
Learning Objectives Chapter 8: Multiple and logistic regression

LO 1. Define the multiple linear regression model as

ŷ = β0 + β1x1 + β2x2 + · · · + βkxk

where there are k predictors (explanatory variables).

LO 2. Interpret the estimate for the intercept (b0) as the expected value of y when all predictors are equal
to 0, on average.

LO 3. Interpret the estimate for a slope (say b1) as “All else held constant, for each unit increase in x1,
we would expect y to increase/decrease on average by b1.”

LO 4. Define collinearity as a high correlation between two independent variables such that the two vari-
ables contribute redundant information to the model – which is something we want to avoid in
multiple linear regression.

LO 5. Note that R2 will increase with each explanatory variable added to the model, regardless of whether
or not the added variables is a meaningful predictor of the response variable. Therefore we use
adjusted R2, which applies a penalty for the number of predictors included in the model, to better
assess the strength of a multiple linear regression model:

R2 = 1 − V ar(ei)/(n− k − 1)

V ar(yi)/(n− 1)

where V ar(ei) measures the variability of residuals (SSErr), V ar(yi) measures the total variability
in observed y (SSTot), n is the number of cases and k is the number of predictors.

- Note that adjusted R2 will only increase if the added variable has a meaningful contribution
to the amount of explained variability in y, i.e. if the gains from adding the variable exceeds
the penalty.

∗ Reading: Section 8.1 of OpenIntro Statistics

∗ Videos: To be posted

∗ Test yourself:

1. How is multiple linear regression different than simple linear regression?

2. What does “all else held constant” mean in the interpretation of a slope coefficient in multiple
linear regression?

3. What is collinearity? Why do we want to avoid collinearity in multiple regression models?

4. Explain the difference between R2 and adjusted R2. Which one will be higher? Which one tells
us the variability in y explained by the model? Which one is a better measure of the strength
of a linear regression model? Why?

LO 6. Define model selection as identifying the best model for predicting a given response variable.

LO 7. Note that we usually prefer simpler (parsimonious) models over more complicated ones.

LO 8. Define the full model as the model with all explanatory variables included as predictors.

LO 9. Note that the p-values associated with each predictor are conditional on other variables being
included in the model, so they can be used to assess if a given predictor is significant, given that all
others are in the model.
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- These p-values are calculated based on a t distribution with n− k − 1 degrees of freedom.

- The same degrees of freedom can be used to construct a confidence interval for the slope
parameter of each predictor:

bi ± t?n−k−1SEbi

LO 10. Stepwise model selection (backward or forward) can be done based on p-values (drop variables that
are not significant) or based on adjusted R2 (choose the model with higher adjusted R2).

LO 11. The general idea behind backward-selection is to start with the full model and eliminate one variable
at a time until the ideal model is reached.

- p-value method:

(i) Start with the full model.

(ii) Drop the variable with the highest p-value and refit the model.

(iiii) Repeat until all remaining variables are significant.

- adjusted R2 method:

(i) Start with the full model.

(ii) Refit all possible models omitting one variable at a time, and choose the model with the
highest adjusted R2.

(iii) Repeat until maximum possible adjusted R2 is reached.

LO 12. The general idea behind forward-selection is to start with only one variable and adding one variable
at a time until the ideal model is reached.

- p-value method:

(i) Try all possible simple linear regression models predicting y using one explanatory variable
at a time. Choose the model where the explanatory variable of choice has the lowest p-
value.

(ii) Try all possible models adding one more explanatory variable at a time, and choose the
model where the added explanatory variable has the lowest p-value.

(iii) Repeat until all added variables are significant.

- adjusted R2 method:

(i) Try all possible simple linear regression models predicting y using one explanatory variable
at a time. Choose the model with the highest adjusted R2.

(ii) Try all possible models adding one more explanatory variable at a time, and choose the
model with the highest adjusted R2.

(iii) Repeat until maximum possible adjusted R2 is reached.

LO 13. Adjusted R2 method is more computationally intensive, but it is more reliable, since it doesn’t
depend on an arbitrary significant level.

∗ Reading: Section 8.2 of OpenIntro Statistics

∗ Videos: To be posted

∗ Test yourself:

1. Define the term “parsimonious model”.
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2. Describe the backward-selection algorithm using adjusted R2 as the criterion for model selection.

LO 14. List the conditions for multiple linear regression as

(1) linear relationship between each (numerical) explanatory variable and the response - checked
using scatterplots of y vs. each x, and residuals plots of residuals vs. each x

(2) nearly normal residuals with mean 0 - checked using a normal probability plot and histogram
of residuals

(3) constant variability of residuals - checked using residuals plots of residuals vs. ŷ, and residuals
vs. each x

(4) independence of residuals (and hence observations) - checked using a scatterplot of residuals
vs. order of data collection (will reveal non-independence if data have time series structure)

LO 15. Note that no model is perfect, but even imperfect models can be useful.

∗ Reading: Section 8.3 of OpenIntro Statistics

∗ Videos: To be posted

∗ Test yourself:

1. If a residuals plot (residuals vs. x or residuals vs. ŷ) shows a fan shape, we worry about non-
constant variability of residuals. What would the shape of these residuals look like if absolute
value of residuals are plotted against a predictor or ŷ.
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