Resources

Text Search:
Applied Filters
    Modeling Scenario
    271

    views

    162

    downloads

    0

    comments

    6-012-RiverCrossing-ModelingScenario
    Students develop a model of a river crossing in a boat with thrust using Newton's Second Law of Motion from a Free Body Diagram they construct. The model is thence a system of one second order linear and a second order nonlinear differential...
    Modeling Scenario
    469

    views

    280

    downloads

    0

    comments

    1-145-FastPitch-ModelingScenario
    We consider the problem of comparing pitch velocities using measurement methods in different eras of baseball.
    Modeling Scenario
    1155

    views

    626

    downloads

    0

    comments

    3-065-UpDown-ModelingScenario
    We model the height of a launched object which is subject to resistance proportional to velocity during its flight. We ask questions about the motion as well, e.g., highest point or apex and terminal velocity.
    Modeling Scenario
    358

    views

    352

    downloads

    0

    comments

    4-039-FallingDarts-ModelingScenario
    we develop, solve, and analyze a second order differential equation model for free fall incorporating air resistance. Students solve the model using two methods -- reduction of order and separation of variables, and method of undetermined...
    Modeling Scenario
    245

    views

    141

    downloads

    0

    comments

    3-027-BobbingDropping-ModelingScenario
    We present two exercises in which we ask students to model (1) falling object experiencing terminal velocity and (2) bobbing block of wood in liquid. We model the motion using Newton's Second Law of Motion and Archimedes' Principle.
    Modeling Scenario
    289

    views

    169

    downloads

    0

    comments

    3-009-BallDropInWater-ModelingScenario
    We conduct an analysis of a falling ball in liquid to determine its terminal velocity and to ascertain just what radius ball for a given mass density is necessary to attain a designated terminal velocity.
    Modeling Scenario
    343

    views

    278

    downloads

    0

    comments

    3-017-StackedCoffeeFiltersFalling-ModelingScenario
    Data on free falling 2, 4, 6, and 8 stacked coffee filters is offered. Students form a model using a resistance term proportional to velocity, velocity squared, or velocity to some general power. Parameters need to be estimated and models compared.
    Modeling Scenario
    356

    views

    215

    downloads

    0

    comments

    3-054-Relay-ModelingScenario
    We use a differential equations of one dimensional projectile motion and an integration of velocity for total distance to model the relay between an outfielder and an infielder in throwing the ball to home plate.
    Modeling Scenario
    244

    views

    182

    downloads

    0

    comments

    3-042-CatapultLaunch-ModelingScenario
    We maximize the range of a projectile by backing up an incline in the opposite direction of the range to give some initial lift. Find the position on the hill from which to launch the projectile to give the best lift.
    Modeling Scenario
    295

    views

    155

    downloads

    0

    comments

    Modeling Scenario
    332

    views

    454

    downloads

    0

    comments

    3-099-PullBack-ModelingScenario
    We guide students through the development of an empirical model for the velocity and distance traveled of a simple pull-back toy. Students can record videos and extract data using their own pull-back toy or use data included.
    Modeling Scenario
    905

    views

    1184

    downloads

    0

    comments

    3-061-ChemEngApps-ModelingScenario
    Students go through a chemical engineering problem: calculate concentration profile of cyclohexane within a catalyst pellet by solving a second order linear differential equation; then analyze the concentration as the radius of the catalyst...
    Modeling Scenario
    366

    views

    215

    downloads

    1

    comments

    1-092-DashItAll-ModelingSenario
    This project uses very basic physics, Newton's Second Law of Motion, to model the motion of a sprinter running down a track. We derive the classic Hill-Keller model for a sprinter exerting ``maximum'' effort as he/she accelerates down a track.
    Modeling Scenario
    335

    views

    149

    downloads

    0

    comments

    1-105-AnimalFall-ModelingScenario
    This project uses Newton's Second Law of Motion to model a falling animal with a resistance term proportional to cross sectional area of the animal, presumed to be spherical in shape.
    Modeling Scenario
    280

    views

    149

    downloads

    0

    comments

    3-063-FallingBuildingIce-ModelingScenario
    We model the fall of a piece of ice which is falling from a high building in New York City.
    Modeling Scenario
    184

    views

    63

    downloads

    0

    comments

    3-052-OptimalProjectileFiring-ModelingScenario
    We offer the opportunity to model a projectile's trajectory in several cases, all without resistance.
    Modeling Scenario
    513

    views

    178

    downloads

    0

    comments

    3-033-S-TimeUpTimeDown-ModelingScenario
    We seek to compare for the time a projectile takes to go vertically up with the time it takes to return to its starting position.
    Modeling Scenario
    537

    views

    295

    downloads

    0

    comments

    1-050-BargingAhead-ModelingScenario
    As captain of a barge, you need to determine how fast to transport your barge up river against the current in order to minimize the expended energy.
    Modeling Scenario
    365

    views

    367

    downloads

    0

    comments

    1-120-CircularRollerCoaster-ModelingScenario
    Students study the dynamics of a circular roller coaster and work out the equations of motion in the ideal case as well as considering the interesting complication of including kinetic friction. This problem is an excellent introduction for students
    Modeling Scenario
    296

    views

    293

    downloads

    0

    comments

    3-035-StadiumDesign-ModelingScenario
    For a given baseball playing field outline how high must the outfield fence be at each point in order to make a homerun equally likely in all fair directions?