = fu(l —u/K) is

(t) = r
N e (K Jug — 1)
(1—h/r)K

T lte i EQ—nr) - 1)

Exercise Solution 2.2.15. Separate as dz/(0.2—2/100) = dt and integrate
to find —1001n]0.2 — 2/100| = t + C. Solve for x as x = 20 — Ce /100,
Then x = 3 when t = 0 yields C = 17, so z(t) = 20 — 17e~4/100,



Section 2.3

Exercise Solution 2.3.1. The ODE is v’ = f(t,u) with f(t,u) = u — 2t.
Then f(0,0) =0, f(0,1) =1, f(1,0) = =2, f(1,1) = —1. Crude slope field
shown in Figure 2.1.

Exercise Solution 2.3.3. The ODE is v’ = f(t,u) with f(t,u) = —u.
Then f(0,1) = —1, f(0,2) = =2, f(1,1) = —1, f(1,3) = —=3. Crude slope
field shown in Figure 2.2.

Ve
” N

t

-1

Figure 2.1: Slope field for Exercise 2.3.1.

Exercise Solution 2.3.5. Slope field shown in Figure 2.5.

Exercise Solution 2.3.7. Slope field shown in Figure 2.4. In this case
u =0 is an equilibrium solution.

Exercise Solution 2.3.9. Slope field shown in Figure 2.5. In this case
u =0 and u = 3 are equilibrium solutions.

Exercise Solution 2.3.11. Slope field shown in Figure 2.6. In this case

u =0 and u= 3 are equilibrium solutions.

Exercise Solution 2.3.13. The phase portrait is in Figure 2.7, solutions
with u(0) = 2 and w(0) = —2 in the right panel.
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Figure 2.2: Slope field for Exercise 2.3.3.

Exercise Solution 2.3.15. The phase portrait is in Figure 2.8, solutions
with v(0) = 0 and v(0) = 15/k in the right panel.

Exercise Solution 2.3.17. The phase portrait is in Figure 2.9, solutions
with u(0) = 1/2, u(0) = 3/2 in the right panel.

Exercise Solution 2.3.19. See Figure 2.10. Solution with u(0) = 0 in-
creases asymptotically to equilibrium at u = 1V, solution with u(0) = 2¢;V
decreases asymptotically to equilibrium at u = c1V.

Exercise Solution 2.3.21. Take u' = (u—1)(u — 3) (the right side can be
multiplied by any positive constant).

Exercise Solution 2.3.23. Take u' = —(u — 1)%(u — 3) (the right side can
be multiplied by any positive constant).

Exercise Solution 2.3.25. The ODE is v’ = f(u) with f(u) = hu — u>.
Here w = 0 and v = h are always the only fized points. We have f'(u) =
h —2u. For h > 0 the fized point at 0 is unstable (f'(0) = h) and the fized
point at w = h is stable (f'(h) = —h). For h < 0 the stability is reversed. A
bifurcation occurs at h = 0. See Figure 2.11 for the bifurcation diagram.
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Figure 2.4: Slope field for Exercise 2.3.7.
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Figure 2.5: Slope field for Exercise 2.3.9.
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Figure 2.6: Slope field for Exercise 2.3.11.
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Figure 2.7: Phase portrait for v’ = —u (left) and some solutions (right).
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Figure 2.8: Phase portrait for v’ = 11 — kv (left) and some solutions (right).
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Figure 2.9: Phase portrait for «'(t) = u(t)(1 — u(t)) — u(t)/10 (left) and
some solutions (right).
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Figure 2.10: Phase portrait for u/(t) = rep — ru(t)/V.
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Figure 2.11: Bifurcation diagram for v’ = hu — u?.
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Section 2.4

Exercise Solution 2.4.1. Here f(t,u) = u+ 3, which is continuous for all

u and t. Also % =1, also continuous everywhere.

Exercise Solution 2.4.3. Here f(t,u) = 1/u, which is continuous near
u =2 (everywhere except u=0). Also % = 1/u?, which is continuous near
u=2.

Exercise Solution 2.4.6. Solution is u(t) = 2, mazimum domain —oo <
t < oo.

Exercise Solution 2.4.8. Solution is u(t) = —In(1—t), mazimum domain
—oo <t <1
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Section 3.1

Exercise Solution 3.1.1. Find us = 6.0, true solution is u(t) = 4e! — 3
with u(1) ~ 7.873.

Exercise Solution 3.1.3. Find us = 2.460, true solution is u(t) = /2t +4
with u(1) ~ 2.449.

Exercise Solution 3.1.5. True solution is u(t) = 3 — e~ */3 and u(5) ~
2.811124397. With h = 1,0.1,0.01 Euler estimates are 2.8683,2.8164,2.8116,
errors

0.0572,0.005291, 0.000525, roughly. This is consistent with first order accu-
racy.

Exercise Solution 3.1.7. True solution is u(t) = 2/(1 — 2t), which has
an asymptote at t = 1/2. With h = 0.5,0.1,0.01,0.001 the Euler estimates
are 4,8.2182,36.257,217.64. It’s clear the Euler’s method is reproducing the
asymptotic blow-up.

Exercise Solution 3.1.11. The true solution is u(t) = 1/(1 —t), but
the mazximum domain of this solution is (—oo,1) (given that we started
at t = 0). Euler’s Method with step sizes h = 1,0.1,0.01,0.001 produces
estimates for u(1l) equal to 2,6.13,30.39, and 193.1. For u(2) we obtain
6,5.65 x 1019 00,00 (the last two are really floating point overflow.) All
FEuler estimates are nonsense, since we are trying to push the solution out
of its mazximal domain.
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Section 3.2

Exercise Solution 3.2.1. Find u; = 3.5,us = 7.5625. True solution is
u(t) = 4e! — 3 with u(1) ~ 7.873.

Exercise Solution 3.2.3. Findu; = 2.12132, us = 2.23607,ug = 2.34521,uq =
2.44950. True solution is u(t) = /2t + 4 with u(1) = /6 ~ 2.44950.

Exercise Solution 3.2.5. For h = 1 we find approximation 2.8035; for
h = 0.1, 2.81106; for h = 0.01, 2.81112. True solution is u(t) = 3 — /3
and u(5) = 3e7%/% ~ 2.81112.

Exercise Solution 3.2.7. For h = 0.5 we find approzimation 7.0; for
h = 0.1, 23.76; for h = 0.01, 211.2; for h = 0.001, 2086. True solution is
u(t) = ﬁ and u(0.5) is undefined (u limits to oo as t — 1/2 from the
left). Clearly the improved Euler iterates try to track this.

Exercise Solution 3.2.10. The true solution is u(t) = 1/(1 —t), but the
mazximum domain of this solution is (—oo, 1) (given that we started att =0).
The improved Euler method with step sizes h = 1,0.1,0.01,0.001 produces
estimates for u(2) equal to 133.65, 00, 00,00 (the last three are really floating
point overflow.) All improved Euler estimates are nonsense, since we are
trying to push the solution out of its maximal domain.
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Section 3.3

Exercise Solution 3.3.1. Find us = 7.8694, true solution is u(t) = 4e' —3
with u(l) = 4e — 3 ~ 7.8731.

Exercise Solution 3.3.3. Find uy = 2.44949, true solution is u(t) =

V2t + 4 with u(1) = V6 ~ 2.44949.

Exercise Solution 3.3.5. For h = 1 we find approzimation 2.81108; for
h = 0.1, 2.81112; for h = 0.01, 2.81112. True solution is u(t) = 3 — e~*/3
and u(5) = 3e~%/3 ~ 2.81112.

Exercise Solution 3.3.7. For h = 0.5 we find approximation 16.98; for
h = 0.1, 82.03; for h = 0.01, 819.9; for h = 0.001, 8199.1. True solution
is u(t) = 1/21_t and u(0.5) is undefined (u limits to oo ast — 1/2 from the
left). Clearly RK/ tries to track this.

Exercise Solution 3.3.10. The true solution is u(t) = 1/(1 —t), but the
mazximum domain of this solution is (—oo, 1) (given that we started att =0).
The RK/ method with step sizes h = 1,0.1,0.01,0.001 produces estimates
for u(2) equal to 1.67 x 1011, 0o, 00, 00 (the last three are really floating point
overflow.) All RK4 estimates are nonsense, since we are trying to push the
solution out of its maximal domain.
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Section 3.4

Exercise Solution 3.4.1.

(a) The sum of squares function is

S(a) = (0.1a—0.11)? 4 (0.6a — 0.5)> + (1.1a — 0.6)* + (1.4a — 0.5)2.

Setting S’(a) = 0 yields minimizer a ~ 0.472, easily confirmed with a
graph of S(a). The residual is 0.0833. The fit to the data is shown in
Figure 3.12, left panel.

(b) The sum of squares function is

S(a,b) = (0.1a+b—0.11)2+(0.6a+b—0.5)%+(1.1a+b—0.6)?+(1.4a+b—0.5)2.

0.7

0.6+

0.5
0.4

0.3

0.2
0.1

° 0.2

Setting % = 0,% = 0 and solving for a and b yields minimizer
a =~ 0.309,b ~ 0.180, easily confirmed with a graph of S(a,b). The
residual is 0.0474. Of course this residual is smaller since throwing
b into the computation gives us “more to work with” when fitting the
data (informally). The fit to the data is shown in Figure 3.12, right
panel.

0.6 [ ]
0.5 [ ] °
0.4

0.3

0.5 1 15 0 0.5 1 15
t t

Figure 3.12: Best fit to data for Exercise 3.4.1, u(t) = at (left panel) and
u(a,b,t) = at + b (right panel).

Exercise Solution 3.4.3. Forming an appropriate sum of squares S(k, P)
and minimizing by solving % =0, g—g = 0 yields minimizer P ~ 8.5997, k =~
0.8072. A plot of the Hill-Keller solution with these parameters and the data
is shown in Figure 3.13.
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Figure 3.13: Position z(¢) from Hill-Keller solution with P = 8.5997, k =
0.8072 (blue) and data from Tori Bowie’s 2017 race (red).

Exercise Solution 3.4.5. From the hint it’s easy to see that
n
2
S"(m) =2 ij.
j=1

If any x; is nonzero then this quantity is positive. Also, given that S(m)
is of the form Am? + Bm + C where A > 0, it’s clear that S(m) limits to
nfinity as m — +oo.
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Section 4.1

Exercise Solution 4.1.1. Suppose the mass is at position u(t) at time t.
In this position the spring on the left exerts force —kiu (pulling the mass
back to the left if u > 0, pushing it right if u < 0) and the spring on the right
exerts a similar force —kou. If u' > 0 (mass moving to the right) then the
dashpot on the left exerts force —ciu’, and the dashpot on the right exerts
force —cou/. The total force on the mass is thus — (k1 + ka2)u — (¢1 + e2)u/,
and Newton’s Second Law yields mu” = — (k1 + ko)u — (c1 + c2)u’ or

mu” + (1 + e2)u’ + (k1 + k2)u = 0.

Exercise Solution 4.1.3.

(¢)

(b)

(¢)

(d)

(¢)

The ODE is
5000u” (t) + (2 x 10M)a/ (t) 4 (5 x 10%)u = 0.

Compute

2t

be_ sin(4v/6t) + th cos(4+/6t)
1200 100

u(t) =
u'(t) = —;46821‘/ sin(4/6t)

u"(t) = \/6162_2t sin(4v/6t) — e~ % cos(4V/6t).

Simple algebra shows that the ODE is satisfied (write the ODE as
5000(w” () + 4u/(t) + 100u(t)) = 0). A plot of the solution is shown in
the left panel of Figure 4.14.

The building goes through a full oscillation in P seconds where 4/6P =
21, so P = m/(2v/6) ~ 0.64 seconds.

The acceleration u”(t) is graphed in the middle panel of Figure 4.14.
Maximum occurs initially, 1 meter per second squared, about 1/9.8 ~
0.102 g’s.

The ODFE is now
50000 (t) 4 (5 x 10°)u = 0.

A solution of the form u(t) = ugcos(w) exists if w = 10, and taking
ug = 0.01 yields the initial data. The solution is graphed in the right
panel of Figure 4.14.
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.Il)(i)sglacement Acceleration .]i)isl)Qlacement
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Figure 4.14: Solution u(t) = ‘/1626(;0% sin(4v/6t) + % cos(4v/6t) (left panel)
and u”(t) (middle panel), undamped displacement (right panel).

Exercise Solution 4.1.5. The ODE is
1073¢"(t) 4 104 (t) + 10%q(t) = 3.

And equilibrium solution q(t) = q* occurs when 10%q* = 3 (sinceq” = ¢ =0)
and so ¢* = 3x10™* coulombs. The current in the circuit is I(t) = ¢'(t) = 0.



22

Section 4.2

Exercise Solution 4.2.1. ODFE is 3u”(t) 4+ 24u/(t) + 60u(t) = 0, charac-
teristic equation 3r2 + 24r 4+ 60 = 0, roots —4 + 2i, underdamped.

Exercise Solution 4.2.3. ODF is 2u”(t) 4+ 12u/(t) + 10u(t) = 0, charac-
teristic equation 2r% + 121 + 10 = 0, roots —1, —5, overdamped.

Exercise Solution 4.2.5. ODE is 2u” (t) + 4u/(t) + 10u(t) = 0, character-
istic equation 2r® + 4r + 10 = 0, roots —1 % 2i, underdamped.

Exercise Solution 4.2.7. ODE is 2u”(t) 4+ 12u/(t) + 18u(t) = 0, charac-
teristic equation 2r® 4+ 12r 4+ 18 = 0, double root —3, critically damped.

Exercise Solution 4.2.9. ODE is 2u" (t)+8u/(t)+6u(t) = 0, characteristic
equation 2r% + 8r 4+ 6 = 0, roots —1, —3, overdamped.

Exercise Solution 4.2.11. ODE is u”(t)46u’(t)+8u(t) = 0, characteristic
equation r>4+6r+8 = 0, roots —2, —4, general solution u(t) = cre P qege™ .
Specific solution is u(t) = 11e=2 /2 — Te=4 /2.

Exercise Solution 4.2.13. ODF is 2u”(t) + 10u/(t) 4+ 12u(t) = 0, charac-
teristic equation 2r® + 10r + 12 = 0, roots —2, —3, general solution u(t) =
cre 2t + coe73t. Specific solution is u(t) = 9e=2! — Te =3t

Exercise Solution 4.2.15. ODE is 2u”(t) + 10u/(t) + 8u(t) = 0, charac-
teristic equation 2r® + 10r + 86 = 0, roots —1, —4, general solution u(t) =
cre”t + cae . Specific solution is u(t) = 11e~t/3 — 5e=4!/3.

Exercise Solution 4.2.17. ODE is 3u”(t) + 18u/(t) + 24u(t) = 0, charac-
teristic equation 3r? 4+ 18r + 24 = 0, roots —2, —4, general solution u(t) =
cre” 2 + coe™ . Specific solution is u(t) = 11e72t/2 — Te=4 /2.

Exercise Solution 4.2.19. ODE is u” (t)+4u'(t)+5u(t) = 0, characteristic
equation r? 4+ 4r +5 = 0, roots —2 4 i, general solution u(t) = crel=2Ht
coel =270t Specific solution is u(t) = (1 — 4i)e(=2TD 4 (1 4 4i)e(=2=Dt. The
real-valued general solution is u(t) = die™ 2! cos(t) + dae™?!sin(t) and with
the initial conditions yields specific solution u(t) = 2e 2! cos(t)+8e ™2 sin(t).

Exercise Solution 4.2.21. ODF is 2u”(t) + 16u'(t) 4+ 64u(t) = 0, charac-
teristic equation 2r? 4+ 167 + 64 = 0, roots —4 4 4i, general solution u(t) =
cre(4H A o e(=4=40t - Ghecific solution is u(t) = (1 —3i/2)el 44t 4 (14
3i/2)e(4=4t - The real-valued general solution is u(t) = die=* cos(4t) +
doe~* sin(4t) and with the initial conditions yields specific solution u(t) =
24 cos(4t) + 3e 4 sin(4t).
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Exercise Solution 4.2.23. ODE is 2u”(t) + 8u/(t) + 10u(t) = 0, charac-
teristic equation 2r> + 8r 4+ 10 = 0, roots —2 + i, general solution u(t) =
c1e2H 4 eoe(Z270 - Specific solution is u(t) = (1 — 44)e(=2+Dt 4 (1 +
4i)e(=2=Dt . The real-valued general solution is u(t) = dye~% cos(t)+doe™* sin(t)
and with the initial conditions yields specific solution u(t) = 2e~2t cos(t) +
8e~2tsin(t).

Exercise Solution 4.2.25. ODE is 2u”(t) + 16u/(t) + 50u(t) = 0, char-
acteristic equation 2r® + 16r + 50 = 0, roots —4 + 3i, general solution
u(t) = cre(4H30 L ey e(=430 - Specific solution is u(t) = (1 — 2i)e(~430t 4
(1 + 2i)e(=4=3Dt " The real-valued general solution is u(t) = dye=* cos(3t) +
doe4sin(3t) and with the initial conditions yields specific solution u(t) =
2e =4 cos(3t) + de* sin(3t).

Exercise Solution 4.2.27. ODE is u” (t)+4u/(t)+4u(t) = 0, characteristic
equation 7> + 4r + 4 = 0, double root —2, general solution u(t) = cre™2 +
cote™2t. Specific solution is u(t) = 2e™2t + 8te= 2.

Exercise Solution 4.2.29. ODE is 2u”(t) + 8u/(t) + 8u(t) = 0, charac-
teristic equation 2r® + 8r + 8 = 0, double root —2, general solution u(t) =
cre” 2 + cote™2. Specific solution is u(t) = 2e~2t + Ste= %,

Exercise Solution 4.2.31.

(a) The ODE is 20000u” (t) + 80000 (t) + 60000u(t) = 0, with u(0) = 0
and u'(0) = 0.1. The characteristic equations is 20000(r? + 4r + 3) =
20000(r 4+ 1)(r +3) =0, roots r = —1,—3. The general solution to the
ODE is u(t) = cie™t + coe™3! and the initial data requires ci + c3 =
0, —c1 —3co = 0.1, solution ¢y = 0.05,co = —0.05. The solution is thus
u(t) = 0.05¢~t — 0.05e 3. This system is overdamped. A plot of u(t)
18 shown in the left panel of Figure 4.15.

(b) The ODE is 20000u” (t)440000u () +60000u(t) = 0, with u(0) = 0 and
v/ (0) = 0.1. The characteristic equations is 20000(r? + 2r + 3) = 0,
roots 1 = —1 £ i\/2. The general solution to the ODE is u(t) =
cle(_”i‘/ﬁ)t + 626(_1_i\/§)t and the initial data requires ¢ + co =
0,(—1 4+ iv2)cr + (=1 — iv/2)ca = 0.1, solution ¢ = —i/2/40 ~
—0.0353t,c0 = i\/§/40 ~ 0.0353i. The real-valued version of the so-
lution is u(t) = v/2e~'sin(tv/2)/20. This system is underdamped. A
plot of u(t) is shown in the right panel of Figure 4.15.

(¢) The ODE is 20000u” (t)4-60000u(t) = 0, with u(0) = 0 and v’ (0) = 0.1.
The characteristic equations is 20000(r? + 3) = 0, roots r = +i/3.



24

(d)

0.018-

0.014-

0.010

0.006-

The general solution to the ODE is u(t) = c1e™3 4+ cpe™ V3 and the
initial data requires ¢ + co = O,i\/gcl — iV3ey = 0.1, solution c¢; =
—i1/3/60 ~ —0.0289i, c3 = i1/6/60 ~ 0.0289i. The real-valued version
of the solution is u(t) = v/3sin(t\/3)/30. This system is underdamped.
A plot of u(t) is shown in the left panel of Figure 4.16.

The choice ¢ = 40000v/3 ~ 69282 yields a critically damped system.
The ODE is 20000u” (t) +-40000+/3u/ (t) +60000u(t) = 0, with u(0) = 0
and u'(0) = 0.1. The characteristic equations is 20000(r% + 2v/3r +
3) = 0, double root r = —/3. The general solution to the ODE is
u(t) = cle_t\/g + czte_t\/g and the initial data requires ¢y = 0 and
¢y = 1/10. The solution is u(t) = te*V3/10. A plot of u(t) is shown
in the right panel of Figure 4.16.

0.025
0.020+
0.015
0.010

0.005

Figure 4.15: Solution to 20000u” (t) + 80000/ (¢) + 60000u(t) =
20000u” (1) -+ 400004 (£) + 60000u(t) = 0 (right), both with u(0)

0 (left)

0.1.

0.020

0.04
0.015

0.02-
0.010

0

0.005

-0.02
0

-0.04- 0 2 4 6 8 10

t

Figure 4.16: Solution to 20000u” (¢) 4+ 60000u(t) = 0 (left) and 20000u” (t) +
40000+/3u/ (1) + 60000u(t) = 0 (right), both with (0) 0,4/(0) = 0.1.

Exercise Solution 4.2.33.
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(a) This system is an undamped spring-mass system.

(b) The characteristic equation is r*> + gr/L = 0 with roots r = +i\/g/L.
The general solution will be of the form

0(t) = c1 cos(t\/g/L) + cosin(t\/g/L).

(¢) The period is P = 2w /\/g/L = 2w+/L/g. This makes perfect sense:
period increases as L increases, decreases as g decreases. Moreover,
g = LT~ 2, [L]=L, and so [P] =T.

Exercise Solution 4.2.35.

(a) The identity sin(xz +y) = sin(z) cos(y) + cos(x) sin(y) with x = wt and
y = ¢ becomes (after multiplying by C')

C'sin(wt + ¢) = C'sin(wt) cos(¢) + C cos(wt) sin(¢).

Comparison of the right side above to A cos(wt)+ Bsin(wt) shows they
will be identical as functions of t is C'sin(¢) = A and C cos(¢) = B.

(b) Squaring each side of each of Csin(¢) = A and Ccos(¢) = B and
adding yields C* = A?> + B?, so C = /A2 + B2.

(c) Take the quotient of the left and right sides of C'sin(¢) = A and
C cos(¢) = B to obtain tan(¢p) = A/B or ¢ = arctan(A/B) if B > 0.
If B<0,A >0 then ¢ = arctan(A/B) +m, while if B < 0,A <0 then
¢ = arctan(A/B) — .
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Section 4.3

Exercise Solution 4.3.1. u(t) = cre™# + coe™5, w,(t) = et General

solution u(t) = e 3 +cre 4 4 coe ™5, specific solution u(t) = e 3t 4 11e 4 —
10e~5t.

Exercise Solution 4.3.3. uy(t) = cie=4 cos(4t) +coe 4 sin(4t), u,y(t) = 1.
General solution u(t) = 1 + cre™* cos(4t) 4 cae ™ sin(4t), specific solution
u(t) = 1+ e cos(4t) + Te 4 sin(4t) /4.

Exercise Solution 4.3.5. u,(t) = cre™! + coe™3, u,(t) = 3t — 4. General
solution u(t) = 3t —4+cre t+coe 3t specific solution u(t) = 3t —4+9e~! —
373,

Exercise Solution 4.3.7. uy(t) = cie™t + cae ™, u,(t) = —cos(3t)/5 —
sin(3t)/15. General solution u(t) = cre™ + cae™* — cos(3t) /5 — sin(3t) /15,
specific solution u(t) = 4e~t — 9e™* /5 — cos(3t)/5 — sin(3t)/15.

Exercise Solution 4.3.9. uy(t) = c1e 32 4 cote 12 w,(t) = t2/9 —
5t/27 +4/27. General solution u(t) = c1e ™32 + cote™3/2 + 12 /9 — 5t/27 +
4/27, specific solution u(t) = 50e=3/2 /27 4 161te=3/2 /27 4+ 12 /9 — 5t /27 +
4/97.

Exercise Solution 4.3.11. up(t) = cie™2 + coe™, uy(t) = —e 734262 +
2t+3). General solution u(t) = —e 3 (2t2 +2t+3) +cre 2 +coe ™, specific
solution u(t) = —e 34 (2t2 + 2t + 3) + Te 2t — 2¢75¢.

Exercise Solution 4.3.13. uy(t) = cie ' cos(3t) + coe ' sin(3t), u,(t) =
e 2. General solution u(t) = e 2 + cie~t cos(3t) + coe~tsin(3t), specific
solution u(t) = e~ + e~! cos(3t) + 2e ' sin(3t).

Exercise Solution 4.3.15. () = cie % cos(3t) + cae ™2t sin(3t), u,(t) =
te=2t. General solution u(t) = te™ 2 +c1e=2! cos(3t) + cae =2 sin(3t), specific
solution u(t) = te=2 4 2e~2 cos(3t) + 2e 2! sin(3t).

Exercise Solution 4.3.17. up(t) = cie™t + coe™¥, uy(t) = —cos(2t).
General solution u(t) = — cos(2t) + cre™t + coe ™4, specific solution u(t) =
—cos(2t) + 5et — 24,

Exercise Solution 4.3.19. uy(t) = cre™ + coe™™, u,(t) = 5t/2 — 1/4.
General solution u(t) = 5t/2 —1/4+cre2 + coe ™, specific solution u(t) =
5t/2 — 1/4 + 47e2t /12 — 5e°t /3.



27

Exercise Solution 4.3.21. u(t) = cie ™" cos(t)+coe™ ! sin(t), uy(t) = (5t —
2) cos(t) + (10t — 14) sin(t). General solution u(t) = (5t — 2) cos(t) + (10t —
14) sin(t) +cre ! cos(t) +coetsin(t), specific solution u(t) = (5t —2) cos(t)+
(10t — 14) sin(t) + 4e~* cos(t) + 16e " sin(t).

Exercise Solution 4.3.23. wu(t) = cj cos(t) + casin(t), u,(t) = t, general
solution u(t) =t + c1 cos(t) + cosin(t), specific solution u(t) =t + 2cos(t) +
2sin(t).

Exercise Solution 4.3.24. uy,(t) = cie ™ +coe ™5 u,(t) = 2te=*, general
solution u(t) = 2te™4 + cre™ + coe™, specific solution u(t) = 2te=4 +
1le™# — 9e~?t,

Exercise Solution 4.3.26. u(t) = cie ' +coe ™3, uy(t) = —te 3, general
solution u(t) = —te 3t + cre™" + coe™3t, specific solution u(t) = —te 3t +
5e~t — 3e73t.

Exercise Solution 4.3.28. uy(t) = cie 'cos(t) + coe 'sin(t), upy(t) =
—te~tcos(t), general solution u(t) = —te cos(t)+cre~t cos(t)+coetsin(t),

specific solution u(t) = —te! cos(t) + 2e~t cos(t) + 6esin(t).

Exercise Solution 4.3.30. wuy(t) = cre™ 2 cos(2t) + cae 2! sin(2t), up(t) =
4te=2t sin(2t), general solution u(t) = 4te=2! sin(2t)+cre ™2t cos(2t)+coe ™2 sin(2t),
specific solution u(t) = 4te= ' sin(2t) + 2e 2! cos(2t) + Te~* sin(2t) /2.

Exercise Solution 4.3.32. u,(t) = ¢1 cos(t)+casin(t), uy(t) = —tcos(t)/2,
general solution u(t) = —tcos(t)/2 + ¢1 cos(t) + cosin(t), specific solution
u(t) = —tcos(t)/2 4+ 2cos(t) + Tsin(t)/2.

Exercise Solution 4.3.33. Substituting u,(t) = Ae® into mu' (t)+cu/(t)+
ku(t) = e produces A(ma?+ca+k)e™ = e, so that A(ma®+ca+k) = 1.
Since a is not a root of the characteristic equation, ma®+ca+k # 0 and so
we can solve uniquely for A as A =1/(ma® + ca + k).

Exercise Solution 4.3.35.
(a) The solution is now

u(t) ~ —0.03 4 0.005¢ 121 4-0.0251e 2159,

The graph is shown in the left panel of Figure 4.17. The maximum
deflection is now —0.03, but the solution is much more “abrupt” near
t =0, e.g., subjects the rider to a much higher acceleration.
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(b) The solution is now
u(t) =~ —0.03 — 0.403¢ 1394 5in(12.49¢t) 4 0.03e 1304 cos(12.49¢).

The graph is shown in the right panel of Figure 4.17. The maximum
deflection is now —0.146 (which would actually bottom out the shock
at a 140mm travel). A significantly underdamped system would feel
unpleasantly “bouncy.”

0.2 0.4 0.6 0.8 1
0,005 -0.02 ¢
-0.04

-0.010

1 -0.06
-0.0151 -0.08
-0.020- ~0.10-
-0.025] 012

] -0.14

Figure 4.17: Solution to shock absorber ODE with ¢ = 10* (left) and ¢ =

1000 (right).
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Section 4.4

Exercise Solution 4.4.1. G(w) = 1//(2w? — 8)2 + w2. Resonance occurs
at w = 62/4 =~ 1.969. A plot is shown in Figure 4.18. Periodic response

is — 290 3ol yish amplitude 3/37/148 ~ 0.123.

Exercise Solution 4.4.3. G(w) = 1/2vw* — 16w? + 100. Resonance oc-
curs at w = 2V2 ~ 2.828. A plot is shown Figure 4.19. Periodic response
s> Sl;l((f 415 Cg;@t) with amplitude 5v/13/52 ~ 0.347.

Exercise Solution 4.4.5. The gain is the same as part (d), G(w) =
1/2\/100w4 —999w? + 2500, and again resonance occurs at w = 3\/@/20 ~
2.235. A plot is shown in Figure 4.20. Periodic response is —(5.26 x
10~4) sin(10t) — (5.54 x 1076) cos(10t), amplitude 5.26 x 10~*. Much smaller
than (d), even though the amplitude of the driving force is the same.

Exercise Solution 4.4.7. G(w) = 1/1/(w? — 1)2 + 100w?. Resonance does
not occur here. A plot is shown in Figure 4.21. Periodic response is
_Geosl2t) | A0SmZ)  (—0.0147 cos (2.0) + 0.0978 sin (2.01)) with ampli-
tude 2/+/409 ~ 0.0989.

0.6

Figure 4.18: Gain function for Exercise 4.4.1.

Exercise Solution 4.4.10. The gain function is

1
) = VT2 —1JC)2 + R2W?

If resonance occurs for w > 0 then G'(w) = 0 at that frequency, which leads
to

w(2CL?w? + CR? — 2L)
C((Lw? — 1/0)? + R2w?)3/2

G'(w) = — = 0.
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Figure 4.19: Gain function for Exercise 4.4.3.

0.2 :

Figure 4.20: Gain function for Exercise 4.4.5.

The numerator is zero for w > 0 when 2CL*w? 4+ R?C' —2L = 0, which yields

VAL/C — 2R?

2L '
Exercise Solution 4.4.12. The gain function is
1

(mw? — k)2 + c2w?’

Gw) =

Resonance occurs at wres = \/k/m — (¢/m)2/2. Then (mw?k, — k)? =

ct/am? while 2w?,, = ct/2m? + kc?/m. Then

(mw?, — k)? 4+ Awl, = ke /m — ¢ J4m? = A (k/m — 2 /4m?).

Then /(mwZ, — k)2 + w2, = c\/k/m — c2/4m? = cwnqt so that the peak
gain at resonance s
1

Clnat

G(Wres) =
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Figure 4.21: Gain function for Exercise 4.4.7.

Exercise Solution 4.4.14.

(a) Here wyres ~ 0.98,w_ ~ 0.748, w; ~ 1.166, and Q =~ 2.345.
(c) Here wyes =~ 3.162,w_ ~ 3.137,w ~ 3.187, and Q ~ 63.24.

(e) In this case no real computation is needed—it’s clear the we should
take “Q) = oc0”.
Note that in (b)-(d) the quantity Q scales in proportion to 1/c.

Exercise Solution 4.4.16.

(a) Here the solution is u(t) ~ —5.263 cos(t) 4+ 5.263 cos(0.9t) with wy = 1,
w = 0.9, and § = 0.1. The period of the beats is 20m =~ 62.8. See
Figure 4.22

(c) Here the solution is u(t) ~ —2.564 cos(2t)+2.564 cos(1.9t) with wy = 2,
w=1.9, and 6 = 0.1. The period of the beats is 20w =~ 62.8. See Figure
4.23
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Figure 4.22: Solution u(t) for part (a) of Exercise 4.4.16.

50 100
t

150 200

Figure 4.23: Solution u(t) for part (c) of Exercise 4.4.16.
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Section 4.5

Exercise Solution 4.5.1. We find [k] = T~'. Ift. = kaug then taking
the dimension of each side yields T = T~*MP which forces a = —1,5 =0,
and so t. = k~t. Since [ug] = M, any characteristic mass scale of the form
Ue = k:aug has M = T=*MP, so a = 0,8 = 1, and u. = ug. With T =
t/te =kt ort = 7/k and u(t) = uc.a(r) = upu(kt) we find du/dt = ku()%
and the ODE du/dt = —ku becomes k:u()% = —kupu or du/dt = —u with
initial data u(0) = ug/up = 1.

Exercise Solution 4.5.3. We find [/] = OT~!, and since [u] = [A] = ©
we must have k = T~'. We try a characteristic time scale of the form

t, = k*AP.

This leads to MOLOT'©° = MOT—*L9OF with solution o = —1, B = 0.
The only characteristic scale of this form is t. = 1/k. Similarly consider a
characteristic scale for u of the form

ue = k*AP.

This leads to MOLOT©' = MOT—*L°©P with solution « =0, B = 1. The
only characteristic scale of this form is u. = A.

Take 7 = t/t. = kt (sot = 7/k) and © = u/u. = u/A (so u(t) =
Au(r)). Then du/dt = t%dﬂ/dT = kAdu/t. The Newton cooling ODE
du/dt = —k(u — A) becomes kAdu/dr = —k(Au — A) or

du
— =—(u—1).
dr (@ )

The initial condition u(0) = wuy becomes u(0) = ug/A. The characteristic
scale u. = A is exactly the ambient temperature to which all solutions decay.

Exercise Solution 4.5.5. We have [u] = M and so [u] = MT~. Also
(V] = L3, [r] = L3T~! and [c1] = ML™3. A characteristic time scale is of
the form

te=Verlel

which leads to MOLPT' = MY L3+38=3vT=8 . We conclude that v = 0, 3(a+
B —7)=0,—8=1, with solution « = 1,3 =—1,v=0. That is, t. = V/r.
A characteristic mass scale ue for u is of the form

ue = Vorfe]
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which leads to M'LOT? = MY L3+38=3YT=8_ We conclude that v = 1, 3(a+
B—7)=0,—8=0, with solution « = 1,3 =0,y =1. That is, uc = 1 V.

We then have T = t/t. = rt/V ort = Vr/r. Also, u(T) = u(t)/u. =
u(t)/(c1V) or u(t) = ciVu(r). Then du/dt = clV%% = rcidudr. The
original ODE du/dt = rc; — ru/V becomes, after cancellations,

% =1—a(r).
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Section 5.1
Exercise Solution 5.1.1.
(a) The solution is u1(t) ~ 5.78 — 0.78e ™% for 0 < t < 12.

(b) The initial data for ua(t) is ua(12) = ui(12) ~ 5.683 mg. Then ua(t) ~
8.67 — 2.99¢*(t=12)  This can also be expressed as ug(t) ~ 8.67 —
23.82¢ 7.

(c) The function us(t) will satisfy usz(18) = ua(18) + 5 ~ 7.61 mg, with
uy = —kuz +1 fort > 18. The solution is uz(t) = 5.78 4 6.83e~*(~18)
or alternatively, as uz(t) ~ 5.78 + 153.79¢ ¢,

(d) The solution is plotted in Figure 5.24.

15

Morphine amount u(t) (mg)
ot

O | | | |
0 ) 10 15 20

Time ¢ (hours)
Figure 5.24: Amount of morphine (mg) in patient’s system.

Exercise Solution 5.1.5. The relevant ODE for 0 < t < 0.003 4s 10¢’(t) +
10%q(t) = 2 with initial condition q(0) = 0. The solution is ¢ = q where
q1(t) = (1 — 71090 /5000. For t > 0.003 the ODE becomes 10¢'(t) +
10%q(t) = 5 with initial condition q(0.003) = ¢1(0.003) = 0.00019. The solu-
tion to this ODE is ¢ = qa with qa(t) = 5 x 1074 — (6.226 x 1073)e 1000t ~
5x 1074 = (3.1 x 10~%)e~1000(t=0.003) - At t = 0.005 the charge is q2(0.005) ~
4.58 x 1074,
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Section 5.2

Exercise Solution 5.2.1. F(s) = 6/s3.
Exercise Solution 5.2.3. P(s) = (s +3)/((s + 3)? + 49)
Exercise Solution 5.2.6. Use linearity. f(t) =t — 2

Ex(er():ise Solution 5.2.8. Write G(s) = 25°; + ﬁ so g(t) = 2cos(2t) +
sin(2t).

Exercise Solution 5.2.10. From L£71(2/s%) = t? it follows that f(t) =
t2e=3t,

Exercise Solution 5.2.11. The poles of F(s) are at s = —1 and s = —2
(both multiplicity 1), so f(t) is a linear combination of e~ and e~2'.

Exercise Solution 5.2.13. The poles of F'(s) are at s =i and s = —i, both
of multiplicity 1, so f(t) is a linear combination of e®* and e~%, or sin(t)
and cos(t).

Exercise Solution 5.2.15. F(s) has a pole at s = 1 of multiplicity 3 and
poles at s = —1 % i of multiplicity 1, so f(t) will contain terms e, tet, t2e!,
and e(71TIt o(Z1=0t  Thege last two terms are equivalent to et sin(t) and
e tcos(t).

Exercise Solution 5.2.18. Laplace transform both sides of the ODE and
fill in the initial data to find sU(s) — 6 = 2U(s), so U(s) = 6/(s — 2) and
u(t) = 6e2t.

Exercise Solution 5.2.21. Laplace transform both sides of the ODE, fill
in the initial data, and collect the U(s) terms on the left, all other terms on
the right to find (s*> + 3s +2)U(s) = 6s + 22. Then

6s + 22 16 10

U p— p— _—
()= ZFi3s12 551 512

after a partial fraction decomposition. Then u(t) = 16e~" — 10e~2¢.

Exercise Solution 5.2.23. Laplace transform both sides of the ODE, fill
in the initial data, and collect the U(s) terms on the left, all other terms on
the right to find (s® 4+ 2s + 10)U(s) = s + 4. Then

s+4 B s+4
s2+4+2s+10 (s+1)2+ 32

U(s) =
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after completing the square in the denominator. This can also be written

Uls) = 3 + s+1
o (s+ 12432 (s+1)24 32

which has inverse transform u(t) = e'sin(3t) + et cos(3t).

Exercise Solution 5.2.25. Laplace transform both sides of the ODE, fill
in the initial data, and collect the U(s) terms on the left, all other terms on
the right to find (35 + 65 + 6)U(s) = 3s. Then

U(s) =

S S
s24+25+2 (s+1)2+1

after completing the square in the denominator. This can also be written

s+1 1
Uls) = (s+1)24+1 (s+1)2+1

which has inverse transform u(t) = et cos(t) — e ' sin(t).
Exercise Solution 5.2.33.

(a) If f(t) = 1 then F(s) = 1/s. Also, lim;_,o+ f(t) = 1 andlims_,o SF'(s) =
1.

(c) If f(t) = €' then F(s) = 1/(s —1). Also, limy_,o+ f(t) = 1 and
limg_, 00 SF(s) = 1.
Exercise Solution 5.2.34.

(a) If f(t) = 4 then F(s) = 4/s. Here F has a pole at s = 0 of mul-
tiplicity 1, so the theorem is applicable. Also, limy_,~ f(t) = 4 and
lim,_ g+ sF(s) = 4.

(c) If f(t) = t*e~t then F(s) = 24/(s+1)>. Here F has a pole at s = —1 so
the theorem is applicable. Also, limy_ o f(t) = 0 and lim,_,o+ sF'(s) =
0.

Exercise Solution 5.2.37. This equation is nonlinear. There is no simple
way to relate the transform L(u?(t)) to L(u(t)).

Exercise Solution 5.2.38.
(a) From the rule for first derivatives we have
L") = £(7)) = s£(") ~ 1),

Using the rule for L(f") = s?F(s) — sf(0) — f'(0) yields L(f") =
s*F(s) — 52 f(0) — sf'(0) — "(0).
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Exercise Solution 5.2.39.

(a) When k = 1 the expression is (—1)(1/t)?F'(1/t) = 1/(1 +t)* (use
F'(s) = —1/(s+1)2.) A plot of 1/(1+1)? and e* is shown in the left
panel of Figure 5.25.

(b) When k = 2 the expression is ((—1)2/2)(2/t)3F"(2/t) = 1/(1 +t/2)3
(use F"(s) =2/(s+1)3.) A plot of 1/(1 +t/2)® and e~* is shown in
the right panel of Figure 5.25.

1 1
0.8 1 o0sp .
0.6 106 .

0.4 1 04f |
0.2 102 :
0 4 o 4

Figure 5.25: Left panel: Graph of e™! (red,solid) and 1/(1 + t)? (blue,
dashed). Right panel: Graph of e~! (red,solid) and 1/(1 + t/2)% (blue,
dashed).
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Section 5.3

Exercise Solution 5.3.1. f(t) =7H(t —5).

Exercise Solution 5.3.3. f(t) =2(1—-H(t—3))+5(H(t—3)—H(t—6))—
3H(t —6) =2+ 3H(t — 3) — SH(t — 6).

Exercise Solution 5.3.6. We find
o F(s) =Te %/s.
o F(s)=2/s+3e73%/s —8e705/s.

Exercise Solution 5.3.7. The inverse transform of 2/s? is 2t, so by the
second shifting theorem f(t) = 2H(t —3)(t — 3).

Exercise Solution 5.3.9. The inverse transform of (3s + 2)/(s* + 4) =
3s/(s? +4) +2/(s% +4) is 3cos(2t) +sin(2t) so g(t) = H(t — 5)(3 cos(2(t —
5)) +sin(2(t — 5))).

Exercise Solution 5.3.12. Transform both sides of the ODE and use the
initial data to find sU(s) —1 = —2U(s) +4e % /s. Then U(s) =1/(s+2)+
4e=%%/(s(s +2)). The inverse transform of 1/(s + 2) is e 2'. The inverse
transform of 1/(s(s +2)) = 1/(2s) — 1/(2(s + 2)) is 1/2 — e /2 so the
inverse transform of 4e=°%/(s(s+2)) is 4H(t —5)(1 — e 2t=9) /2. All in all
u(t) = e 2t + 2H(t — 5)(1 — e~2=5)). Graph shown in Figure 5.26.

Figure 5.26: Graph of solution for Exercise 5.3.12.
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Exercise Solution 5.3.15. Transforming both sides and using the initial
data yields s*U(s) + 4sU(s) + 3U(s) = e~*/s so that U(s) = S(S%:S%) =
Then

—Ss

TGS

(1 1 1
Uls) =e <3s_2(s+1)+6(s+3)>'

An inverse transform yields u(t) = H(t — 1)(1/3 — e~ (=1 /2 4 =301 /g).
Graph shown in Figure 5.27.

Exercise Solution 5.3.17. Laplace transform and fill in the initial data to
find (s> +4s +4)U(s) —s— 6 =4/s+ 873 /s. Then
s+6 4 8e 38
- + :
(s+2)2  s(s+2)?2 s(s+2)?
A partial fraction decomposition shows
s+6 1 4

(s +2)? _s—|—2+(s+2)2'

U(s) =

and
B
s(s+2)2 s s+2 (s+2)%
Use this to find

u(t) =e 2 4te ™ 41— e — 2te™?
+2H (t — 3)(1 — e 2073) _ 9(¢ — 3)e2(t73))
=1+ 2te 2+ 2H(t —3)(1 — e 2073 —2(¢ — 3)e~2(t=3)),
Graph shown in Figure 5.28.
Exercise Solution 5.3.19. The ODE is u/(t) = —ku(t)+ 14 0.5H (t — 12)

(recall k = 0.173) with initial condition u(0) = 5. Laplace transforming,
using the initial data, and then solving for U(s) yields

Uiy =>4
stk s(s+k) 2s(s+k)

Inverse transforming yields

1— ekt _ o—k(t-12)

P H(E 12—

A graph is shown in Figure 5.29.

u(t) = be k4
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0.4

0.3 - N

0.1} .

Figure 5.27: Graph of solution to Exercise 5.3.15.

Figure 5.28: Graph of solution to Exercise 5.3.17.
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10

u(t) (mg)

10 20 30 40
t (hours)

Figure 5.29: Plot of morphine level (mg).
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Section 5.4

Exercise Solution 5.4.2. Transform to find sU(s)—1 = —3U(s) +3e™3% —
6e55/s so U(s) = 1/(s+3) +3e73% /(s +3) — 6e7°°/(s(s + 3)) with inverse
transform u(t) = e =3t + 3H (t — 3)e=30¢=3) —2H (t — 5)(1 — e3(=5)). Graph
shown in Figure 5.30.

2, -
3 OL |
_2,
| | | |
0 2 4 6 8 10

Figure 5.30: Graph of solution to Exercise 5.4.2.

Exercise Solution 5.4.4. Transform to find (s> +4s + 3)U(s) = €%, so
U(s) =e /(s> + 45+ 3) and u(t) = H(t — 1)(e- D — =3¢=1)) /2. Graph
i Figure 5.51.

Exercise Solution 5.4.6. Transform to find (s*>+4s+4)U(s)—s5—6 = 1/s+
5e725 50 U(s) = (s+6)/(s?+4s+4)+1/(s(s®+4s+4))+5e"25/(s® +4s+4).
An inverse transform yields u(t) = 1/4 + e=2!(14t + 3)/4 + 5H(t — 2)(t —
2)e~2=2) . Graph in Figure 5.32.

Exercise Solution 5.4.9.

(a) The ODE is 4u” (t)+16u'(t)+116u(t) = 206(t—5) with u(0) = «/(0) =
0, if u(t) denotes the mass position.

(b) Transform both sides to find (4s*>+16s+116)U(s) = 20e 5%, so U(s) =
5e79%/(s% + 4s +29). An inverse transform shows that u(t) = H(t —
5)e~2t=5) sin(5(t — 5)). The mass remains motionless up until time
t = 5, at which time the blow sets the mass in motion; it oscillates
and decays back to position u = 0.
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0.2

0.15 |- .

0.05 |- a

Figure 5.31: Graph of solution to Exercise 5.4.4.

1.5

05| A

Figure 5.32: Graph of solution to Exercise 5.4.6.
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Section 5.5

Exercise Solution 5.5.2. Fy(s) = 1/s%, Fy(s) = 1/(s—1), p(t) = et —t—1,
and P(s) = 1/(s*(s — 1)).

Exercise Solution 5.5.4. Fi(s) = Fy(s) = 1/(s*> + 1), p(t) = (sin(t) —
tcos(t))/2, and P(s) = 1/(s* +1)2.

Exercise Solution 5.5.6. Fy(s) =1/s>+3/s, Fy(s) = e 2%, p(t) = H(t —
2)(t+1), and P(s) = 6_25/52 + 36—28/5.

Exercise Solution 5.5.7. Unit impulse response is L71(1/(s+4)) = e 4.

Exercise Solution 5.5.9. Unit impulse response is L71(1/s) = H(t) or 1.

Exercise Solution 5.5.11. Unit impulse response is L~1(1/(s* + 1)) =
sin(t).

Exercise Solution 5.5.13. Unit impulse response is L=1(1/(s? +4s+4)) =
te 2t

Exercise Solution 5.5.16. Laplace transform the ODE and use the initial
data to find (as + b)U(s) = F(s). We can compute U(s) = 1/(s(s + 5))
and F(s) = 1/s, from which it follows that (as + b)/(s(s +5)) = 1/s or
(as+b)/(s+5)=1. We conclude that a =1 and b =5.

Exercise Solution 5.5.18. From U(s) = G(s)F(s) = F(s)/(ms*+cs+k)
along with U(s) = 4e7*((s + 1)(s +5)) and F(s) = 4e75 we find G(s) =
1/(ms? +cs+k)=1/(s>+6s+5). Thenm=1,c=6, and k = 5.

Exercise Solution 5.5.24. In each case let’s use the convolution theorem
(though they can be done directly from the definition of convolution).

e Commutativity: This is equivalent to the s-domain statement F1(s)G(s)

G(s)Fi(s), which is clearly true.

e Distributivity: This is equivalent to the s-domain statement (aFy(s)+

bFy(s))G(s) = aF1(s)G(s) + bFa(s)G(s), also clearly true.

e Associativity: This is equivalent to the s-domain statement (F1(s)Fa(s))G(s) =

F1(s)(F2(s)G(s)), also true.
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Section 5.6

Exercise Solution 5.6.1. Substitute u(t) = % intoy'(t) = —ky(t)+
Ku(t) to find ODE
y'(t) = —ky(t) + ' (t) + kr(t).

With y(0) = r(0) it is easy to check that y(t) = r(t) is the unique solution to
this ODE. If we Laplace transform both sides of u(t) = % we obtain
U(s) = (sR(s) + kR(s))/K = G.(s)R(s). This corresponds to the s-domain
computation.

Exercise Solution 5.6.3.

(a) We find Go(s) = K,. With Gp(s) = 1/s we then have G(s) =
Gp(8)Ge(5)/ (1 + Gp(s)Gel(s)) = Kp/(s + Kp).

Exercise Solution 5.6.4.

(a) We have Gi(s) = K, + K;/s + Kgs. Given Gp(s) = 1/s we find

G(s) = Gp(s)Ge(s)  Kgs* + Kps+ K;
A Gp(s)Ge(s)  (Kg+1)s2 + Kps + K;
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Section 6.1

Exercise Solution 6.1.1. Nonlinear (has z1z2).

Exercise Solution 6.1.3. Nonlinear.

Exercise Solution 6.1.5. Nonlinear (x1/xz2).

Exercise Solution 6.1.7. Linear, variable coefficient, homogeneous.
Exercise Solution 6.1.9. Linear, constant coefficient, nonhomogeneous.
Exercise Solution 6.1.11. Linear, variable coefficient, nonhomogeneous.

Exercise Solution 6.1.12. With 1 = u and 29 = v’

Cb1:112

G = —4z1/3 — 512/3
with 1(0) = 7 and z2(0) = 5.
Exercise Solution 6.1.14. With 1 = u and 29 = v’

T1 = T9

T9 = —x1/2 — cos(xz2)
with 1(0) = 3 and z2(0) = —1.

Exercise Solution 6.1.16. With x1 = u, o = v/, and x3 = u”,

il = I9
jZQ = I3
1"3 = —5.%1 — X9 — 2:(}3

with 21(0) = 1, 22(0) = 0, and x3(0) = —1.

Exercise Solution 6.1.18. Let x1 = uj,xo = u}, and x3 = uy. Then

1"1 = 9
T9 = —xg + x3 + sin(t)
T3 = —3x1 + x3

with 21(0) = 1,22(0) = 3, and x3(0) = —2.
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Section 6.2

Exercise Solution 6.2.1. Matriz is
7T -4
A= [20 —11}

with Ay = —1, Ao = =3, and

|

A general solution is

x(t) = cret H + e E] |

The initial data is obtained with c1 = —1,co = 2.
Exercise Solution 6.2.3. Matriz is
1 -1
a=[s 5

with Ay = =141, \a = —1—14, and

2+ 2
vy = 5 9 Vo = 5 .

A complex-valued general solution is

x(t) = cq e~ [2 ;‘ Z} 4 egel 1m0t [2 ; 1] '

A real-valued general solution is

4 |2cos(t) — sin(t) _4 |2sin(t) + cos(t)
x(t) = die [ 5 cos(t) +dze 5sin(t) '
The initial data is obtained with dy = 2/5,dy = —4/5.
Exercise Solution 6.2.5. Matriz is

-6 9 -4
A=]|-6 11 -6
—10 21 -—-12
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with /\1 = —4, )\2 = —2, )\3 = —1, and

1 -1 1
vi= |2, vo=|0], vy3=|1
4 1 1

A general solution is

1 -1 1
x(t) = cre 2] 4e0e72 | 0| +eget |1
4 1 1
The initial data is obtained with ¢y = 1,c0 = 0,¢c3 = —2.

Exercise Solution 6.2.8. Matriz s
3 -1
S
with double eigenvalue A = 1, and eigenvector

-

By solving (A — MXI)vy = v we obtain vi = (0,—1) (or more generally,
vy = (t1,2t] — 1) for a free variable t1). We can construct a general solution

P

The initial data is obtained with c; = 1,c9 = —1.

Exercise Solution 6.2.10. Matrix is

—-10 -8
Sk
with double eigenvalue X = —2, and eigenvector

v [‘11].

By solving (A — AI)vi = v we obtain vi = (1/8,0) (or more generally,

vi = (1/8 — t1,t1) for a free variable t1). We can construct a general
solution
x(t) = cre” % [_11] + cpe 2 [_tt 1/8] .

The initial data is obtained with c¢; = 0,co = 16.
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Exercise Solution 6.2.12.

(a) The characteristic equation is r> +3r 42 =0, roots 11 = —1,79 = —2.
A general solution is

z(t) = cre”t + cge 2.

(b) The equivalent system is &1 = x9 and &9 = —2x1 — 3x2. The relevant
matrix is
0 1
A pr—
5
(¢) The eigenvalues are A\ = —1 and Ao = —2, with eigenvectors

W] m we [y

The general solution is then

x(t) = cre—t {_11] +coe” [_12] :

Then x1(t) is of precisely the same form as xz(t) in part (a).

(d) The equivalent system is 1 = xo and &9 = —kx1/m — cxo/m. The
relevant matrix is

S B

. _ o2 S 2
The eigenvalues are A\y = “*2‘377”47”]“ and Ay = %. These

are precisely the roots of the characteristic equation mr® + cr +k = 0.
The eigenvectors have the asserted form, namely

1 1
vy = [)\J and vy = [)\2] .

Then general system has a general solution

1 1
— A1t Aot
X(t) = C1€e |:>\1:| 4+ coe |:)\2:| .

Since 11 = A\ and Ty = A2, x1(t) is of exactly the same form as
z(t) = cre™t + coe™t.
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Section 6.3

Exercise Solution 6.3.1. Laplace transforming and solving for X1 (s), Xa(s)
yields

3s+1
Xils) = s24+4s+3

8s+4
Xa(s) = s2+4s+3°

An inverse transform shows that x1(t) = 43t — et and zo(t) = 10e73" —
2e .

Exercise Solution 6.3.3. Laplace transforming and solving for X1(s), Xa(s)
yields

s2—5—6
Xi(s)= —— 272
=G 6+9)
2(s? — 35— 9)
Xo(s) = o 2077
2(5) s(s+1)(s+3)
An inverse transform shows that x1(t) = —2 + 2e7t + 73 and z2(t) =

—6 + He~t 4+ 3e 3,

Exercise Solution 6.3.5. Laplace transforming and solving for X1(s), Xa(s)

yields
B s(s — 3)
N =D
Xo(s) = s(3s —5)

(s+1)(s* +1)

An inverse transform shows that x1(t) = 2e~t — cos(t) — 2sin(t) and z2(t) =
4e~t — cos(t) — 4sin(t).

Exercise Solution 6.3.7. Laplace transforming and solving for X1(s), Xa(s), X3(s)
yields

2422 +5+6

X0 = G196 19)
s+4

B = 9619
2

X(s) = — s+ 10s+3

s(s+1)(s+3)
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An inverse transform shows that x1(t) = 1+ €73t + 272 — 3e™, mo(t) =
2e72 —e73 and x3(t) = —1 — 3e~ 4 373

Exercise Solution 6.3.9.

A= [270 __141} and ~ f(t)=e % ﬁ :

A guess of the form x,(t) = e v with £(t) = e **w where w = (3,7) leads
to (A +2I)v = —w and then v = (A +2I)"'w = (1,3). So

xp(t) = €2 H .

A homogeneous general solution is

R

and the general solution to the nonhomogeneous system is

x(t) = cre™ [?] + coe™? B] 4e B] .

The initial data yields c; = —2, cag = 5.

Exercise Solution 6.3.11.

A= [130 :2] and () = [_22} :

A guess of the form x,(t) = v with £(t) = w where w = (2, —2) leads to
Av = —w and then v = (A)~'w = (8,13). So

%0 =13

A homogeneous general solution is

e[ o

and the general solution to the nonhomogeneous system is

x(t) = cre” [i] + cget B] + [183] .

The nitial data yields c; = 3, co = —13.
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Exercise Solution 6.3.13.
3 -2 ) . -3
A= [10 —6] and  f(t) = cos(t) [12} + sin(t) {_12] :
Again follow the hints: take a guess of the form x,(t) = cos(t)vi + sin(t)va
with f(t) = cos(t)wy + sin(t)wa where wi = (5,12) and wy = (-3, —12).

Then solving the linear system (A2 +1)vy = —(Awy +ws) yields vi = (0,2)
and then vo = Avy +wy = (1,0). A particular solution is

%, (1) = cos(t) m +sin(t) H |

A homogeneous general solution is

e[

and the general solution to the nonhomogeneous system is

x(t) = cre™ [ﬂ + cpe? B] + cos(t) [g] + sin(t) H .

The initial data yields c1 =1, co = —2.
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Section 6.4

Exercise Solution 6.4.1. The eigenvalues and eigenvectors lead to

-2 0 3 2
D—[ 0 _1] and P—[2 J.

Then

_9,—2t —t 2t _ @t
oA _ ptDp-1 _ { 3e " +4e 6e 6e ]

—2e % 4 2¢7t 4o _ 3t

For Putzer’s algorithm (with A\ = —2, 2 = —1) we find

1 0
Po = 0 1]
4 —6
Py = 2 —3}
ri(t) =e
0 0
Py = 0 0]

Putzer’s algorithm yields the same result as diagonalization.
The solution to x = Ax with x(0) = (1,2) is

—8e t 492t
x(t) = .
—4e t 4+ 6e 2t

Exercise Solution 6.4.3. The cigenvalues and eigenvectors lead to

-1 0 11
D—{ 0 2} and P—[Q 3].

Then

—2e2t £ 367t 2t _ et
etA — PetDpfl —
—6e?t+6et 3e2t—2et
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For Putzer’s algorithm (with A\ = —1, A2 = 2) we find

1 0
Po = 0 1}
[ —6 3
P1= 18 9}
ri(t) =e
[0 0
Py = 0 0}

ro(t) = €% /3 —e7t/3.

Putzer’s algorithm yields the same result as diagonalization.
The solution to x = Ax with x(0) = (0, —2) is

—2¢e2t 4 9¢t
x(t) = .
—6e?t +4et

Exercise Solution 6.4.5. This matriz has one eigenvalue of —2 and a dou-
ble eigenvalue A = —1, defective. With eigenvalues in the order —2,—1, —1
and Putzer’s algorithm we find

[1 0 0
Po=10 0 1
0 0 1
1 1 1
P,=|1 01
1 -2 1
ri(t) =e
2 -2 2
Py = 1 -1 1
-1 1 -1
ro(t) = e 2 et
[0 0 0
Ps=(0 0 O
0 00
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Putzer’s algorithm yields
AL = 1 (1) Py + o () Py + 13(t) Py
(2t—1)et+2e72t (—2t+3)et—3e 2t (2t—1)et+e 2!
= e 't —(t—1)e! e 't
(—=t+2)e " —2e2"  (t—3)e ' +3e7?  (—t+2)e ! —e?!

The solution to X = Ax with x(0) = (1,0, —1) is
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Section 7.1

Exercise Solution 7.1.1. The vectors are shown in the left panel of Figure

7.53.
Exercise Solution 7.1.2. The vectors are shown in the right panel of Fig-
ure 7.33.

4 4

Figure 7.33: Vectors for Exercises 7.1.1 (left panel) and 7.1.2 (right panel).

Exercise Solution 7.1.5. A direction field and a few solutions are shown
in Figure 7.34. Solution converge to either (3,0) or (0,3). It appears that
one species must go extinct, the other limits to its carrying capacity.

Exercise Solution 7.1.8. A direction field and a few solutions are shown
in Figure 7.35. Solutions form closed orbits, indicating that the pendulum
never stops moving. This makes perfect sense (no friction).
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Figure 7.34: Direction field for competing species with 7

Ky =3, Ky,=3,a=2,and b =2, and a few solution trajectories.
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Figure 7.35: Direction field for undamped pendulum equation (as a first
order system), with a few solution trajectories.
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Section 7.2

Exercise Solution 7.2.1. See Figure 7.36. FEigenvalues are real, —2 and
—4.

Exercise Solution 7.2.3. See Figure 7.37. Eigenvalues are real, 2 and 4.

Exercise Solution 7.2.5. SeeFigure 7.38. Figenvalues are complex, —1 +
2i.

Figure 7.36: Direction field for Exercise 7.2.1.

Exercise Solution 7.2.7. See Figure 7.39.

Exercise Solution 7.2.9. See the left panel in Figure 7.40.
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Figure 7.39: Phase portraits and solution curves for Exercise 7.2.7.



Figure 7.40: Phase portraits and solution curves for Exercise 7.2.9.
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Section 7.3

Exercise Solution 7.3.1. See Figure 7.41 for the phase portrait, Figure
7.42 for solution sketches with the given initial conditions. The solution
with initial conditions x1(0) = —1,22(0) = 3 does not extended past about
t ~ 1.2. The fized points are (—2,—2) and (1,1). The Jacobian is

J(xl,xg)—[ 201 }

Then
4 -1
sz [t 1]
has approrimate eigenvalues 3.79 and —0.79, so this is a saddle point. Also
-2 -1
=2 1]

has approxzimate eigenvalues —1.5+0.8661, so this is an asymptotically stable
spiral point.

Exercise Solution 7.3.3. See Figure 7.43 for the phase portrait, Figure
7.44 for solution sketches with the given initial conditions. The fized points
are (—3,0) and (—1,1). The Jacobian is

To T+ 2z
J(a:l,xg) = |: i ! _;:| .

Then

J(-3,0) = [g :g] .

has eigenvalues —1 £ i\/2, so this is an asymptotically stable spiral point.
Also

I(=1,1) = E _;] .

has approzimate eigenvalues 1.3 and —2.3, so this is a saddle point.
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Figure 7.41: Phase portrait for Exercise 7.3.1.

Figure 7.42: Individual solutions components for Exercise 7.3.1, z1(t) (red,
solid) and z5(t) (blue, dashed) for x1(0) = 0,22(0) = 4 (left panel) and
z1(0) = 4, 22(0) = —2 (right panel).
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Figure 7.43: Phase portrait for Exercise 7.3.3.

Figure 7.44: Individual solutions components for Exercise 7.3.3, z1(t) (red,
solid) and z2(t) (blue, dashed) for x1(0) = —3,22(0) = 1 (left panel) and
x1(0) = —2,22(0) = —3 (right panel).
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Section 7.4

Exercise Solution 7.4.1.

(a)

(b)

(c)

(d)

(¢)

The equation —axg—i-x% =0 forces xo = 0 or xo = a and then x1—x9 =
0 yields 1 =0 or x1 = a. The fized points are (0,0) and (a,a).

The z1 nullcline consists of the horizontal lines xo = 0 and xo = a. For
xo < 0 we find 1 > 0 so solutions move in the direction of increasing
x1 (to the right). For 0 < x9 < a solutions move to the left, and for
To > a solutions move to the right. This nullcline is shown in the left
panel of Figure 7.45.

The xo nullcline consists of the diagonal line xo = x1. For xo < 11
we find o < 0 so solutions move in the direction of decreasing xa
(down). For xg > x1 solutions upward. This nullcline is shown in the
right panel of Figure 7.45.

The Jacobian 1s

=0 —a+2
J(xl,xg)—{ 1 “ _xi:| .

At the fized point (0,0) we find

3(0,0) = [:(1’ :‘i‘]

The determinant D of this matrix equals a, which is positive by as-
sumption, so (0,0) is always stable. The trace T of this matriz is —1.
If0<a<1/4 (so0 < D < T?/4) then (0,0) is an asymptotically
stable node and if a > 1/4 then (0,0) is an asymptotically stable spiral
point.

At (a,a) the Jacobian is

0 a
J(a,a) = [1 1] :
The determinant here is D = —a, so if a > 0 this is a saddle.

See Figure 7.46 for the case a > 1/4 and Figure 7.47 for the case
a < 1/4. The solutions have the same general behavior, except when
a < 1/4 they do not spiral as they approach the fized point (0,0).
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Figure 7.45: Nullclines for x; (left) and zo (right) for Problem 7.4.1.

Figure 7.46: Phase portrait for system in Problem 7.4.1, a > 1/4.
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Figure 7.47: Phase portrait for system in Problem 7.4.1, a < 1/4.

Exercise Solution 7.4.3. In each case the Jacobian matriz is

. 7‘1(1 —2v1 — (_1’02) —ri1av1
J(Ul’v2) - —7robug T2(1 — 209 — bvl) ’

The eigenvalues of J(0,0) in every case are r1 and ra, both positive, so the
origin is always an unstable node.

(a) See Figure 7.48. The fized points here are (0,0),(0,1), and (1,0).
At (0,1) the eigenvalues are 0 and —rg, so this is not a hyperbolic
equilibrium point. At (1,0) the eigenvalues are —r1 < 0 and ro(1—b) >
0, so this is a saddle. Although we can’t use the Hartman-Grobman
Theorem at (0,1), it certainly looks stable.
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Figure 7.48: Phase portrait for Problem 7.4.3 part (a).



71

Section 7.5

Exercise Solution 7.5.1.

(a) We settg = 0,t; = 0.5,t2 = 1.0 and x" = (1,2). Then with f(t,x) =
t

(11 —m9, 11+12) we have true solution x(t) = (et(cos(t)—2sin(t)), e (2 cos(t)+

sin(t))) with x(1.0) ~ (—3.11,5.22).
x! = x% + (0.5)£(0, (1,2)) = (0.5,3.5)
and
x? = x' + (0.5)f(0.5, (0.5,3.5)) = (—1,5.5).

(b) We set tg = 0,t; = 0.5,t5 = 1.0 and x° = {
(x1 + x2,21 + x2) we have true solution x(t
3e2/2) with x(1.0) ~ (10.58,11.58). Also

,2). Then with f(t,x) =
= (-1/2+3e*/2,1/2 +

1
)
x! = x" 4+ (0.5)f(0, (1,2)) = (2.5,3.5)
and
x? = x! + (0.5)f(0.5, (2.5,3.5)) = (5.5,6.5).
(c) We settyg = 0,t; = 0.5,t3 = 1.0 and x° = (0,0,1). Define f(t,x) =
(x120 + 1 — B +aro+t—t2 xoxs —1—t2+ t3>. Compute
x! = x% + (0.5)£(0, (0,0,1)) = (0.5,0,0.5)
and

x? = x' 4 (0.5)£(0.5, (0.5,0,0.5)) = (0.9375,0.375, —0.0625).

(d) The error for each step size is 0.567,0.0604, and 0.00607, approzi-
mately proportional to h.

(e) The error for each step size is 0.175, 0.0196, and 0.00199, approxi-
mately proportional to h.

Exercise Solution 7.5.4.

(a) First, the analytical solution is x(t) = e~0-2%,

Set tg = 0,t; = 0.5,to = 1.0 and zg = 1. Then =1 satisfies ©' =
(0.5)(—0.252%) + 1, which leads to z* ~ 0.889. Then 2 satisfies x> =
(0.5)(—0.2522) + 0.889, which leads to x' =~ 0.790. The true solution
value is £(1) = e=%25 =~ 0.779.
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0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
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Figure 7.49: Left panel: step size h = 0.25 for ODE 2/ = —10z with z(0) = 1
for Euler’s method (dotted/blue), the implicit Euler method (dashed/red)
and true solution x(t) = e~'% (solid/black). Middle panel: same, step size
h = 0.125. Right panel: same, step size h = 0.05.

(b) Setty=0,t; = 1,to =2 and xo = 1. Then x1 satisfies v* = 0.5z (2 —
xl) + 1, which leads to 2t = /2 ~ 1.4142. Then x4 satisfies x? =
0.52%(2 — x2) + 1.4142, which leads to z* ~ 1.682. The true solution
is x(t) = 2/(1 +e7t) so 2(2) =2/(1 +e72) ~ 1.762.

(c) Wehavet; = 1,tg = 2,t3 = 3 andx° = (1,3). Thenx' ~ (—0.167,0.167),
x? & (—0.194, —0.139), and x> ~ (—0.116, —0.106). The true solution
is x(t) = (272 — et de™™ — e7t) and x(3) ~ (—0.0498, —0.0498).

(d) With tg = 0,t; = 0.2,t2 = 0.4,t3 = 0.6,t4 = 0.8,t5 = 1.0 and x° =
(1,3) we find iterates

x! & (0.589,2.402), x? ~ (0.204, 1.968), x> ~ (—0.125,1.660),
xt ~ (—0.385,1.448), x° ~ (—0.579,1.303).

Exercise Solution 7.5.5.

(a) See the left panel of Figure 7.49 for step size h = 0.25, the middle
panel for h = 0.15, and the right panel for h = 0.05. According to
(7.48) (with A\ = 10) the iterates here converge to zero when h < 0.2,
which is in accordance with the figure. From Reading Exercise 7.5.4
the iterates should remain positive when h < 0.1, which again seems
correct.

(b) The analytical solution is x1(t) = 3e~! — 2™, xo(t) = 3e~t — 4™,
See Figure 7.50 for parametric plots. When h = 1.0 the solution goes
well outside the view range.
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Figure 7.50: Left panel: parametric plot z1(t) vs x2(t) for step size h = 1.0
for Euler’s method (dotted/blue), the implicit Euler method (dashed/red)
and true solution x1(t) = 3e~t — 275, x9(t) = 3e~! — 4e~ ' (solid/black).
Middle panel: same, step size h = 0.25. Right panel: same, step size h = 0.1.

Exercise Solution 7.5.6.

(a) The true solution is x(t) =t — 1+ 2¢~t and x(1) = 2/e. The errors
for implicit FEuler with step sizes h = 0.1,0.01,0.001, and 0.0001 are
0.0353276965, 0.0036635421, 0.0003677258, 0.0000367826, respectively.

(b) The analytical solution is x1(t) = 6e~t—52e > /25+13t/5—T73/25, x2(t) =
6e~t — 104e75t /25 4+ 11t/5 — 71/25. The errors for h = 0.1,0.01, and
0.001 are 0.104268966843117747,0.0117885987798727332,
and 0.00119297073597383397.

Exercise Solution 7.5.9.
(a) The system is &1 = x9, 72 = —101z1 — 229 with x(0) = (1,0).

(b) The eigenvalues and eigenvectors of A are —1+10i and (—1—107,101)
and (—1 + 10¢,101), respectively. A real-valued general solution is

B e tsin(10t) et cos(10t)
x(t) = e [e‘t(lO cos(10t) — sin(lOt))] +ez [—e_t(cos(lot) +10sin(108))| -

With the given initial data the solution is

4 |cos(10t) + sin(10t)/10
x(t)=e [ —101sin(10t)/10]'

The solution spirals toward the asymptotically stable fixed point at
(0,0).
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10- 10

-10

Figure 7.51: Left panel: True solution (solid/black), Euler estimate (dot-
ted/blue) and implicit Euler (dashed/red), step size h = 0.1. Right panel:
Same, but with A = 0.005.

(c) The true solution value is x(5) ~ (0.0063,0.0173). Implicit Euler gives
estimate (1.52x 1072,1.79 x 10?). Standard Euler’s method explodes.
A plot is shown in the left panel of Figure 7.51.

(d) A step size h < 0.005 tames Euler’s method. With h = 0.005 implicit
FEuler gives estimate (0.00158,0.0106). Standard Euler’s method gives
(0.0233,0.0134). A plot is shown in the right panel of Figure 7.51.
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Section 7.6
Exercise Solution 7.6.1.

(b) Compute D1 = a1, Dy = ajaz — a3, and D3 = (ay1az — ag)as. The roots
of the polynomial p(z) = 23 +a12% +azz+as all have negative real part
exactly when Dy, Do, and D3 are all positive, so a; > 0,a1a2 —as > 0,
and asz(ajaz — a3z) > 0. The last condition asz(ajaz — az) > 0 can be
replaced by ayas — az > 0 when az > 0.

Exercise Solution 7.6.3.

(a) The system is &1 = w2, mia =0 (or just &2 =0, since m > 0). Then
f(x) = (x9,0).

(b) We have VP = (0,m) and then VP-f =0, so P is a first integral and
represents a conserved quantity. The function P is just the momentum
ma of the particle, so this is conservation of momentum.

In this very simple setting, in both (b) and (c) here the essential fact is that
T 18 constant.

Exercise Solution 7.6.5. It’s easy to check that x1 = xo = 0 is an isolated
fixed point. A direction field is shown in Figure 7.52, with a few solution
curves and the level curves for the function V(x1,x2) = 2% + x3.

The linearized system at the origin has Jacobian matriz

3(0,0) = [8 8}

with double eigenvalue 0, which does not allow us to make any conclusion
about stability. With V(x1,22) = 23 + 23 with have VV = (2x1,2x3) and
with f(x) = (—x3, —23 we find VV -f = —2(2}+13) < 0 for (v1,22) # (0,0).
We conclude that this fixed point is asymptotically stable.

Exercise Solution 7.6.7. This system has infinitely many fived points, all
along the diagonal line xo = —x1/2; see Figure 7.53, in which the direction
field is plotted. The fized points are shown along the dashed blue line, and
a few solution trajectories are shown as solid black curves. The Jacobian at
each fized point is

1= 7
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Figure 7.52: Direction field and solution curves (solid black) for system
i = —a3,i9 = —a3, with level curves for V(z1,72) = x3 + 23 (dashed
blue).

with eigenvalues 0 and —5, which does not (by itself) allow us to make con-
clusions about the stability of any of these fized points. For the Lyapunov
approach, if we take V(x1,12) = 23 + 23 as suggested, a straightforward
computation shows that VV - £ = —22% — 8x129 — 823. This last expression
factors as —2(x1 — 2x2)2, which is non-positive for all x1 and x5. We can
conclude that fized point at (0,0) (and in fact, any of the fized points) is sta-
ble. We cannot conclude that any given fized point is asymptotically stable,
since they are not isolated. In fact by solving the system analytically we can
see that the solution trajectories that start at a point (a,b) are straight lines
that converge to the fized point ((4a — 2b)/5,(—2a + b)/5).

Exercise Solution 7.6.9. Straightforward algebra shows that this system
has an isolated fized point at x1 = x9 = 0. The Jacobian at (0,0) is the zero
matriz with double eigenvalue 0, which does not allow us to make conclusions
about the stability of this fixed point. For the Lyapunov approach, if we take
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Figure 7.53: Direction field and fixed points (dashed blue line) for system
&1 = —x1 — 2w, g = —2x1 — 4o, with solution trajectories (solid black).

V(z1,72) = 2} + 73 as suggested, a straightforward computation shows that
VV.-£f=0

Thus this is a stable fixed point, but we cannot assert asymptotic stability.
In fact, the solutions form closed orbits.

Exercise Solution 7.6.10. A bit of easy algebra shows that x1 = xo = x3 =
0 is the only fived point for this system. With V (x1, 2, x3) = ax? +bx3+cx?
we obtain

VV - f = —daxi2z2* — 8bx1 220 — dax®w3? — dexs® — 4bxy? — 4 cxs?

which is easily seen to be non-positive for any choice of a,b,c all positive
(which also makes V itself positive definite). Thus the origin is stable, but
no choice for a,b,c works to prove asymptotic stability (if xo = v3 = 0 we
can take any value for x1.) The Jacobian at the origin is

0 0 0
J(0,0,0)= |0 =2 0
0 0 -2
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Section 8.1

Exercise Solution 8.1.1. Start with the continuity equation % + g—g =

and use the given fact that % =0 to find % = 0. That is, q is independent

of x. Conversely if % = 0 it is immediate that % =0, so p does not depend
on time.

w2t

Exercise Solution 8.1.2. u(z,t) = 3¢~ " sin(rz). See left panel in Figure

8.54.

Exercise Solution 8.1.3. u(z,t) = 3¢~ ™ £ sin(7z)+5e 3"t sin(67z). See
right panel in Figure 8.54.

3,
6
7 4
i \
! N \/
0 ‘ ‘ 4 ‘ w ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Figure 8.54: Figures for Exercises 8.1.2 (left) and 8.1.3 ( right). In each case
t =0 is in red, ¢ = 0.01 is blue, t = 0.05 is green, t = 0.5 is black. In each
case the solution decays to 0 as t increases, at all points.

Exercise Solution 8.1.6. u(z,t) = 3¢ ™!

Figure 8.55.

cos(mz). See top left panel in

Exercise Solution 8.1.7. u(z,t) = 4+ 3¢ ™t cos(nx). See top right panel
i Figure 8.55.



79

3 7
27 6
1 57
0 4
-1 3
-2 2
-3 ‘ ‘ : ] : |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Figure 8.55: Figures for Exercises 8.1.6 (left) and 8.1.7 ( right). In each case
t =0 1is in red, t = 0.01 is blue, t = 0.05 is green, t = 0.5 is black. In each
case the solution decays in time to a constant value (whatever the average
value of u(z,0) is on the interval).
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Section 8.2

Exercise Solution 8.2.1. For n < 1 we obtain s,(x) = 0 and for n > 2
find sp(x) = f(x) = 3cos(2mx). Then || f — snll2 = 0.212 for n = 0,1 and
lf = snll2 =0 for n > 2. This graph is omitted.

Exercise Solution 8.2.3. You should find that

so(w) =1
si(z)=1- 8(3087(:;‘%/2)
sa(x) = 1— 86055;96/% _ 86055;39:/2)
o 8cos(mz/2)  8cos(m3z/2)  8cos(5mx/2)
85(1:) = o3 s

Also, so = s1 and sq4 = s3. Then ||f — sol|2 = 0.816, || f — s1||2 = 0.098, || f —
s5ll2 = 0.022. A plot is shown in Figure 8.56, left panel.

Exercise Solution 8.2.5. The approximation sig 1S
s10(x) &~ —0.053 cos(mx/3) +0.186 cos(2mwx/3) + - - - — 0.026 cos(107x/3).

The errors are || f — s3||2 = 0.882, || f — s5]|2 = 0.488, || f — s10||2 = 0.027. A
plot is shown in Figure 8.56, right panel.

Exercise Solution 8.2.7. The coefficients here are by, = 4sin(knx)/(km)
when k is odd, by, = 0 for k even. Then ||f—s1||2 = 0.435, || f—s3||2 = 0.315,
| f — si0ll2 = 0.201. Plots of s, for n =1,3,10 are shown in Figure 8.57.

Exercise Solution 8.2.8. We find si(x) = 0, sp(x) = 3sin(27z) for n =
2,3, and sp(x) = f(x) = 3sin(27wx) — 4sin(4nx) for n > 4. The errors are
| f—s1ll2 = 3.536, || f —sal|l2 = 2.828, ||f —sio0ll2 = 0. Graph here is omitted.
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2 1
1.5 0.51
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1
-0.5
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~f(x)-n=0-n=1-n=5 ~f(x)-n=3-n=5-n=10

Figure 8.56: Graphs of f(z) and s, (z) for various values of n for Exercises
8.2.3 (left) and 8.2.5 (right).
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X
~f(x)-n=1-n=3-n=10

Figure 8.57: Graphs of f(x) and s,(z) for various values of n for Exercise
8.2.7.
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Section 8.3

Exercise Solution 8.3.1. The approximate solution is

u(z,t) ~ 0.918¢ 123 sin(1.57x) 4+ 0193 sin(3.14z)
+0.133¢ 10 gin(4.71).

Note by = 0 here. Graph shown in the left panel of Figure 8.58.

Exercise Solution 8.3.2. The approximate solution is

u(x,t) = —0.360e~ 2% sin(1.57x) 4 e~ 980 sin(3.14x)
—0.388¢7 222 gin(4.71x).

Graph shown in the right panel of Figure 8.58.

1 0.5
0.8
0.6
u(x, t) e u(x,t) -0.5
0.4 -~ ~o
// ......... \\ -1
02 £ T N
04" 15 ‘ |
0 0.5 1 1.5 2 0 05 1 1.5 2
X X
—t=0-1=0.05"7=0.1 —t=0-71=0.1"1=02

Figure 8.58: Solutions to Exercises 8.3.1 (left) and 8.3.2 (right).

Exercise Solution 8.3.5. The approximate solution is

30 3467471-27& cos(2mx)
T

~ —0.033 — 0.031e 7394 c0s(6.28x).

u(x,t) ~

(The coefficient ag = 0 here). Graph shown in the left panel of Figure 8.59.
Exercise Solution 8.3.6. The approximate solution is
u(z,t) ~ 0.500 — 0.374e 246 cos(1.57x)

+ 0.162¢ 232 cos(4.71x) — 0.500e 394 cos(6.28x)
4 0.188¢ 7916 cos(7.851).

Here as = 0. Graph shown in the right panel of Figure 8.59.
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0.06
0.05
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0.01"
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Figure 8.59: Solutions to Exercises 8.3.5 (left) and 8.3.6 (right).

Exercise Solution 8.3.9.
(a) The approzimate solution is

u(z,t) ~ 1.01e73% sin(0.785x) + 0.499¢ 2" sin(2.362)
—0.207e" " sin(3.922) — 0.0172e 5 sin(5.50).

Graph shown in Figure 8.60.

0.8

0.6-

u(x,t) N ———-
0.4- -
0.2 P

~1=0-r=0.1"1=0.5

Figure 8.60: Solution to Exercise 8.3.9 part (a).
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Exercise Solution 8.3.12. The Fourier coefficients for f(z) are all zero, of
course. The Fourier cosine coefficients ag(t) to as(t) for r(x,t) with respect
to x are

ap(t) =2¢7", ai(t) = —8e~'/m%, as(t) =0, az(t=—8e'/(97?).
Solving for the ¢ (t) functions produces (rounded to three significant figures)

P0(t) =2 — 27, o1(t) = 0'552(6—2.4% = bolt) = 0.
3(t) = 0.00425(e 2 — 71,

The approrimation solution is
u(z,t) = ¢o(t)/2 + ¢1(t) cos(mz/2) + ¢2(t) cos(mz) + ¢3(t) cos(3mx/2)
This is shown in the left panel of Figure 8.61.

Exercise Solution 8.3.14. The Fourier coefficients for f(x) are approxi-
mately fo = 2.0, fi = —0.360, fo = —1.0, f3 = 0.330, fs = 0.0, f5 = 0.0208.
The Fourier cosine coefficients ay(t) to as(t) for r(xz,t) = x — 2 with respect
to = are independent of time (since r is too) and given by ag(t) = 0,a1(t0 =
—1.62,a2(t) = 0,a3(t) = —0.180,a4(t) = 0,a5(t) — 0.0646. More generally
ar(t) = 0 if k is even and ay(t) = —16/(k*x?) if k is odd.

Solving for the ¢y (t) functions produces (rounded to three significant fig-
ures

)

PO(t) =2,  ¢1(t) = —0.876 + 0.516e 1% @y(t) = —e~ 7108,
¢3(t) = —0.018 + 0.342¢ 07 ¢y(t) =0,
¢5(t) = —0.0014 + 0.0223¢ 463,

The approrimate solution is
u(z,t) = 1+ ¢1(t) cos(mz/4) + ¢p2(t) cos(mx/2) + - - - + ¢5(t) cos(bmz/4).

This is shown in the right panel of Figure 8.61.
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—1=0-1=0.5"1=2.0-t=5.0
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Figure 8.61: Solutions to Exercises 8.3.12 (left) and 8.3.14 (right).
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Section 8.4

Exercise Solution 8.4.1. The solution is p(x,t) = f(x — 2t) = (x —
2t)/((x — 2t)? +1). See Figure 8.62.

0.4
0.2

p(x, 1) 0
-0.2-

04
20

~1=0-1=2"1=5

Figure 8.62: Solution to advection equation for Exercise 8.4.1.

Exercise Solution 8.4.4. In this case the solution is u(xz,t) = cos(mt) sin(mx)
and is ezxact (it is exact for any N > 2). Solution graphed in the left panel
of Figure 8.63.

Exercise Solution 8.4.5. In this case the solution is u(x,t) = cos(nt) sin(mwz)+
3sin(27t) sin(2mx) /(27) and is exact (it is exact for any N > 4). Solution
graphed in the right panel of Figure 8.63.

Exercise Solution 8.4.8. We find D = PP, where P, = d/dt + I and
Py, = d/dt + 81 (or vice-versa). The solution or roots for Py and P are
cre”t and cpe8 for any constants c1, ca.
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u(x, )

0 05 1 15 2

—t=0-1=04"1=0.8 —t=0-t=04"1=0.8

Figure 8.63: Solution to wave equation for Exercises 8.4.4 (left) and 8.4.5
(right).
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Appendix A

Exercise Solution A.6.1.

(a) Re(z) = 3, Im(z) = 4, Re(w) = 1, and Im(w) = —1. Also z+w =
4430, z—w = 2450, zw = T+1, and z/w = —1/2+7i/2. Also |z| = 5,
lw| = V2, and |zw| = |z||w| = 5v/2. Also Z =3 —4i, w =1+, and
zw = T—i. Finally, e* = €3 cos(4)+ie3sin(4), e = ecos(1)—iesin(1),

e*e’ = e*(cos(1) cos(4) +sin(1) sin(4)) +ie*(sin(4) cos(1) —sin(1) cos(4)),

and T = e* cos(3) +ietsin(3). That e*e® = T follows by apply-
ing the given trigonometric identity.

(b) Re(z) =3, Im(z) =0, Re(w) =0, and Im(w) = 1. Also z+w = 3+1,
z—w=3—1i, 2w =31, and z/w = =3i. Also |z| =3, |lw| =1, and
lzw| = |z||lw|] = 3. Also Z = 3, w = —i, and zw = —3i. Finally,
e* =e3, e¥ = e = cos(1) +isin(1),

e*e = €3 cos(1) + ie® sin(1)

and e TV = 31 = e3 cos(1) + e sin(1).

(c) Re(z) = 0, Im(z) = 7, Re(w) = 1, and Im(w) = 7/2. Also z +
w=1+3in/2, z—w = —14+in/2, 2w = —72/2 + i, and z/w =

7T2 ; s
stz T Also |z| = 7, |w| = V4+72/2, and |2w| =
|z||w| = 7vV4 +72/2. Alsoz = —im, w = 1—in/2, and Zw = —m2 /2 —

im. Finally, e = —1, eV = ie,
efe’ = —ie
and e#T = I F3im/2 — _jo

Exercise Solution A.6.2. Erpand 22 = (z + iy)? = 22 + 2izy — y? and
set 22 =i to find x? — y* = 0 and 2zy = 1. The solutions pairs are (x,vy)
equals (v/2/2,v/2/2) and (—v/2/2,—v/2/2), so that z = \/2/2 + i\/2/2 and
z=—2/2 - Z\/§/2 are the solutions.

Exercise Solution A.6.3.

(a) Roots z = 2 with multiplicity 3, z = ¢ with multiplicity 1, z = —3 with
multiplicity 2, and z = —i with multiplicity 1. The roots do not appear
in conjugate pairs, so p(z) does not have real coefficients.
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(b) Roots z = —1 — i with multiplicity 2, z = 0 with multiplicity 7, and
z = 1 with multiplicity 4. The roots do not appear in conjugate pairs,
so p(z) does not have real coefficients.

(c) Write 22 +1 = (2 —i)(z + i) so that p(z) = (z — i) (2 +i)**. The
roots are then z = i with multiplicity 14 and z = —i with multiplicity
14. The roots are in conjugate pairs, so p(z) has real coefficients (also
clear if we just compute (2% + 1)4).

Exercise Solution A.6.4. First, it’s easy to see that z = 0 s a root, and
we are given that z =i is a root. Since p has real coefficients z = —i must
be a root. Thus p(z) = z(z —i)(z +1)q(2) = (22 + 2)q(z) for some quadratic
polynomial. A polynomial division shows that q(z) = p(z)/(z% + 2) = 2% —
2z + 2. The two roots of q are z = 1 + i, and these are the two additional

roots for p(z).
Exercise Solution A.6.5.

(a) The zeros are z =0 and z = 3. The poles are z =1 and z = £2i. The
partial fraction decomposition is
-2/5 T7/10+2¢/5 7/10—2¢/5
r(z) = / + /10+ .Z/ + / .Z/ .
z—1 z— 24 z+2i

(b) The zeros are z = —1 and —1 (double root). The poles are z =1 and
z = —1=x14. The partial fraction decomposition is

4/5  1/10+i/5 1/10—i/5

z—1 24141 2+1—id

r(z) =

(c) The only zero is z = 0. The poles are z = +i and z = +£2i. The partial
fraction decomposition is
1 1 1 1

e ey S TR 2
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Appendix B
Exercise Solution B.6.1.
2 0
-5 3
—4 1
P=[5 ]
Exercise Solution B.6.2.
5 0
D =
-
1 1
P-ls )
Exercise Solution B.6.3.
2 0
D=5
1 1
P=[; o
Exercise Solution B.6.4.
-3 0
o= 3
-2 6
P = [ 11
Exercise Solution B.6.5
i 0
D=,
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Exercise Solution B.6.6.

_ [4+6i 0
D_[ 0 4—61}

12 —1+42i
i T

Exercise Solution B.6.7.

10 0
D=0 -1 0
0 0 2
0 -3 0
P=1{0 1 -1
1

Exercise Solution B.6.8. If we begin with Av = Av and conjugate both
sides we obtain Av = Av. But from the familiar properties of conjugation
we have Av = AV and \v = \V, so that

AV = )\V.
But since A has real entries we have A = A and so
AV =)V

This is precisely the statement that overlinev is an eigenvector for A with
eigenvalue \.

Thus if X is an eigenvalue for A so is X\. This is an empty statement
if A is real, but it means that complex eigenvalues must come in conjugate
Pairs.



