Writing Molecular Case Studies

Shuchismita Dutta, Ph.D.

July 2019
Overview

1. Select topic (Subject/Learning Objectives)
2. Introduction (Hook)
3. Getting to structure (Literature review and Bioinformatics)
4. Molecular Explorations: (Visualization/Analysis → Synthesis)
5. Assessment
Select topic

• What subject are you teaching?
• What are your subject specific learning objectives?
• Are there any cross-cutting principles and scientific practices that can be included in the case study discussions?
• What is the curricular setting – class size, level, time available etc.

• Are there multiple subject learning objectives, curricular levels at which this case can be taught?
• Are there related cases that can be taught/used for assessment?
Overview

1. Select topic (Subject/Learning Objectives)
2. Introduction (Hook)
3. Getting to structure (Literature review and Bioinformatics)
4. Molecular Explorations: (Visualization/Analysis → Synthesis)
5. Assessment
Introduction

• How did you find out about this problem/process?
 - Read article
 - Saw video
 - Personal/shared experience

• What made this problem interesting/relevant?

• Is there an engaging way to present this problem/process/question?

• Are these engaging video, news article, picture available freely (i.e. without any subscription, copyright infringement etc.)?

• Is the video/article etc. short enough to be used in a classroom setting and/or as homework assignment?
Overview

1. Select topic (Subject/Learning Objectives)
2. Introduction (Hook)
3. Getting to structure (Literature review and Bioinformatics)
4. Molecular Explorations: (Visualization/Analysis → Synthesis)
5. Assessment
Getting to Structure

- What is the phenomenon/process being studied?
- Who (what molecules) are the key players?
- What are their roles in the process?
- What molecules (specifically which parts of these molecules) should be explored to address the problem/question?
- What else can you learn about this/these molecule(s) from bioinformatics resource?
- Are the structures of these molecules available? Identify these structures.
Overview

1. Select topic (Subject/Learning Objectives)
2. Introduction (Hook)
3. Getting to structure (Literature review and Bioinformatics)
4. Molecular Explorations: (Visualization/Analysis → Synthesis)
5. Assessment
Molecular Explorations

• Identify one or more structures in the PDB relevant to the problem
• Visualize structure
• Explore molecular interaction within the protein and also with ligands, polymer chains → identify residues critical for function
• Examine interactions during biological function. May have to compare structures of unbound and bound ligands/partner proteins, presence of specific environments, physico-chemical conditions etc.
• Rationalize the molecular basis of the problem based on the structure. Synthesize new knowledge about structure to function, design new questions, test hypothesis
Molecular Exploration Logistics

• What tools to use?
• Are readymade interactive visualization options available? From where?
• What will students do after visualizing/analyzing the structure? - answer questions in a worksheet, do a presentation, make a poster, write a report, etc.
• How can students independently explore the structure(s) to ask additional questions and design solutions.
Overview

1. Select topic (Subject/Learning Objectives)
2. Introduction (Hook)
3. Getting to structure (Literature review and Bioinformatics)
4. Molecular Explorations: (Visualization/Analysis → Synthesis)
5. Assessment
Assessment

• Identify a related case that can be assigned to students to test how well they learned from the case study. Make sure that solving the case requires knowledge of biology/chemistry and skills in molecular visualization/analysis to answer the questions. As necessary this case may be adapted to meet the needs of the course/curriculum.

• If a related case is not available, write an additional question that relates to the case study topic but requires students to apply their knowledge of biology/chemistry and skills in molecular visualization/analysis to answer the questions.
Summary

1. Select topic (Subject/Learning Objectives)
 - List learning objectives
 - Plan activity/assignments/deliverables

2. Introduction (Hook)
 - Find a video/news item/article/picture to engage participants
 - Identify questions to ask and ideas to explore. How will students get to these ideas?

3. Getting to structure (Literature review and Bioinformatics)
 - Identify key players in the process
 - Identify molecules to explore
 - Find information about molecules from the scientific literature, bioinformatics resources etc.
 - Identify relevant structures in the PDB

4. Molecular Explorations: (Visualization/Analysis → Synthesis)
 - Visualize molecules structure(s) for analysis and comparison
 - Explore molecular interactions relevant to theme
 - Develop arguments for how learning about the shape and interaction of the molecule(s) helps answer the question asked
 - Can you test your argument – evidences from the literature or other structures?

5. Assessment
 - Develop a related question that students can explore at a molecular level and explain/design