Case Studies:
Rate these real proposals, currently reviewed in an IUCN (International Union for the Conservation of Nature) report

Dr. Fran Sandmeier
Colorado State University - Pueblo
franziska.sandmeier@csupueblo.edu
Proposal 1: Eliminating Mosquitoes in Hawaii

• Hawaii’s endemic bird species are some of the most endangered in the world

• 31 species have already gone extinct in historic times, including 24 species of honeycreeper

• Such rapid declines are largely due to an introduced species of mosquito (*Culex quinquefasciatus*)
 • Transmit avian pox and avian malaria
 • Expected to invade higher elevation habitats (the current refuge for most remaining native species) with on-going climate change
Current Methods of Control

• Release of sterile adults: requires release of a lot of adults

• Insecticides: also harmful to native arthropods

• **Proposal**: Use gene drives to eliminate mosquitoes (i.e., by skewing sex ratios or causing infertility)
Your Current Recommendation
(choose one answer)

• YES

• YES, but with precautions:

__
__
__

• NO
Other Social/Ecological Considerations

• There is considerable local support for conservation of native plants & animals
 • In Hawaii, ecotourism is also an important industry
• In other parts of the world, mosquitos are also an important food source for animals (including endangered ones, such as bats and fish) and important as pollinators
• Do you think gene drives would be viewed positively or negatively by local Hawaiian communities? Why?
Precautions and Other Risks

• If this project proposal becomes a reality, what reasonable precautions do you think could be put in place? (Think about export of agricultural products, tourism, etc.)

• What might a negative consequence be to gene drives not working as well as proposed?
Your Final Recommendation
(choose one answer)

• YES

• YES, but with precautions:

__

__

• NO
Proposal 2: Engineering Coral to Withstand Changing Temperatures

• Heat waves of 2014-2017 caused the drastic decline of corals across many parts of the world

• 2016/2017: 3rd global mass bleaching event (death of corals) and caused 50% loss of Australia’s Great Barrier Reef

• Threats are associated with climate change: increased disease/loss of symbiotic algae/symbiotic microbes turning parasitic

• Coral reefs provide habitat for a huge diversity of sea life and have been compared to the biodiversity of tropical forests

• Important to coastal communities: fisheries and tourism
Strategies to Stabilize Coral Reefs

• Increase thermal resistance in coral & their symbiotic algae (species of Symbiodiniaceae)
 • Selective breeding, assisted gene flow within species, species hybridization, application of probiotic microbes
• Proposal: Use genetic engineering to insert antioxidant compounds and enzymes that are known to reduce heat stress
 • Research continues to identify other genes that may be important to improving resilience against heat stress
• Genetic engineering has not yet discussed gene drives in these cases - but you will still evaluate the possibility of the use of this additional technology!
Your Current Recommendation for Genetic Engineering (choose one answer)

• YES

• YES, but with precautions:

__
__

• NO
Your Current Recommendation for Genetic Engineering with Gene Drives (choose one answer)

- YES

- YES, but with precautions:
 __
 __

- NO
Spawning, Currents, Hybridization

- Species with sexual reproduction release gametes into the water, which are fertilized externally
 - Dispersal distances unknown for many species, based on timing of the spawn and strength of ocean currents
- Hybridization between species can be common, but has not been adequately quantified
- How might the release of an engineered organism be problematic in these conditions?
Lifespan and Asexual Reproduction

- Coral are made out many polyps that grow on the calcium deposit of old polyps (corals are colonial animals)
 - Corals can be very long-lived
 - Corals can also release free-swimming asexual clones
- Will genetic changes persist for a longer time in such animals?
- What about gene-drives: are they truly self-limiting in a long-lived animal with many reproductive episodes (both sexual and asexual)?
- What will happen to genetically-modified animals if ocean temperatures start to cool again?
Your Final Recommendation: Genetic Engineering
(choose one answer)

• YES

• YES, but with precautions:

__
__
__

• NO
Your Final Recommendation: Genetic Engineering with Gene Drives
(choose one answer)

• YES

• YES, but with precautions:
 __
 __

• NO
Proposal 3: Bringing Back the American Chestnut

• The American chestnut (*Castanea dentata*) was once one a large, long-lived and ecologically important tree in eastern US forests
 • Nut crops were consumed by both humans and wildlife
 • The many ways ecosystems changed with its reduction/loss is unknown
• It has been almost entirely lost by an invasive blight fungus that was accidentally brought to the US in the late 1800s
• Nonreproductive seedlings and stump sprouts still exist, but without ever reaching reproductive maturity (functionally extinct)
Efforts to Bring Back the Chestnut

- Asian species of chestnut can resist blight infections
- Experiments to hybridize the species have been successful, but these also include many traits of the Asian species that may not be desirable in the US
 - Traditional breeding can remove some of these traits, but is slow and unpredictable
 - We know that resistance in the Asian chestnut is controlled by multiple genes
- Would you consider such a hybrid tree to belong to the same species as American chestnut seedlings?
Genetic Engineering

- Proposal: Use genetic engineering to insert a gene (found in other plants, such as wheat) into the American chestnut and release into the wild
- Has been successfully done in controlled environments
- Gene product breaks down oxalic acid (toxin) which is produced by the blight and kills tissues of the chestnut
 - It appears to make American chestnuts tolerant of blight infections: they may have blight infections, but infections do not cause much damage
 - Would you consider a genetically modified American chestnut as being the same species as an unmodified chestnut?
Your Current Recommendation
(choose one answer)

• YES

• YES, but with precautions:

__
__

• NO
Genetically Modified Organisms (GMOs)

• The US currently regulates GMO crops through the US Department of Agriculture and the Environmental Protection Agency.

• Should we release a GMO tree into natural habitats?

• Do we have an obligation to reverse its human-caused extinction?

• Are we tampering with nature even more by releasing this tree back into natural areas?

Learn more by visiting:
https://storytrees.org/chestnut-report/#storytrees
Your Final Recommendation
(choose one answer)

• YES

• YES, but with precautions:

• NO
Proposal 4: Reduce Populations of Mosquitos that are Vectors for Malaria

- Malaria cases are in excess of 200 million per year
- The World Health organization estimates that $9 million is needed to cover 90% of the effected population, only $2.4 million is available
- Primarily caused by *Plasmodium falciparum*, transmitted by female *Anopheles* mosquitoes
 - 90% of cases occur in Africa, where *A. gambiae* is the predominant vector
Vector Control

• Vector control primarily focuses on insecticides and insecticide-treated netting

• Insecticides effect many species of arthropods

• DDT was re-approved as an insecticide in 2006, despite toxicity and environmental impacts (such as loss of raptors)

• Proposal: Use gene drives to reduce local mosquito populations (not total extinction)
 • Produce all males
 • Reduce female fertility
Your Current Recommendation (choose one answer)

- **YES**

- **YES, but with precautions:**

 __
 __

- **NO**
Ecological Consequences

• Should humans exterminate/reduce a native species in its native range?
 • All other examples that we are discussing involve reversing ecological damage caused by humans

• Current research suggests that *A. gambiae* does not hold a unique ecological role, and that other species of mosquitoes will still provide food to other animals/pollination/etc.
 • However, studies on ecological roles of the different species are very limited

• Hybridization among species of mosquitoes exists but its extent is largely unknown
Failure of Gene Drives

• Some studies suggest gene drives may not work as well as they are intended to work
 • Success assumes a lot of gene flow within the mosquito population
• What are the health consequences of relying on this technology and it failing to reduce mosquito populations in some places?
• What are the consequences to public opinion if this technology fails in some places?
• Given the limited funding for the many cases of malaria, what might be some other concerns that may emerge in local communities?
Your Final Recommendation
(choose one answer)

• YES

• YES, but with precautions:

__
__

• NO