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Chi-Square test of 
Goodness of Fit



Weldon's dice
● Walter Frank Raphael Weldon (1860 - 

1906), was an English evolutionary biologist 
and a founder of biometry. He was the joint 
founding editor of Biometrika, with Francis 
Galton and Karl Pearson.

● In 1894, he rolled 12 dice 26,306 times, and 
recorded the number of 5s or 6s (which he 
considered to be a success).

● It was observed that 5s or 6s occurred more often than 
expected, and Pearson hypothesized that this was probably due 
to the construction of the dice. Most inexpensive dice have 
hollowed-out pips, and since opposite sides add to 7, the face 
with 6 pips is lighter than its opposing face, which has only 1 pip.



● In 2009, Zacariah Labby (U of Chicago), 
repeated Weldon's experiment using a 
homemade dice-throwing, pip counting 
machine.

       www.youtube.com/watch?v=95EErdouO2w
● The rolling-imaging process took about 20 

seconds per roll.

Labby's dice

● Each day there were ~150 images to process manually.
● At this rate Weldon's experiment was repeated in a little more 

than six full days.
● Recommended reading:

galton.uchicago.edu/about/docs/labby09dice.pdf

http://www.youtube.com/watch?v=95EErdouO2w
http://galton.uchicago.edu/about/docs/labby09dice.pdf


Labby's dice (cont.)
● Labby did not actually observe the same phenomenon 

that Weldon observed (higher frequency of 5s and 6s).
● Automation allowed Labby to collect more data than 

Weldon did in 1894, instead of recording "successes" and 
"failures", Labby recorded the individual number of pips 
on each die.



Labby rolled 12 dice 26,306 times. If each side is equally 
likely to come up, how many 1s, 2s, ..., 6s would he expect to 
have observed?

(a) 1/6
(b) 12/6 
(c) 26,306 / 6
(d) 12 x 26,306 / 6

Expected counts



Labby rolled 12 dice 26,306 times. If each side is equally 
likely to come up, how many 1s, 2s, ..., 6s would he expect to 
have observed?

(a) 1/6
(b) 12/6
(c) 26,306 / 6
(d) 12 x 26,306 / 6 = 52,612

Expected counts



The table below shows the observed and expected counts 
from Labby's experiment.

Summarizing Labby's results

Why are the expected counts the same for all outcomes but 
the observed counts are different? At a first glance, does 
there appear to be an inconsistency between the observed 
and expected counts?



Do these data provide convincing evidence of an inconsistency 
between the observed and expected counts?

H0:  There is no inconsistency between the observed and the 
expected counts. The observed counts follow the same distribution 
as the expected counts.

HA:  There is an inconsistency between the observed and the 
expected counts. The observed counts do not follow the same 
distribution as the expected counts. There is a bias in which side 
comes up on the roll of a die.

Setting the hypotheses



Evaluating the hypotheses
● To evaluate these hypotheses, we quantify how different 

the observed counts are from the expected counts.
● Large deviations from what would be expected based on 

sampling variation (chance) alone provide strong 
evidence for the alternative hypothesis.

● This is called a goodness of fit test since we're evaluating 
how well the observed data fit the expected distribution.



This construction is based on 

1. identifying the difference between a point estimate and an 
expected value if the null hypothesis was true, and 

2. standardizing that difference using the standard error of the point 
estimate.

The general form of a test statistic is

Anatomy of a test statistic

These two ideas will help in the construction of an appropriate test 
statistic for count data.



Chi-square statistic
When dealing with counts and investigating how far the 
observed counts are from the expected counts, we use a new 
test statistic called the chi-square (χ2) statistic.

χ2 statistic



Calculating the chi-square statistic



Squaring the difference between the observed and the 
expected outcome does two things:

● Any standardized difference that is squared will now be 
positive.

● Differences that already looked unusual will become 
much larger after being squared.

When have we seen this before?

Why square?



● In order to determine if the χ2 statistic we calculated is considered 
unusually high or not we need to first describe its distribution.

The chi-square distribution

Remember
So far we've seen three other continuous distributions:
→ normal distribution: unimodal and symmetric with two parameters: 

mean and standard deviation
→ T distribution: unimodal and symmetric with one parameter: degrees of 

freedom
→ F distribution: unimodal and right skewed with two parameters: 

degrees of freedom or numerator (between group variance) and 
denominator (within group variance)

● The chi-square distribution has just one parameter called degrees of 
freedom (df), which influences the shape, center, and spread of the 
distribution.



As the df increases,
(a) the center of the χ2 distribution increases as well
(b) the variability of the χ2 distribution increases as well
(c) the shape of the χ2 distribution becomes more skewed (less like a 

normal)

Which of the following is false?

Practice



As the df increases,
(a) the center of the χ2 distribution increases as well
(b) the variability of the χ2 distribution increases as well
(c) the shape of the χ2 distribution becomes more skewed (less like a 

normal)

Which of the following is false?

Practice



● p-value = tail area under the chi-square distribution (as usual)
● For this we can use technology, or a chi-square probability table.
● This table works a lot like the t table, but only provides upper tail 

values.

Finding areas under the chi-square 
curve



Estimate the shaded area under the chi-square curve with df = 6.

Finding areas under the chi-square 
curve 



Estimate the shaded area under the chi-square curve with df = 6.

Finding areas under the chi-square 
curve (cont.)



Estimate the shaded area under the chi-square curve with df = 6.

Finding areas under the chi-square 
curve (cont.)



Estimate the shaded area under the chi-square curve with df = 6.

Finding areas under the chi-square 
curve (cont.)



Finding areas under the chi-square 
curve (cont.)
Estimate the shaded area (above 17) under the χ2 curve with df = 9.

(a) between 0.01 and 0.02
(b) 0.02
(c) between 0.02 and 0.05
(d) 0.05
(e) between 0.05 and 0.10



Finding areas under the chi-square 
curve (cont.)
Estimate the shaded area (above 17) under the χ2 curve with df = 9.

(a) between 0.01 and 0.02
(b) 0.02
(c) between 0.02 and 0.05
(d) 0.05
(e) between 0.05 and 0.10



Finding areas under the chi-square 
curve (one more)
Estimate the shaded area (above 30) under the χ2 curve with df = 10.

(a) between 0.005 and 0.001
(b) less than 0.001
(c) greater than 0.001
(d) greater than 0.3
(e) cannot tell using this table



Finding areas under the chi-square 
curve (one more)
Estimate the shaded area (above 30) under the χ2 curve with df = 10.

(a) greater than 0.3
(b) between 0.005 and 0.001
(c) less than 0.001
(d) greater than 0.001
(e) cannot tell using this table



● While probability tables are very helpful in understanding how 
probability distributions work, and provide quick reference when 
computational resources are not available, they are somewhat 
archaic.

● Using R:
pchisq(q = 30, df = 10, lower.tail = FALSE)
# 0.0008566412

● Using a web applet:
http://bitly.com/dist_calc

Finding the tail areas using 
computation

http://bitly.com/dist_calc


● The hypotheses were:
H0: There is no inconsistency between the observed and the 
expected counts. The observed counts follow the same distribution 
as the expected counts.
HA: There is an inconsistency between the observed and the 
expected counts. The observed counts do not follow the same 
distribution as the expected counts. There is a bias in which side 
comes up on the roll of a die.

● The research question was: Do these data provide convincing 
evidence of an inconsistency between the observed and expected 
counts?

Back to Labby's dice

● We had calculated a test statistic of χ2 = 24.67.

● All we need is the df and we can calculate the tail area (the 
p-value) and make a decision on the hypotheses.



● When conducting a goodness of fit test to evaluate how well the 
observed data follow an expected distribution, the degrees of 
freedom are calculated as the number of cells (k) minus 1.

                                         df = k - 1

Degrees of freedom for a goodness 
of fit test

● For dice outcomes, k = 6, therefore

                                       df = 6 - 1 = 5



Finding a p-value for
a chi-square test
The p-value for a chi-square test is defined as the tail area above 
the calculated test statistic.



We calculated a p-value less than 0.001. At 5% significance 
level, what is the conclusion of the hypothesis test?

(a) Reject H0, the data provide convincing evidence that the 
dice are fair.

(b) Reject H0, the data provide convincing evidence that the 
dice are biased.

(c) Fail to reject H0, the data provide convincing evidence 
that the dice are fair.

(d) Fail to reject H0, the data provide convincing evidence 
that the dice are biased.

Conclusion of the hypothesis test



We calculated a p-value less than 0.001. At 5% significance 
level, what is the conclusion of the hypothesis test?

(a) Reject H0, the data provide convincing evidence that the 
dice are fair.

(b) Reject H0, the data provide convincing evidence that the 
dice are biased.

(c) Fail to reject H0, the data provide convincing evidence 
that the dice are fair.

(d) Fail to reject H0, the data provide convincing evidence 
that the dice are biased.

Conclusion of the hypothesis test



● The 1-6 axis is consistently shorter than the other two (2-5 and 3-4), 
thereby supporting the hypothesis that the faces with one and six pips 
are larger than the other faces.

● Pearson's claim that 5s and 6s appear more often due to the 
carved-out pips is not supported by these data.

● Dice used in casinos have flush faces, where the pips are filled in with 
a plastic of the same density as the surrounding material and are 
precisely balanced.

Turns out...



● The p-value for a chi-square test is defined as the tail area 
above the calculated test statistic.

● This is because the test statistic is always positive, and a higher 
test statistic means a stronger deviation from the null 
hypothesis.

Recap: p-value for a chi-square test



1. Independence: Each case that contributes a count to the 
table must be independent of all the other cases in the 
table.

2. Sample size: Each particular scenario (i.e. cell) must have 
at least 5 expected cases.

3. df > 1: Degrees of freedom must be greater than 1.

Failing to check conditions may unintentionally affect the 
test's error rates.

Conditions for the chi-square test



Chi-Square Test of 
Independence



Eucalyptus coolibah mortality
From Logan 2010:

To investigate the mortality of coolibah 
(Eucalyptus coolibah) trees across 
riparian dunes, Roberts (1993) counted 
the number of quadrats in which dead 
trees were present and in which they 
were absent in three positions (top, 
middle, and bottom) along transects 
from the lakeshore to the top of dunes. 

The classification of quadrats according 
to the presence/absence of dead 
coolibah trees will be interpreted as a 
response variable and the position 
along transect as a predictor variable.



Eucalyptus coolibah mortality

Dead 
Present

Dead 
Absent

Bottom 15 13

Middle 4 8

Top 0 17



● The test statistic is calculated as

where k is the number of cells, R is the number of rows, and C is 
the number of columns.

_______________
Note: we calculate df differently for one-way and two-way tables.

Chi-square test of independence
● The hypotheses are:

H0: The position of the trees along the transect does not 
influence mortality.

  HA: Mortality varies by position along the transect.



Eucalyptus coolibah mortality

Dead 
Present

Dead 
Absent Total

Bottom 15 13 28

Middle 4 8 12

Top 0 17 17

Total 19 38 57

Observed Data



Eucalyptus coolibah mortality

Dead 
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Eucalyptus coolibah mortality

Dead 
Present

Dead 
Absent Total

Bottom 15 13 28

Middle 4 8 12

Top 0 17 17

Total 19 38 57

Expected Count for Dead Present, Bottom = 
(28 x 19) / 57 = 9.33



Eucalyptus coolibah mortality
Observed Dead Present Dead Absent Total

Bottom 15 13 28
Middle 4 8 12

Top 0 17 17
Total 19 38 57

Expected Dead Present Dead Absent Total
Bottom 9.33 18.67 28
Middle 4.00 8.00 12

Top 5.67 11.33 17
Total 19 38 57



Eucalyptus coolibah mortality

(O-E)^2 / E Dead Present Dead Absent

Bottom 3.44 1.72

Middle 0.00 0.00

Top 5.67 2.83

13.66



Eucalyptus coolibah mortality

= 13.66

= (3-1) x (2-1) = 2

> pchisq(q = 13.66, df = 2, lower.tail = FALSE)
[1] 0.001080858

Reject the null hypothesis that the position of the trees 
along the transect does not influence mortality 


