
Testing Your ProgramTesting Your Program
M. Drew LaMar

October 17, 2016

Introduction to Quantitative Biology, Fall 2016

Class announcementsClass announcements

Chapter 6: Testing your Program - Learn‐Chapter 6: Testing your Program - Learn‐
ing Objectivesing Objectives

Understand the difference between validation and
verification.

Seven common kinds of software errors that will blow your
mind!

Ten important tecnhiques for finding and fixing software
errors everyone should know.

Understand why and how to document software tests.

- Railsback & Grimm

“The productive modeler simply assumes that software
mistakes are inevitable and continually searches for

them.”

Chapter 6: Testing your Program - Valida‐Chapter 6: Testing your Program - Valida‐
tion vs Verificationtion vs Verification

Part I. Common Kinds of ErrorsPart I. Common Kinds of Errors
Typographical Errors

Syntax Errors

Misunderstanding Primitives: Show example

Wrong Display Settings: Use resize-world in setup!

Logic Errors: Runs but results incorrect

Run-time Errors: No syntax or logic errors, but breaks on Go
(sometimes)

Formulation Errors: Incorrect assumptions & model decisions

Part II. Debugging TechniquesPart II. Debugging Techniques
Syntax CheckingSyntax Checking: Chunk-it and use skeleton code!: Chunk-it and use skeleton code!

ifelse (xcor >= min-marriage-age)
[show "If"]
[show "Else"]

ifelse (xcor >= min-marriage-age) and
 (random-float 1.0 < 0.1)
[show "If"]
[show "Else"]

ifelse (xcor >= min-marriage-age) and
 (random-float 1.0 < 0.1)
[set married? true]
[show "Else"]

Part II. Debugging TechniquesPart II. Debugging Techniques
Visual TestingVisual Testing: Use visual cues of variables!: Use visual cues of variables!

Use scale-color to color turtles or patches based on their
variables.

Use label and plabel to check turtle or patch information.

Use Agent and Patch Monitor.

Use a smaller World to test things (actually, testing on smaller
problem is a more general technique)

Slow down the simulation and/or use a step button.

Part II. Debugging TechniquesPart II. Debugging Techniques
Print StatementsPrint Statements

For procedures:

For variables:

to dostuff
 show "Starting procedure X"
 ; Do stuff
 show "Ending procedure X"
end

observer> show word "num turtles = " count
turtles
observer: "num turtles = 0"

Part II. Debugging TechniquesPart II. Debugging Techniques
Spot Tests with Agent MonitorsSpot Tests with Agent Monitors

Part II. Debugging TechniquesPart II. Debugging Techniques
Stress TestsStress Tests

Use parameters and initial data at the extreme values, and
possibly outside normal ranges (e.g.)q = 1.0

Part II. Debugging TechniquesPart II. Debugging Techniques
Test ProceduresTest Procedures

and

Test ProgramsTest Programs

Part II. Debugging TechniquesPart II. Debugging Techniques
Code ReviewsCode Reviews

Reviewer's job:

Verification: Does the code match the ODD model
formulation?

Fresh set of eyes can more easily find bugs (sometimes).

Make sure code is well-organized and easy to understand.

Write code as if someone will eventually read AND USE IT,
even if you do not plan on it being used.

Part II. Debugging TechniquesPart II. Debugging Techniques
Statistical Analysis of File OutputStatistical Analysis of File Output

Edit: This slide has been modified from lecture to correct an
error.

For , we would expect the butterfly to move to the
highest neighbor patch with probability 0.475.

Question: Is the probability butterflies move to the
highest neighbor patch really ?q

Answer: No. It is the approximate proportion

q + .
1 − q

8

q = 0.4

Part II. Debugging TechniquesPart II. Debugging Techniques
Statistical Analysis of File OutputStatistical Analysis of File Output

file-type
file-print
file-open
file-close

Part II. Debugging TechniquesPart II. Debugging Techniques
Statistical Analysis of File OutputStatistical Analysis of File Output

mydata <- read.csv("TestOutput.csv",
header=FALSE)
str(mydata)

'data.frame': 1000 obs. of 9 variables:
 $ V1: num 15.8 14.9 17.1 17.8 16.4 ...
 $ V2: num 15.6 15.6 15.6 17 16.3 ...
 $ V3: num 16.3 15.5 16.9 18.5 17.1 ...
 $ V4: num 14.7 17 18.4 19.2 18.4 ...
 $ V5: num 15.6 15.7 16.4 19.1 16.9 ...
 $ V6: num 14.8 16.3 17.7 19.8 17.7 ...
 $ V7: num 15.5 16.4 16.3 17.7 15.6 ...
 $ V8: num 15.5 15.5 17.8 18.3 17.8 ...
 $ V9: num 15.6 17 18.4 17 15.6 ...

Part II. Debugging TechniquesPart II. Debugging Techniques
Statistical Analysis of File OutputStatistical Analysis of File Output

Note: There were errors here during lecture. The code below
has been changed to correct the error. I will discuss in class on

Wednesday.

moved.to.highest <- sapply(1:1000, function (x)
{max(mydata[x,1:8]) == mydata[x,9]})

moved.to.highest <- as.integer(moved.to.highest)

Part II. Debugging TechniquesPart II. Debugging Techniques
Statistical Analysis of File OutputStatistical Analysis of File Output

prop.test(sum(moved.to.highest), 1000)

 1-sample proportions test with continuity
correction

data: sum(moved.to.highest) out of 1000, null
probability 0.5
X-squared = 23.409, df = 1, p-value = 1.31e-06
alternative hypothesis: true p is not equal to
0.5
95 percent confidence interval:
 0.3922385 0.4543604
sample estimates:
 p
0.423

