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ABSTRACT: Genome-scale gene knockout is an important
approach to the study of global genetic interactions. SCRaMbLE-
ing of synthetic yeast chromosomes provides an efficient way to
generate random deletion mutants. Here, we demonstrate the use
of SCRaMbLE to explore synthetic lethal interactions. First, all
essential genes of yeast chromosome I1I (chrlIII) were clustered in
a centromeric plasmid. We found that three types of reorganized
clustered chrlll essential genes had similar transcriptional levels.
Further, SCRaMbLEing of synthetic chromosome III (synIII) with
supplementary clustered essential genes enables deletion of large
chromosomal regions. Investigation of 141 SCRaMbLEd strains revealed varied deletion frequencies of synIII chromosomal regions.
Among the no deletion detected regions, a hidden synthetic lethal interaction was revealed in the region of synIII 82—88 kb. This
study shows that SCRaMbLE with clustered essential genes enhances streamlining of synthetic yeast chromosome and provides a

novel strategy to uncover complex genetic interactions.

S ystematic genetic screening is a powerful means to study
genetic interaction networks in yeast. Single-, double- and
triple-gene deletion mutants of yeast genome have been
constructed to explore the global landscape of genetic
interactions.' ™ In Saccharomyces cerevisiae, a collection of
single gene deletion mutants, covering 96% of annotated open
reading frames, has been constructed by homologous
recombination, which is a valuable resource for functional
genomics. It demonstrated that ~80% of genes in the genome
of Saccharomyces cerevisiae are nonessential." Further, millions
of double deletion mutants were constructed by crossing
between single mutants termed synthetic genetic array (SGA).
Genome-scale quantitative analysis revealed a comprehensive
digenic interaction network, which enriched understanding of
extensive functional cross-connections.” > To further explore
complex genetic interactions, ~200000 triple mutants were
constructed by crossing between double mutants and single
mutants.” The global trigenic interaction network is estimated
to be ~100 times as large as the digenic network, exploring the
complexity of yeast genetic interactions.®

Although these large-scale analyses of genetic interactions
were time-consuming and laborious, they paved the way to
understanding the functional network.”® However, it is still a
great challenge to investigate complex interactions involving
more genes using traditional gene knockout methods. PCR-
mediated chromosomal deletion (PCD) was used to delete
chromosomal segments harboring multiple nonessential
genes.” The result showed that nonessential regions contain
synthetic lethal combinations at a high frequency. This

© 2020 American Chemical Society

7 ACS Publications

1181

SCRaMbLE
Analysis

Clustered
essential

genes
loxPsym

SCRaMbLEd strains

OViablc ‘\i ;Inviahlc

Synthetic yeast

Synthetic lethality

technique complements the study of yeast genetic interactions,
but it is limited to individual nonessential chromosomal
segments. With development of synthetic genomics, we are
able to design and synthesize a yeast genome from the
scratch.'””"” Introduction of an inducible SCRaMbLE
(Synthetic Chromosome Rearrangement and Modification by
LoxPsym-mediated Evolution) system into the synthetic yeast
genome make it an efficient method to generate random
deletion mutants.”°~*° However, deletion using SCRaMDbLE is
limited by straggling locations of essential genes in the designer
chromosomes.

Here, we perform SCRaMbLE of synthetic yeast chromo-
some III (synlIl) with supplementation of clustered wild-type
chromosome III (chrlIl) essential genes. This strategy allows
streamlining of the synthetic chromosome with deletion of
large chromosomal segments. Further, varied deletion
frequencies of synlll chromosomal regions were revealed.
And a synthetic lethal interaction in the region of synIII 82—88
kb was verified among the no deletion detected regions.
Opverall, our findings highlight that SCRaMbLE is effective to
study yeast genetic interactions.

Received: February 3, 2020
Published: April 8, 2020

https://dx.doi.org/10.1021/acssynbio.0c00059
ACS Synth. Biol. 2020, 9, 1181-1189


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Peixia+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hui+Xu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hao+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hebing+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sijie+Zhou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fangfang+Tian"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bing-Zhi+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiaochen+Bo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yi+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yi+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ying-Jin+Yuan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acssynbio.0c00059&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00059?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00059?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00059?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00059?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.0c00059?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/asbcd6/9/5?ref=pdf
https://pubs.acs.org/toc/asbcd6/9/5?ref=pdf
https://pubs.acs.org/toc/asbcd6/9/5?ref=pdf
https://pubs.acs.org/toc/asbcd6/9/5?ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acssynbio.0c00059?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

WT III
Ll 10111l Q
- ( Vika

e e e Assembly in -IIIIHIIIIIIIIIID
A, S —_l )

Vika/vox

. synll L
synthetic yeast Y recombination

Clustered essential genes

P
/ \
T
1 = 1
1 |} 1
\‘ 1
L
B
Synthetic lethal SCRaMbLEd strains
I Essential genes @ Vika Selective marker [ loxPsym site

I Vox site (X Cre [ ] Deletion of segments O Viable "7 Inviable

Figure 1. Strategy of SCRaMbLE with clustered essential genes to reveal genetic interactions. All essential genes of chrlll (red chunks) were
clustered and assembled into a centromeric plasmid using homologous recombination in synllI strain, allowing SCRaMbLE with supplementation
of the clustered essential genes once assembled. Using Vika/vox, a recombination system orthogonal to Cre/loxp, the selective marker in the
middle of assembled fragments was deleted. Varied SCRaMbLEd strains were phenotypically tested and genotypically analyzed to explore synthetic
lethal interactions. The white lines on the synthetic chromosome represent loxPsym sites. White blocks represent deletions of chromosomal regions
in SCRaMbLEd strains. Yeast strains with normal, sick, and inviable growth fitness are indicated by oval with solid border, round dot border, and
long dash border, respectively.
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Figure 2. Reorganization of clustered essential genes of chrIll and transcription of the essential genes. (A) Detailed distributions of the clustered
essential genes on three reorganized plasmids. In the genomic direction (GD) plasmid, the essential genes are arranged according to their natural
chromosomal positions and orientations. In the same direction (SD) plasmid, the essential genes are arrayed in the same positions as GD plasmid
but assembled in the same direction. In the random direction (RD) plasmid, the essential genes are arranged in random order according to the
combined length of three individual genes. The plasmids harboring all 14 essential genes are up to 43 kb in length. The two directions of the arrows
(red and blue) correspond to the directions of transcription and translation. (B) Relative gene transcription of wild-type essential genes on plasmids
and synthetic essential genes on synlIl. Sequencing reads of the transcriptome for wild-type and synthetic genes can be distinguished by PCRTags
in their ORFs. Transcriptional levels of 13 essential genes (except RRP7) in three reorganized plasmids (GD, SD, RD) were analyzed. There is no
transcription of CDC39 in the SD plasmid because of the missing assembly of CDC39 fragment. The transcription of CDC39 in the right assembled
SD plasmid was analyzed by qPCR (Supplementary Figure S8). Error bars represent standard deviation from three replicates.
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Figure 3. Varied deletion frequencies of synlIII chromosomal regions triggered by SCRaMbLE. A total of 48 PCRTags on synlII were selected to
detect the deletion frequencies. Hot spots and cold spots of deletion are indicated as red and blue horizontal filled bars, respectively. Hot spots (red
horizontal filled bars) represent regions where the deletions were detected more than 10 times. Cold spots (blue horizontal filled bars) represent
regions where no deletion were detected. Green diamonds represent loxPsym sites distributed on synlIIl. Yellow arrows represent open reading

frames (ORFs) of essential genes.

B RESULTS

SCRaMbLEing of Synthetic Yeast Chromosome Il
with Clustered Essential Genes Expands Deletable
Regions. Previous studies have indicated that SCRaMbLE is
an excellent strategy to induce yeast genome rearrangement
and simplification, which relies on recombination reaction
between loxPsym sites within synthetic chromosomes.'”""
However, the loxPsym sites are inserted in the 3’-untranslated
region (UTR) of nonessential genes, thus reducing the ability
for deletions in a haploid synthetic yeast. As shown in
Supplementary Figure S1, nonessential genes MRC1, ADFI,
FYVS, MOSI, and PRDI1 cannot be deleted by Cre/loxPsym
since essential gene KRRI exists in this segment. The synIII
chromosome is separated by introduced loxPsym sites into
~80 chromosomal segments that contain annotated open
reading frames (ORFs)."' Among them, 12 of the segments
contain essential genes, which indicates that 15% of regions
(accounting for 27.6% of synlII length) may not be deleted by
SCRaMbLE.

To get rid of the limitation on chromosomal deletion caused
by essential genes, we clustered all essential genes of chrlII into
a centromeric plasmid as an additional supplement for the
essential functions. All 14 clustered essential genes were
amplified by PCR using wild-type BY4741 genome as a
template; thus clustered essential genes on the plasmid can be
distinguished from the essential genes on the synthetic
chromosome by specific PCRTags in the ORFs.'”'' The
transcription units of essential genes were amplified from 500
base pairs before the start codon and 300 base pairs after the
stop codon. All 14 fragments of essential genes were
transformed in the synlIIl yeast and assembled into a
centromeric plasmid with a total length of ~43 kb in one
step by homologous recombination. Using Vika/vox, a
recombination system orthogonal to Cre/loxp, the auxotroph
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marker in the middle of assembled fragments can be
deleted.”””” The synlll strain with additional clustered
essential genes was then subjected to SCRaMbLE (Figure
1). PCRTag analysis and genome sequencing of SCRaMbLEd
strains revealed deletions of essential genes in synlIII
(Supplementary Figure S2). For instance, essential genes
KRRI, SPB1, PBN1, and PGKI in the synthetic chromosome
III were deleted in a SCRaMbLEd strain yWPX023. The
results from sequencing depth map of synlII also show deletion
of essential genes KRRI and PGKI in strain yWPX025.
Further, our result indicates that SCRaMbLE with clustered
essential genes can facilitate deletion of large chromosomal
segments. As shown in Supplementary Figure S3, a region with
length of 42.6 kb in strain yWPX038 was deleted using this
modified SCRaMbLE method. We also detected a
SCRaMbLEd strain yWPXO053 with a total of 97 kb deletion
in synllIl, which is 35.7% of synlIII length.

Reorganization of Clustered Essential Genes of
Chromosome Il Has Little Transcriptional Effect. In
the synthetic yeast genome project (Sc2.0), wild-type
chromosomal segments were in situ replaced by counterpart
synthetic DNA chunks.”® In most cases, the synthetic yeast
chromosomes result in normal growth fitness of host
strains.'> ' However, it is still a big question regarding the
feasibility of clustering and reorganization of synthetic genome
for future design. Here, 14 essential genes of chrllIl were
clustered and reordered, and transcription of the genes was
tested. We designed and constructed three types of reorganized
essential genes into three different plasmids (Figure 2A). For
the genomic direction (GD) plasmid, the essential genes were
arranged according to their natural chromosomal positions and
orientations. For the same direction (SD) plasmid, the
essential genes were arrayed in the same positions as GD
plasmid, but all genes were assembled in the same direction
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Figure 4. Synthetic lethal interactions were revealed in no deletion detected regions of SCRaMbLE. (A) Schematic representation of synthetic
lethal interactions. Deletion of either gene a or gene b does not affect viability, whereas deletion of both at the same time is lethal. (B) The process
of spore analysis for essential chromosomal region in the loss of heterozygosity strains (BY4741-synlII). (C) Random spore analysis of knockout
diploid strains for the no deletion detected regions. Random spores were selected on SC-Arg with canavanine medium. (D) Tetrad analysis of
synlIII 48—61 kb and synlIIl 82—96 kb knockout diploid strains. The BY4741-synlIII diploid was used as a control strain. (E) Tetrad analysis of

synIII 82—88 kb and synIII 88—96 kb knockout diploid strain.

(SD). For the random direction (RD) plasmid, the essential
genes were modularly assembled according to the combined
length of three individual genes and thus were displayed
disorderly. The synllI strains bearing the GD, SD, and RD
plasmids were phenotypically normal despite the double
expression of 14 essential genes.

To test functional effects of clustering and reorganization of
the chrlll essential genes, three yeast strains harboring GD,
SD, RD plasmids were analyzed by RNA sequencing
individually. PCRTags, the synonymous mutation sequences
in open reading frames (ORFs), can be used to distinguish the
wild-type genes from synthetic genes for transcriptome
sequencing. "' Transcriptional level of all essential genes in
the three types of clustered plasmids were investigated by
alignment with specified PCRTags, except RRP7, which did
not have PCRTags in the ORF. As shown in Figure 2B,
transcription of the genes in GD, SD, and RD plasmids were
similar to each other. It suggests that reorganization of the
clustered 14 essential genes in yeast has little effect on gene
expression. However, transcription of gene SPBI in the SD
plasmid was slightly higher than that in GD and RD groups.
Comparing the organization of SPBI in the three plasmids
reveals that SPBI and PBNI are in the same direction in the
SD plasmid. To test if the inversion of SPBI contributes to the
increased transcription, the SPBI segment in the GD plasmid
was inverted to the same direction as the SD plasmid, resulting
a GD-2 plasmid (Supplementary Figure S4). Quantitative real-
time PCR analysis of SPBI1 shows increased transcriptional
level in the GD-2 plasmid compared with that in the GD
plasmid. The results indicate that reorganization of clustered
essential genes of chrlIl has little transcriptional effect in yeast,
although there may be effects in individual cases.

Varied Deletion Frequencies of synlll Chromosomal
Regions Triggered by SCRaMbLE. In theory, SCRaMbLE
can generate random deletions of chromosomal regions
through Cre/loxPsym reactions between any two loxPsym
sites on synthetic chromosomes.'® However, deletion proba-
bility for different chromosomal regions is undetermined.
Here, a synlIl strain with clustered essential genes was
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SCRaMbLEd, and deletion frequencies of synlII chromosomal
regions were statistically analyzed. From the total 186 pairs of
PCRTags within 105 genes on synllIl, 48 pairs of distributed
PCRTags were selected to detect deletion events of the
SCRaMbLEd strains (Supplementary Table S1). A total of 141
SCRaMbLEd strains with at least one deletion were detected,
of which 107 strains were analyzed by 48 pairs of distributed
PCRTags, and 34 strains were analyzed by whole genome
sequencing (Supplementary Table S2). The detailed informa-
tion about deletions of SCRaMbLEd strains are listed in
Supplementary Figure SS. The result indicated that deletion
events occurred in different loci of synlll. To further
investigate varied deletion frequencies of different loci, 141
SCRaMbLEd strains were statistically analyzed. As shown in
Figure 3, chromosomal regions that were deleted more than 10
times were considered as hot spots for deletion (marked in
red), and chromosomal regions with no deletion detected were
considered as cold spots for deletion (marked in blue).

Two hot spot deletion regions of synlII 6—38 kb and synIII
244—269 kb, both harboring essential genes, were located at
two ends of the synthetic chromosome. This result is
consistent with the higher prevalence of loss-of-heterozygosity
(LOH) events near telomeres by genome analysis across 1011
Saccharomyces cerevisiae isolates.”” Regions of synIIl 66—80 kb,
synlII 110—128 kb, and synIII 142—146 kb were also observed
to be deleted at high frequency. This may be caused by
nonessential functions within these regions.1 In addition, no
deletion event was detected in four regions larger than 10 kb in
the synlll (synlll 48—61 kb, 82—96 kb, 151—200 kb, and
227-244 kb).

Synthetic Lethal Interactions Were Revealed in No
Deletion Detected Regions of SCRaMbLE. Negative
genetic interactions refers to an effect in which two mutations,
when combined, result in a phenotype that is more severe than
expected.’” Synthetic lethality is a typical example of negative
interaction in which two simultaneous mutations cause cell
death, while each single mutation can produce living cells
(Figure 4A). PCRTag analysis and whole genome sequencing
revealed that 4 regions of synlIlI had never been deleted for the
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tested SCRaMbLEd strains. They are located at synlII 48—61
kb, 82—96 kb, 151-200 kb, and 227—244 kb, respectively.
Three of the regions (synIIl 48—61 kb, 82—96 kb, and 151—
200 kb) contained known essential genes (RRP7, PGSI,
RRP43, RSC6, CTR86, and PWP2), while one (synIIl 227—
244 kb) did not. We then investigated whether these regions
are essential and contain synthetic lethal interactions. For the
synlIl 227—244 kb region, which contains only nonessential
genes, it was reported that a region corresponding to synIII
227-244 kb was undeletable and contained synthetic lethal
interactions, which was verified by PCR-mediated chromo-
some splitting (PCS).” For the remaining 3 no deletion
detected chromosomal regions that contain essential genes, we
first checked if this was caused by failed expressions of the
supplementary essential genes in the clustered plasmids. As
shown in Figure 2B, transcriptional level of the counterpart
essential genes, PGS1, RRP43, RSC6, CTR86, and PWP2, was
normal.

To determine whether the 3 no deletion detected regions
are essential, we first try to knock out the 3 regions in haploid
strains containing clustered essential genes individually.
However, we failed to get the knockout strains by homologous
recombination in the haploid synIIl. We then knocked out the
3 regions in diploid strains individually, following by spore
analysis of the loss of heterozygosity strains (Figure 4B). The
diploid strains were derived from mating of synIIl strain
containing clustered essential genes with BY4741 strain. The
result of random spore analysis shows that sporulation rate of
the 3 knockout diploid strains are significantly reduced (Figure
4C). The diploid strain with deletion of synIII 151—200 kb
failed to generate spores. This may be caused by deletion of
functional genes involved in the process of sporulation. It was
reported that null gene BPHI, ELO2, or THR4 would decrease
the sporulation efficiency.”’ > Other methods are needed to
determine the essential function of this region. Tetrad analysis
of the producible knockout strains was used to uncover
synthetic lethal interactions in the no deletion detected
regions. For the diploid strain with synIII 48—61 kb deleted,
even though the sporulation rate is relatively low, we were able
to dissect a few tetrads with 3 or 4 viable spores. The result
suggested that this region may not be essential under tested
conditions. For the diploid strain with synIll 82—96 kb
deleted, after dissection of 16 tetrads, the number of viable
spores was always no more than two (Figure 4D). All viable
spores were PCR verified for the existence of the synIII 82—96
kb segment (Supplementary Figure S6). The result suggests
that deletion of this region leads to cellular death and there
might be synthetic lethal interactions within this region. We
further divided the undeletable region of synIII 82—96 kb into
two parts, and two diploid strains with synIII 82—88 kb and
88—96 kb deleted were constructed individually. Tetrad
analysis of the two strains reveals that the region of synlIll
82—88 kb is essential (Figure 4E). There are 6 nonessential
genes (GBP2, SGF29, ILV6, STP22, VMAY, and YCL007C)
within this region, and individual deletion of the genes result in
a viable cell." From investigation of yeast genetic interactions
on SGD (http://yeastgenome.org/), no synthetic lethal
interactions have been reported in the region corresponding
to synlll 82—88 kb.»>** This suggests that there is a hidden
synthetic lethal interaction in this region. Further, we tried to
explore the detailed relation of these genes by knocking out the
individual ORFs and adjacent two ORFs in the BY4741 strains.
As shown in Supplementary Figure S7, strains with the
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individual ORFs and adjacent two ORFs knocked out are
viable on YPD medium, although the STP22 and VMA9
double knockout strain shows severe growth defect. We
assumed that there may be a more complex interaction in this
region.

B DISCUSSION

Gene order plays an important role in the evolution of
genome.”*® Gene order can be affected by various genomic
rearrangement events, like inversions and translocations.>’
From “reading” a natural genome to “writing” a synthetic
genome, we are exploring the boundary of how we can change
the genome."” ™' Clustering and reorganization of synthetic
gene modules is one of the most fascinating aspects in the
design of synthetic pathways or synthetic genomes. In our
study, 14 essential genes of yeast chrlll were clustered into a
plasmid. We found that although these genes were clustered in
different orders, it had little effect on gene transcription. In
prokaryotes, partial M. mycoides JCVI-syn3.0 genome was
reorganized according to the functional category of genes,
which also illustrated the feasibility of clustering and
reorganization of synthetic genomes.”® However, in one case,
we found that inversion of SPBI fragment in the SD plasmid
improved the transcriptional level of SPBI. Previous works
have shown that an inversion of a synXII chromosomal region
can cause abnormal expression of ACE2 and leads to increased
ethanol tolerance, and inversion of crt] in a }-carotene pathway
by in vitro SCRaMbLE leads to higher production of S-
carotene.”””" In conclusion, the results suggest that it is very
promising for larger scale clustering and reorganization of yeast
genome; however, it is worth noting that gene orders may have
unexpected effect on expression of individual genes.

SCRaMbLE is capable of producing large amounts of
deletions for genome streamlining in synthetic yeast.'”** Here,
essential genes of chrlll were clustered in a plasmid to enable
deletion of large chromosomal regions harboring essential
genes. Our results indicate that SCRaMbLE with clustered
essential genes is an effective method for streamlining of
synthetic yeast genome. In the future, all essential genes of
yeast genome can be clustered in a fully synthetic yeast to
facilitate the study of simplified yeast genomes. However, many
duplications of chromosomal segments were also detected in
the SCRaMbLEd strains (Supplementary Figure S3). It is
suspected that this may be caused by the supplementary
essential genes, considering that more duplication events were
possibly detected in SCRaMbLEd heterozygous diploid strains
(with supplementation of another wild-type chromosome)
than haploid strains.”>** In our study, synthetic lethal
interactions were discovered in no deletion detected regions
of SCRaMbLE. By means of SCRaMbLEing with more
synthetic chromosomes for multiple rounds, synthetic yeast
genome could be continuously simplified, providing a new
strategy to study the complex negative interactions within large
chromosomal regions. Besides deletions, SCRaMbLE can be
used to discover the genetic interactions triggered by other
structural variations, such as duplications, inversions, and
translocations.

B MATERIALS AND METHODS

Strains, Plasmids, and Media. The yeast strains used in
this study are listed in Supplementary Table S3. Synthetic
strain synlll (MATa his3A1 leu2A0 lys2A0 ura3A0) was used
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as the strain for systematic chromosomal simplification. S.
cerevisiae strain BY4741 (MATa his3A1 leu2A0 metlSAO
ura3A0) was used to mate with synlll to generate diploid
strains. Plasmid pCLB2-Cre/EBD is available from Addgene,
which is necessary for inducing SCRaMbLE. Yeast strains were
grown at 30 °C in Yeast extract-Bacto peptone-Dextrose
(YPD) medium containing 1% yeast extract, 2% peptone, and
2% glucose. The plasmid-bearing strains were cultured in
synthetic complete (SC) medium. The drop-out mixture for
making SC medium contained all possible supplements except
leucine, histidine, and uracil. Two grams of drop-out mixture
was needed for per liter of SC medium. SC medium containing
1 g/L S-fluoroorotic (S-FOA) (Sigma-Aldrich) was used to
select strains without URA3 genes. SC-Arg medium with
canavanine was used to select haploid strains.

Assembly of Clustered Essential Genes. Essential genes
were individually amplified by PCR using genome of wild-type
yeast as the template. During the progress of PCR, 59 bp
homologous arms were introduced to neighboring genes by
primers. At the same time, the first and the last genes that
linked with the vector also carried the homologous arms of the
vector fragment by PCR primers. Therefore, adjacent frag-
ments have homologous fragments with each other. The vector
pRS416 was linearized by NotI digestion. Then fragments of 14
essential genes and the linearized vector with homologous
arms were transferred into strain synlIII. All essential genes and
vector were clustered into a complete plasmid by yeast-based
homologous recombination in one step.””~*' The correctness
of assembly of GD, SD, and RD was checked by PCR
verification of the junctions. The three reorganized plasmids
(GD, SD, and RD) were constructed using the same method
with different orders. In order to increase the efliciency of
screening, we introduced a screening marker (URA3) in the
middle of 14 fragments. We verified the transformants by
testing the junctions between each gene. After verification, the
marker URA3 was knocked out by the Vika/vox system. The
vox sequences were inserted into both ends of the marker, and
the Vika gene was induced via the GALI promoter.”**” SC
medium containing 5-FOA was used to select strains with
deletion of URA3 marker.

RNA-Seq Analysis of Clustered Essential Genes. Yeast
cells containing clustered essential genes in GD, SD, and RD
plasmid were subjected to RNA sequencing to investigate the
transcriptome. Three parallel samples were set for each yeast
strain harboring the essential genes in a plasmid. The samples
were tested using the BGISEQ-500 platform, and each sample
produced an average of 21.42 Mb of data. The average
alignment rate of the sample against the reference genome was
95.79%. The sequencing data is called raw reads or raw data,
and then quality control (QC) of the raw reads is performed to
determine whether the sequencing data is suitable for
subsequent analysis. By trimming low quality reads, we
quantified the transcriptional expression of clustered essential
genes on plasmid relative to essential genes on chromosome.
PCRTags were used to distinguish the transcription of wild-
type genes from the transcription of synthetic genes.

Quantitative PCR (Q-PCR) Verification. Quantitative
real-time PCR was used to verify the transcription of SPBI in
different conditions. A single yeast colony was cultured in
liquid medium until the ODg4y was 0.8 to 1.2. RNA was
extracted from collected cells through Column Fungal RNA
Extraction Kit. The primers used in qPCR assay are listed in
Supplementary Table S4. The relative gene expression data

1186

were quantified by comparinzg the Ct values of the target genes
using the 2724 method.*” Unique Aptamer qPCR SYBR
Green Master Mix was used for the qPCR reaction, and
equipment was Quantagene q225 (Novogene). The reaction
procedure was performed as follows: precycling, S0 °C/300 s;
40 cycles of 95 °C/10 s, 56 °C/20 s, and 72 °C/20 s; melt
curve, which started from 60 to 95 °C. Three parallel samples
were set up in the experiment.

SCRaMDbLE. First, the Cre plasmid was transformed into the
strain synlIl with clustered essential genes. Second, the
plasmid-bearing cells were cultured in SC-His-Ura medium
to logarithmic growth phase. Third, cells were transferred to
fresh medium to an ODgy of ~0.5. fB-Estradiol (Sigma-
Aldrich) was added into the medium to a final concentration of
1 uM to induce SCRaMbLE for 8 h. Strains were collected by
centrifugation and washed three times with sterile water.
SCRaMbLEd strains were diluted 1000-fold and spread evenly
on SC-His-Ura plates. The plates were incubated at 30 °C for
36 h.

Yeast Colony PCR for Detection of Chromosomal
Deletions. The SCRaMbLEd colonies were resuspended in
50 pL of 20 mM NaOH. The cells were heated for 3 cycles of
95 °C/S min and 4 °C/1 min prior to adding the PCR mix and
performing the PCR program. The following PCR program
was used: 95 °C/3 min; 30 cycles of 95 °C/15 s, 53 °C/15 s,
and 72 °C/1S s; a final extension of 72 °C/S min. PCR
reaction was performed using 2X Rapid Taq Master Mix
(Vazyme Biotech Co., Ltd.). Detection of PCRTags was
performed by agarose gel electrophoresis. The absence of
synthetic PCRTag amplicons (SYN) revealed the deletion of
segments on the chromosome. The synthetic PCRTags used in
this study are listed in Supplementary Table SI; 48 pairs of
distributed PCRTags on synlll were selected to detect the
deletion of different regions. SCRaMbLEd strains with
deletions of these 48 genes are displayed in Supplementary
Figure SS.

Whole Genome Sequencing of SCRaMbLEd Strains.
The SCRaMbLEd strains were sequenced to confirm the
integral genotype. Deep sequencing of all libraries was
performed on the Illumina (BGISEQ-500) platform. The
length of each read was 150 base pairs. The sequenced data
were filtered, and the adapter sequence and low-quality data
were removed, resulting in the clean data used for subsequent
analysis. The variation information was obtained by aligning
sample reads with reference genome. Through analysis of
sequences linked by loxPsym sites, structural variations
occurring throughout the chromosome can be identified.

Serial Dilution Assay. The candidate colonies were
precultured overnight to keep strains in an activated state.
Then, cells were transferred into sterile water in a 96-well plate
with normalized concentration. Each suspension was diluted in
a 10-fold gradient, and 3 uL of the diluted cells were spotted
on the YPD medium. Plates were incubated at 30, 33, 35, and
37 °C. Cell phenotypic images were captured after 36 h of
incubation.

Sporulation and Spore Analysis. The S. cerevisiae strain
BY4741 was mated with the synlII strain to get diploid cells.
For each query strain with putative synthetic lethal
interactions, the target region was deleted from the diploid
cell. The target segments were knocked out by yeast
homologous recombination. Homologous fragments were
synthesized by PCR. The primers used in knockout and
verification are listed in Supplementary Table SS. Then
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diploids were sporulated on nutrient-free medium and
incubated at 25 °C for 3—10 days. The presence of tetrad
was examined under a microscope. Following tetrad analysis of
meiotic progeny derived from diploid cells, the tetrad spores
were micromanipulated onto distinct positions on YPD agar
medium. In addition to separating the spores, yeast was treated
by zymolyase and vortex vibrated to conduct random spore
analysis. The treated strains were cultured on haploid selection
medium (SC-Arg with canavanine).
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