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 Overview

 Approach

• >4400 student lab reports split into 
4 writer experience levels.

• Reports bins-scored by GTAs  
using ~20 fixed criteria as:

 ◽ Acceptable
 ◽ Needs minor improvements
 ◽ Needs major improvements
 ◽ Unacceptable/Flawed

 

• Features scoring:

 ◽Vocabulary range/richness = 
# unique words, type token  
ratios & variants 
 ◽Word choices classified by  
fixed vocabularies.
 ◽Readability indices =  
sentence complexity.  

• Proportional odds ordinal  
logistic regression (POLR): can 
proxy metrics predict human- 
assigned scores?

 Guiding Questions

• Can machine-scorable text features 
be proxy metrics for students’  
development as writers?

• What metrics are informative? 
• What do they tell us?
• Can they summarize, illuminate  

cohort-level changes over a  
course sequence?

 Needs, Challenges

• Scientific writing builds students’ 
thinking & communication skills.

• Integrating writing into large 
BIO101 classes is challenging. 

• How can students’ writing be  
evaluated longitudinally in large 
courses?

Several machine-scored metrics correlated well with students’ growing experience as writers

 Key Findings
• Tracking student development as 

scientific writers by “close reading” 
is impractical in high enrollment 
STEM courses.  

• These proxy metrics surface  
changes in students’ writing:

 ◽ Longitudinally over a  
 curriculum sequence, and
 ◽ At a cohort-level scale

• Proxy metrics analysis of full  
documents (vs. text samples) is:

 ◽ Scalable 
 ◽Less subject to interpretation
 ◽ Harder to “game” 
 ◽Able to triangulate on writing 
features of interest/value that 
instructors want students to  
develop over time.

 Broader Impacts

STEM 
Writing 
Project

• Corpus + metadata for 4400  
student reports

• Scientific Writing Resource Guide 
(open-source)

• Bins-based scoring rubrics + 
instructor training materials

• R Shiny form for collecting 
well-structured student reports

• Structured vocabularies, code-
books, & R scripts for analyses.

Find us online at:  
https://github.com/adanieljohson/    
stemwritingproject  
  OR  
https://qubeshub.org/community/
groups/stemwritingproject

 Resources to  
 Share
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Overall lexical richness (simple type- 
token ratio, Herdan’s C, Dugast’s U) did 
not change with experience.

Word repetition (Yule’s K, Simpson’s 
D, Herdan’s Vm) declined 11.4-20.6% 
(p<0.001).

14/32 indices had relative association  
(fC) > 0.2 over 3-course series (p<0.001). 

Indices stressing wordy items, frequency of 
long or polysyllabic words rose 10.3-41.9% 
overall, & were more likely to be correlated 
with gains in student experience.

Proxy metrics were poor predictors of 
individual grades. Fit for single- & multi-fac-
tor POLR models was low, with 59% aver-
age predictive error on the best fit model 
(above; Nagelkerke pseudo-R2 = 0.187.) 

Total # unique words used rose 25.1% 
(p<0.001).

Use of academic & specialized terms 
grew faster (24.2-38.1%) than general 
terms (12.1%-17.8%), reflecting a move 
to more “formal” word choices.

Lexical range & use of formal terms increased as students gained writing experience

Readability indices stressing poly-syllaby correlated better with writing experience

New Fog Count: a poorly correlated metric SMOG Index: a better correlated metric

ttr for Stop Words: smaller changettr for General Words: smaller change

ttr for Academic Words: larger change ttr for Disciplinary Words: larger change

ttr for ALL Terms: poorly correlated Herdan’s C: poorly correlated

Yule’s K: well correlated Simpson’s D: well correlated


