Happening now Sept. 28th – Oct 4th, 2020
The mission of the event is to showcase the presence and accomplishments of Black microbiologists from around the globe. The organizers want to connect Black microbiologists with one another and help nurture and grow a sense of community among them. They also aim to provide a forum for the discussion of racial disparities in microbiology and its sub-disciplines, and engage with the community at large to increase general microbiology knowledge. Let's help the event and amplify the work of Black scientists in all fields, let's acknowledge their contributions to their disciplines and give our support the collective work of pursuing equity in academia, industry, government, and beyond. It is a vibrant celebration of Black microbiologists, with talks and panels featuring microbiologists across career stages and subdisciplines. Including:

Dr. Beronda Montgomery
Dr. Kizzmekia Corbett
Dr. Michael D.L. Johnson

Black Microbiologists Push for Visibility Amid a Pandemic
A week of talks, panels and discussions seeks to counter an impression “that this talent pool just does not exist.”

The New York Times has also featured the story. Read it here!
CONGRATULATIONS VERONICA!

Our very own Veronica Segarra, REMNet member and co-chair of the wet bench working group has been named one of the 100 of the most inspiring Hispanic/Latinx scientists working in the United States.

Compiled by the folks at Cell MENTOR, members were selected based on their scholarly achievements, mentoring excellence, and commitment to diversity, equity, and inclusion. Their aim was to highlight diverse scientists who can give seminars, serve as panelists, or fill scientific positions. They highlighted scientists encompassing careers within academia, government, and biotech and showcase individuals committed to serving diverse student populations at Hispanic-serving institutions.

While the list is not fully representative of all the Hispanic/Latinx scientific working in our communities, it may help change the perception of what a scientist looks like.

AGAR ART COMPETITION - Deadline Oct 23rd

This year, Agar Art (like everything else) will be different. Recognizing the safety issues presented by the COVID-19 pandemic, as well as the current difficulty of accessing supplies, resources and especially laboratories, they’ve decided to open up the contest to allow different types of submissions. We will now allow participants to utilize a broad range of media to create their artwork. Check out the “Open” category to learn more about this new twist to the contest. If you’re able to safely access laboratory equipment and resources, contestants can still enter the contest by submitting their entry under the “Traditional” category. What a lovely way to engage the public with the microbial sciences on social media!

PUBLICATIONS

DJ-1 (Park7) affects the gut microbiome, metabolites and the development of innate lymphoid cells (ILCs)

Yogesh Singh, Christoph Trautwein, Ankur Dhallan, Madhuri S. Salkar, Md Mustafizur, Lamonti Zimmer, Liron Peer, Miriam Fager, Jakob Adameit, Nicole Zalipsky, Michael Filler, Vinay Parkash, David S. Park, Ted W. Maht, Julia-Delfina Pissios, Diethelm Wallwiener, Sarah L. Brocker, Florian Lang1,2,3 & Olaf Ross1,2

The proper communication between gut and brain is pivotal for the maintenance of health and physiology of the gut-liver axis, in turn controlling several clinical disorders. In Parkinson’s disease (PD), 85% of all patients experience constipation more years before developing any signs of motor phenomena. As a differential diagnosis and potential biomarker, PD is an urgent need for the development of an adjuvant treatment targeting gut health. To efficiently screen the gut microbiome of patients with PD for their microbiome, it was essential to determine the role of DJ-1 in PD. DJ-1 is a redox- and heat-shock protein involved in the protection against PD and genetic alterations. To test the hypothesis that DJ-1 regulates the risk of PD, we carried out a longitudinal study in a mouse model of PD. We found that DJ-1knock-out mice (DJ-1-/-) mice had a significantly lower amount of PD-related markers than those with wild-type (WT) DJ-1. This result was confirmed by the increased survival of DJ-1knock-out mice (DJ-1-/-) mice compared to WT mice. DJ-1knock-out mice were found to have reduced levels of pro-inflammatory cytokines and increased levels of anti-inflammatory cytokines. DJ-1knock-out mice also had increased levels of GSH, which is a major antioxidant and anti-inflammatory molecule. These results suggest that DJ-1knock-out mice have a reduced risk of PD and may provide a potential therapeutic target for PD treatment. DJ-1knock-out mice also had increased levels of GSH, which is a major antioxidant and anti-inflammatory molecule. These results suggest that DJ-1knock-out mice have a reduced risk of PD and may provide a potential therapeutic target for PD treatment.

Infections of Clostridium difficile (piecemeal on scanning electron micrograph) are particularly attractive target for microbiome researchers, who generally have a good understanding of the pathogen’s interaction with commensal microorganisms and the gut environment. Image credit: Science Source/Paul Gunning.

REMNet is supported by NSF RCN-UBE grant # 1827035