Molecular Case Studies From Data to Data Science (QUBES Summer Workshop 2019) William and Mary, Williamsburg VA July 15 2019 - Introductions - Case Studies - Molecular Case Studies - Nicholas' Story - An Invitation - Introductions - Case Studies - Molecular Case Studies - Nicholas' Story - An Invitation ### Getting to Know You - Take a moment to think about your favorite protein molecule to teach about. (1 minute) - Turn to your neighbor and introduce yourself (1 min each). Tell them about - what course (s) you teach or would like to teach and - and your favorite molecule! - At the end of these three minutes you will introduce your neighbor and his/her favorite protein (1 min each) - Introductions - Case Studies - Molecular Case Studies - Nicholas' Story - An Invitation ## Learning with Case Studies • It starts with a story..... based on complex, real-world situations | Students | Instructors | Learning | Case Type | Benefits | |---|---|---|---------------------------------|---| | work in groups | act as facilitators | Instructor-directed | Launch new learning | Motivate students Deeper learning Increases retention Persistence in the disciplines | | gain new
information
through self-
directed learning | function as
learning
experiences
designers | Self-directed,
active, integrated,
cumulative, and
connected | Application of concepts learned | Critical analysis Observation Computation Written and oral communication Logic Decision-making | - Introductions - Case Studies - Molecular Case Studies - Nicholas' Story - An Invitation ## NSF DBI-1827011 Project Goal and Objectives **Goal**: To assemble a new network (Molecular CaseNet); for developing case studies at the interface of biology and chemistry, discussed at a molecular level, and in atomic detail; and engaging educators in using them for biology, chemistry, and biochemistry education at the undergraduate level. | Proposed Objectives | RCN-UBE Proposal Focus | |--|--| | 1. Determine case study topics and format | Active- and inquiry-based learning | | 2. Develop model case-studies, with input from diverse participants to ensure curricular relevance | Incorporating emerging sub-disciplines (e.g., bioinformatics, proteomics, and spatial reasoning) into biology curriculum | | 3. Share model cases to recruit new members to the network | Strategies for engaging biology (and chemistry) faculty in professional development activities | **Invitation**: To become a part of the next phase of the NSF project to develop and test molecular case studies ## Molecular CaseNet Steering Committee | Name | Kimberly
Cortes | Shuchismita Dutta | Henry Jakubowski | Melanie
Lenahan | David
Marcey | Patricia Marsteller | Cassidy R.
Terrell | |-------------|--|---|---|--|--|--|---| | Affiliation | Kennesaw State
University, GA | Rutgers University,
NJ | College of Saint
Benedict, St John's
University, MN | Raritan Valley
Community
College, NJ | California Lutheran
University, CA | Emory College of
Arts and Sciences,
GA | University of
Minnesota,
Rochester, MN | | Expertise | Developing, incorporating, and assessing the impact of active learning modeling activities | Using PDB data/ tools/ resources to promote a structural view of biology in biology and chemistry education | Using molecular modeling and active learning in blended classes in chemistry & biochemistry | Biology, genetics,
cell biology, and
molecular biology
education in a
Community
college | Creating web-
based
macromolecular
visualization
exhibits (using
JSmol) | Developing case studies and case networks | Developing and assessing 3D virtual and physical modeling activities for biochemistry education | - Introductions - Case Studies - Molecular Case Studies - Nicholas' Story - An Invitation ## Caution! Immersion coming https://www.youtube.com/watch?v=iKQmQHh4E2w ## Considerations in Case Development #### **Your Thoughts?** - What do you think this case is about? - What do you already know that relates to this case? - What do you need to know to understand the case? - How do you think this case could be used in your class? #### **Our Thoughts** - Subject specific Learning Objectives - Access to Data: bioinformatics, scientific literature - Visualization/Analysis: prior exposure Molecular Case Study Cycle ## Molecular Case Study Design Considerations - Limited/no prior exposure: OMM - Some prior exposure: iCn3D - Extensive prior exposure: PyMol, UCSF Chimera # Learning Objectives | | Chemistry | Biology | Biochemistry | Modeling and Presentation | | |------------------------|--|--|---|---|--| | | - Chemistry | Βισίος | - Biochemistry | Modeling and Freschation | | | 3. | Identify different kinds of intermolecular forces (IMFs), stabilizing the structures of biomacromolecules (protein, nucleic acid, etc., in this case hemoglobin) Identify and differentiate covalent and noncovalent interactions of a bound ligand to a biomacromolecule (in this case, heme and oxygen binding to hemoglobin) Visually explore, analyze, and explain how mutation in a protein can lead to altered protein structure/ function/properties. In this case, describe the physiological impact of structural changes resulting from the mutation at Glutamate 6 to Valine in the hemoglobin beta chain of sickle cell hemoglobin (HbS) leading to sickling of cells. | Protein Structure: Identify amino acids (backbone and side chains) within a protein molecule Name, depict, and predict potential of chemical groups in small and biomacromolecules for noncovalent and covalent interactions Describe the different levels of protein structure – i.e., identify primary (1°), secondary (2°), tertiary (3°), and quaternary (4°) structures within proteins Identify covalent (coordinate) interactions between small molecule (O2, CO) and metal ions in the Heme group Protein Function: Explain the structure of native adult hemoglobin (HbA), including tetrameric structure, and the role of hemes in binding oxygen Describe weak bonds (salt bridges) that stabilize the deoxy conformation of HbA Describe how the structure and binding properties of hemoglobin (Hb) allows oxygen binding in different tissues and physiological states Cells and Molecules: Explain the structural difference between native adult hemoglobin (HbA) and sickle cell (HbS) beta globin proteins and the genetic cause (molecular basis) of this difference Describe how the sickle cell mutation affects different levels of protein structure and shape of cells. Explain how red blood cell sickling can lead to pain | Protein building blocks: Identify amino acids (backbone and side chains) within a protein molecule Identify functional groups and their properties (hydrophobic/hydrophilic, acid/base, nucleophile/electrophile, H-bond donors/acceptors, relative solubility, redox state) within biomolecules and their constituent monomers; Name, depict, and predict potential of chemical groups in small and biomacromolecules for noncovalent and covalent interactions. Identify covalent (coordinate) interactions between small molecule (O2, CO, NO) and metal ions in the Heme group Protein Structure: Describe the different levels of protein structure – i.e., identify primary (1°), secondary (2°), tertiary (3°), and quaternary (4°) structures within proteins Describe properties of and identify/ differentiate among specific types of secondary structures in protein – including α helices, β sheets (parallel and antiparallel), π helices, and other β structure (reverse turns); Protein Function: Describe and compare the structure and features of T and R states of Hemoglobin (Hb) and their binding properties for reversible binding ligands Describe how the structure and binding properties of hemoglobin allows oxygen and CO₂ binding in different tissues and physiological states (cooperative binding) Use the binding properties of different forms of Hb for O₂ and CO₂ to explain graphs of fractional saturation vs pO₂ (Bohr effect) Describe and compare binding of other gases (e.g., CO and NO) to hemoglobin. 4. Cells and Molecules: Explain the structural difference between native adult hemoglobin (HbA) and sickle cell (HbS) beta globin proteins and the genetic ca | Use of public Bioinformatics data resources and scientific literature to learn about specific topics in biology Use online interactive web tutorials to display and understand structural features of biomacromolecules, ligands, and their interactions Display different renderings of molecules and proteins using web-based molecular modeling programs, given instructions for their use Optimally orient molecules in interactive web tutorials or display key feature of structure and function using web-based modeling programs Use screen capture to create images and inclusion of information from public biological data resources to create an educational presentation explaining the molecular bases of a biological function or process. | | ### Molecular CaseNet Website - Go to https://molecular-casenet.rcsb.org/ - Open the Cases tab - Working through the case - 2. Getting to Structure: Start exploring the case question(s) and identify relevant molecules to explore. - 3. Molecular Exploration: Explore molecular interactions to understand and explain the molecular mechanism of the question at hand - 4. Assessment: Apply knowledge and skill to solve a new problem/challenge ## Exploring Nicholas's Story Go to https://molecular-casenet.rcsb.org/ ## Nicholas' Story – Discussion, Notes and more What was your initial impression? Share a few unexpected ones only now. We can discuss this further during the rest of the week Log into the website • U: teacher • P: Teachscience 7! - Introductions - Case Studies - Molecular Case Studies - Nicholas' Story - An Invitation ### An Invitation ... Join us to - Collaborate with us on writing molecular cases - Write your own molecular case - Pilot molecular case(s) in your classroom and provide feedback Become a part of the next phase of the NSF project to develop and test molecular case studies Interested? write to Shuchi at sdutta@rcsb.rutgers.edu ### Summary - Introductions - You and your favorite proteins - Case Studies - Value of learning with case studies - Molecular Case Studies - Framework and considerations - Nicholas' Story - Your first impressions - An Invitation - Join us ...