
Project 1

Rabbits & Grass Ecosystem

Written by

Prof. Erin N. Bodine

Prepared for

Math 314: Agent-Based Modeling

Rhodes College

Last Edited: January 10, 2018

Lab 8 1

In this lab we introduce the Rabbits ABM which is simulated in Rabbits.nlogo. If you have not done so, download

this file from Moodle. In Lecture we will have ran many simulations of this model, and explored some of the behavior

of the model using different parameter values. In the lab, we will take a look at what is under the hood (i.e., at the

code) of the model.

Description of the Model:

This agent-based model explores a simple ecosystem made up of rabbits and grass. The rabbits wander

around randomly, and the grass grows randomly. When a rabbit bumps into a patch of grass, it eats the

grass and gains energy. If the rabbit gains enough energy, it reproduces. Each rabbit loses energy every

time it moves and reproduces. If a rabbits loses too much energy it dies.

Introduction to NetLogo

When coding a model into NetLogo, you typically have a SETUP procedure (which initializes the model), a GO

procedure which runs the model, and set of other procedures which represent the “submodels” of the ABM.

In the remainder of the NetLogo skills section, we will the code of this model. You should note that in NetLogo

comments are inserted by placing a ; (semicolon) in front of the text or line that you want to use as a comment.

Also, note that unlike Matlab, NetLogo does not use line numbers in the code.

World Settings

There is one portion of the model that is not defined in the code, and that is the world settings. The “world” refers

to the grid of patches represented in the model. To access the world settings, select the Interface tab (see Figure 1),

then click on the “Settings...” button. This should open up a window that looks like Figure 2.

Figure 1: Header bar of the NetLogo Program when the Interface tab is selected. Boxed in red is the Interface tab. Boxed in blue is
the button which opens the world settings window.

Within the world settings window, you can see (and change) how the patch grid is set up. The current settings are

that the patch with coordinates (0, 0) is located in the center, the world is 41 patches high and 41 patches wide, and

there is both horizontal and vertical world wrapping. This means that if an agent moves past the right boundary of

the world it will re-emerge on the left boundary (and vice-versa), and if the agent moves past top boundary it will

re-emerge on the bottom boundary (and vice-versa). If the world does not wrap, then the agents are not allowed to

move past the boundaries.

Lab 8 2

Figure 2: World settings window.

Creating Variables

The first part of any NetLogo code establishes the variables of agents and patches, and any global variables within

the model. Note agent and patch variables are values that can be unique to each agent and patch. Thus, if all the

agents have an age variable, one agent can have age = 5, while another agent can have age = 39. Global variables,

on the other hand, are set to the same value for all entities (agents and patches) within the model.

Agent & Patch Variables: The agent and patch variables of the ABM are set up within the code. Select the

code tab to view how these variables are created.

Snippet of Rabbits.nlogo

;---

;----- Create Agents -------------------------------

;---

breed [rabbits rabbit]

rabbits-own [energy]

Lab 8 3

In the snippet of code above, first notice that the first three lines are comment lines which tell us at which portion of

the code we are looking. The first line of actual code is one the third line; it establishes what we will call our agents:

we will call the collective group of agents rabbits and any single agent rabbit. If you do not define a name for the

agents, then they will by default be called turtles.

In the second line, we define the variables of our agents called rabbits. In this case, we only create one variable called

energy. However, for every agent, NetLogo reserves several built-in agent variables:

� who – a unique ID number for each agent.

� shape – defines the appearance of the agent in

the world view in the interface tab. To see

the available shapes, check Tools > Turtle Shapes

Editor. The default is default and appears as an

arrowhead.

� color – defines the color of the agent in the world

view in the interface tab.

� size – defines the size of the agent in the world view

in the interface tab and default set to the size of a

single patch (which has a value of 1).

� xcor – defines the x–coordinate of the agent’s current

position, a real number representing the horizontal

location on the patch grid. The x-coordinate of the

red agent in Figure 3 is −1.5.

� ycor – defines the y–coordinate of the agent’s cur-

rent position (a real number representing the vertical

location on the patch grid). The y-coordinate of the

red agent in Figure 3 is 0.8.

� heading – defines the direction (in degrees) in which

the agent is pointing. Example heading values are

shown in Figure 4. For example, if the agent is head-

ing north, then their heading value is 0 or 360, but

if the agent is heading east, then their heading value

is 90 or −270.

� breed – defines the type of agent. This becomes an

important feature when a model has more than one

type of agent.

Figure 3: Coordinates for world grid where the origin is
located at the center of the grid. The coordinates of each
patch is the coordinate value at the center of that patch, e.g.,
the patch coordinates of the top left patch are (−2, 2). The
red turtle is located at the coordinates (−1.5, 0.8).

Figure 4: Diagram of heading values of an agent.

Because these variables are built-in to each agent, we do not need to create them when we create the agent vari-

ables.

You can also define variables for patches using the patches-own command, however we do no do that in this ABM.

However, we will use the built-in patch variable pcolor which defines the color of a patch. We will see the use of

this in the GROW-GRASS procedure.

Global Variables: The global variables of the ABM are set up on the interface. Select the interface tab to view

see the global variables (see Figure 5).

Lab 8 4

Figure 5: Global variables as they appear in
the interface tab.

The global variables are

� initial-num-rabbits – The number of rabbits (agents) at the be-

ginning of the simulation. The value can be set to any integer from

0 and 500.

� birth-threshold – The minimum amount of energy required for a

rabbit to reproduce. The value can be set to any integer from 0 to

20.

� grass-energy – The amount of energy contained in a patch of grass.

This is the amount of energy a rabbit will gain if it eats a patch of

grass. This value can be set to any multiple of 0.5 from 0 and 10.

� grass-growth-rate – The growth rate at which new patches of

grass appear. For example, a growth rate value of 0.015 means that

at each time step each patch has a 1.5% chance of growing a patch of

grass. The grass-growth-rate can be set to any multiple of 0.001

from 0 to 0.05.

The SETUP Procedure

In ABMs it is typical to run a small portion of code which sets up the model before running the actual model. We

will usually refer to this as the SETUP procedure.

Snippet of Rabbits.nlogo

;---

;----- Setup ---------------------------------------

;---

; Observer Procedure

to setup

clear-all

ask patches [grow-grass]

set-default-shape rabbits "rabbit"

create-rabbits initial-num-rabbits

[set color white

setxy random-xcor random-ycor

set energy random 10 ;start with a random amt. of energy

]

reset-ticks

end

Lab 8 5

The first three lines are comment lines and indicate which portion of the code this is. The fourth line is also a

comment line and tells “who” executes this line of code. Procedures can be called by the observed (you), by agents,

or by patches. The SETUP procedure is always called by the observer.

The next line (and the last line) indicate the beginning and the end of the procedure. All procedures are framed in

this fashion.

to procedure-name

...

Commands of procedure

...

end

After the to setup we begin with the code that is executed when this procedure is run. In NetLogo, built-in functions

are referred to as primitives. First the clear-all primitive is executed which clears all variables (global variables,

patch variables, and agent variables).

Next, we ask each patch in the world to execute the grow-grass procedure. You should note that the patches are

asked in a random order.

Next, we set the default shape for our agents rabbits to be the ’’rabbit’’ shape, then we create n rabbits where

n =initial-num-rabbbits. As we create the rabbits we can set values of each rabbit’s variables. We set the color of

each rabbit to white, and place each rabbit in a random location in the world (setxy random-xcor random-ycor),

and set the energy variable to a random integer in the range [0, 10) (note this means 10 cannot be selected, but zero

and all positive integer below 10 can be randomly selected).

NetLogo has a built-in method for tracking the current time step. It is an internal counter called ticks. The

command tick automatically increments the tick counter, and the command reset-ticks automatically set the

counter back to 0. The last command in the SETUP procedure resets the ticks to 0.

The GO Procedure

The next procedure is the GO procedure. This is the main procedure within the model. Within the GO procedure,

we call on all of the other procedures (submodels). The flow-diagram in Figure 6 shows tasks executed by the GO

procedure, including the execution of submodels.

Snippet of Rabbits.nlogo

;---

;----- Go --

;---

; Observer Procedure

to go

if not any? rabbits [stop]

ask patches [grow-grass]

ask rabbits

Lab 8 6

GO
Procedure

Any
rabbits
still

alive?

End GO
Procedure

Select a random patch
(without replacement)

Execute
GROW-GRASS

Procedure

Have all
patches
been

selected?

Select a random rabbit
(without replacement)

Execute
MOVE

Procedure

Execute
EAT-GRASS
Procedure

Execute
REPRODUCE

Procedure

Execute
DEATH

Procedure

Have all
rabbits
been

selected?

Increase time step by 1

no

yes

no

yes

no yes

Figure 6: Flow diagram of GO procedure. A submodels are shown in green.

Lab 8 7

[move

eat-grass

reproduce

death

]

tick

end

First, note that the GO procedure is executed by the observed. Inside the GO procedure (after the to go command),

we first determine if there are any rabbits left in the simulation and stop the simulation if there are not more

rabbits:

if not any? rabbits? [stop]

Next, we ask each patch to execute the GROW-GRASS procedure. Note, this means that GROW-GRASS procedure

must be a patch procedure.

Next, we ask each rabbit to execute the MOVE procedure, followed by the EAT-GRASS procedure, followed by the

REPRODUCE procedure, followed by the DEATH procedure. Since each of these procedures are called by a rabbit,

they must each be a rabbit (agent) procedure.

Lastly, we increase the ticks counter by 1 by executing the command tick.

The GROW-GRASS Procedure

The only procedure called/executed by the patches is the GROW-GRASS procedure.

Snippet of Rabbits.nlogo

;---

;----- Grow Grass ----------------------------------

;---

; Patch Procedure

to grow-grass

if (pcolor = black) and (random-float 1 < grass-grow-rate) [set pcolor green]

end

If you do not count the commenting, this procedure is only three lines of code, and two of those lines are used

to indicate the beginning and ending of the procedure. In this procedure if the patch is colored black (pcolor =

black), and if a real number randomly selected from the uniform distribution U [0, 1] is less than grass-grow-rate

(random-float 1 < grass-grow-rate), then the color of the patch will be set to green. Note that when using =, +,

-, *, /, >, <, >=, or <= in NetLogo you must have spaces on either side of the mathematical symbol. If not, NetLogo

will return an error, or interpret your code incorrectly.

Since this if-statement has two conditions, both conditions must be satisfied in order for the patch color to be changed

Lab 8 8

to green. If one of the conditions is not met, i.e. it is false, then the command in the if-statement (set pcolor

green) will not be executed. Table 1 show outcomes given various combinations of each condition being satisfied or

not satisfied.

Table 1: The if-statement in the GROW-GRASS procedure has two conditions. This table shows the outcome of the if-statement given
whether or not each condition is satisfied (i.e., true).

Condition 1 Condition 2 Outcome
pcolor = black random-float 1 < grass-grow-rate Command in if-statement executed

True True True ⇒ patch color is set to green

True False False ⇒ patch remains black

False True False ⇒ patch is already green and remains green

False False False ⇒ patch is already green and remains green

The MOVE Procedure

The MOVE procedure is one the procedures called by the rabbits (the agents). It changes the direction in which a

rabbit is moving, and then moves them 1 unit (1 patch length) in that direction.

Snippet of Rabbits.nlogo

;---

;----- Move --

;---

; Rabbit Procedure

to move

set heading heading + (random-float 100 - 50)

fd 1

set energy energy - 0.5 ;; moving takes some energy

end

The first line executed within the MOVE procedure changing the current heading of the rabbit. Note that the

structure for the set command is

set variable value

This means first you have the command set, followed by a space, followed by the name of the variable you are setting,

followed by the value you want to set that variable to. If at any point you forget how to use a certain command,

place the cursor somewhere in the command and press F1. This will open the NetLogo dictionary to the entry on

that particular command. For example, if you place the cursor somewhere in the word set, a window will open with

the entry shown in Figure 7.

In the case of the first set command used in the MOVE procedure, we are setting the rabbit variable heading to the

current value of heading plus a random amount. The command random-float 100 randomly selects a real number

from the uniform distribution U [0, 100). Note that the value 100 can never be selected but 99.99999999 can. Thus,

Lab 8 9

Figure 7: Example of entry for set in the NetLogo Dictionary.

the command random-float 100 - 50 randomly selects a real number from the uniform distribution U [−50, 50).

This means we are taking the current heading (which is measured in degrees) and adding a random number between

-50 and 50. Suppose the randomly selected value is n. If n < 0, then the rabbit will turn to the left n degrees. If

n > 0, then the rabbit will turn to the right n degrees.

The primitive fd is a NetLogo abbreviation for “forward”. The command fd 1 moves an agent forward (in the

direction of the current heading) by 1 unit (the length of 1 patch).

The last command in the MOVE procedure sets the rabbit variable energy to 0.5 less than its current value. Thus,

moving costs a rabbit 0.5 units of energy.

The EAT-GRASS Procedure

The EAT-GRASS procedure is one of the procedures called by the rabbits. This procedure enables a rabbit to eat

a patch of grass and gain the energy contained in that grass.

Snippet of Rabbits.nlogo

;---

;----- Eat Grass -----------------------------------

;---

; Rabbit Procedure

to eat-grass

;; gain energy by eating grass

if pcolor = green

[set pcolor black

set energy energy + grass-energy

]

end

The first line executed in the EAT-GRASS procedure is an if-statement. The condition for the if-statement is

Lab 8 10

pcolor = green

Recall, that pcolor is a patch variable. However, in NetLogo, agents have access to the variables of the patch they

currently occupy. So, this if-statement is asking if the patch color of the patch the rabbit currently occupies is green.

If it is, then the if-statement will execute two commands. The first is

set pcolor black

which changes the color of the patch currently occupied by the rabbit to black. The second is

set energy energy + grass-energy

which changes the rabbit’s energy variable to its current value plus the amount of energy contained in the grass

(grass-energy).

The REPRODUCE Procedure

The REPRODUCE procedure is one of the procedures called by the rabbits, and it governs the generation of new

rabbits.

Snippet of Rabbits.nlogo

;---

;----- Reproduce -----------------------------------

;---

; Rabbit Procedure

to reproduce ;; rabbit procedure

;; give birth to a new rabbit, but it takes lots of energy

if energy > birth-threshold

[set energy (energy / 2)

hatch 1 [fd 1]

]

end

Like the EAT-GRASS procedure, the first line executed in the REPRODUCE procedure is an if-statement. The

condition for the if-statement is

energy > birth-threshold

So, the if-statement will execute of the the value of the rabbit’s variable energy is greater than the value of the

global parameter birth-threshold. If the condition is true, then two commands will be executed. First,

set energy (energy / 2)

which sets the rabbit’s energy variable to half of its current value. Notice, in this command we use parentheses

around energy / 2. Including these parentheses is optional, but it can often make the code easier to read. The

second command in the if-statement executed is

hatch 1 [fd 1]

Lab 8 11

. You should place your cursor somewhere in the word hatch and press F1 to read the NetLogo dictionary entry on

the primitive hatch. So, the rabbit who called the REPRODUCE procedure “hatches” one offspring who inherits all of

its variables from the parent rabbit. Thus, if the parent rabbit had a heading of 287◦ and an energy level of 6.5, then

the offspring rabbit will also have a heading of 287◦ and an energy level of 6.5. Once the offspring is hatched any

commands in the square brackets after the hatch command are executed by the offspring. So the offspring moves

forward one unit in the direction of their current heading.

The DEATH Procedure

The DEATH procedure is one of the procedures called by the rabbits. This procedure determines if a rabbit will die

or not.

Snippet of Rabbits.nlogo

;---

;----- Death ---------------------------------------

;---

; Rabbit Procedure

to death

;; die if you run out of energy

if energy < 0 [die]

end

There is only one line of code executed by the DEATH procedure and it is an if-statement,

if energy < 0 [die]

This checks if the rabbit’s energy variable is negative. If it is then the rabbit dies. Note the primitive die kills the

agent executing the command. You can check the NetLogo dictionary for more details on the die primitive.

This takes us through all the elements of the code.

Plots in the Interface

There is one last element of the interface we should examine: the plot window. You can open the plot window for a

plot by right clicking on the plot, and selecting Edit. At the top of the window you can enter the name (or title) of

the plot, the x-axis label, and y-axis label. You can set the scale of these axes, or select “Auto scale?”. In the “Plot

setup commands” you should see the command

set-plot-y-range 0 initial-num-rabbits

This sets the initial range of the y-axis to be [0, initial-num-rabbits]. The “Plot pens” box is where you define

what you would like plotted. This plot is generating two curves. One called grass, and one called rabbits. If you

click on the color to the left of each pen name, a window will pop up and you can select the color in which you would

like the curve to be plotted. The grass curve will plot the total number of patches that are green. The command for

this is

Lab 8 12

Figure 8: Plot window for the Rabbits.nlogo file.

plot count patches with [pcolor = green]

The rabbits curve will count the total number of rabbits. The command for this is

plot count rabbits

You should take a moment to look up the primitives plot, count, and with in the NetLogo dictionary.

Assignment

Now that we have gone through each component of the NetLogo code for the model, you will make some modifications

to the code and to the plot.

1. Start by opening the Rabbits.nlogo file and saving it as P01 YourLastName.nlogo.

2. Create a patch variable called grass-energy. To do this, look up the patches-own primitive in the NetLogo

dictionary. Note that the default value for any variable is 0.

3. After you have added the new patch variable, you can delete the global variable called grass-energy on the

interface tab. To do this, right click on the grass-energy slider bar and select delete. You can delete the

corresponding text box in the same fashion.

Lab 8 13

4. Modify the GROW-GRASS procedure so that when a patch is changed to green (i.e., it grows grass), the

grass-energy variable of that patch is set to a random integer in the range [1, 10]. To do this, look up the

random primitive in the NetLogo dictionary.

To test that your have used the random primitive correctly, go to the interface tab and run the SETUP

procedure. Click on the double-arrow button in the Command Center subwindow: ; this will allow you to

have a better view of the output of the command you are about to execute. Now, in the Command Center

type the command

ask patches with [pcolor = green] [show grass-energy]

Did you get only integer values in the interval [1, 10]. Run SETUP again, and execute the command again, just

to make sure. If there are any values outside the interval [1, 10], you will need to edit your code initializing the

grass-energy of green patches. Once you have your code correct, i.e., no values outside the interval [1, 10],

take a screenshot of the Command Center subwindow and save the file as Lab08 YourLastName-Test.jpg

5. Modify the EAT-GRASS procedure so that when a rabbit eats a patch of grass, the grass-energy variable of

that patch is set to 0.

6. Open the plot window. Add a third curve to the plot. Use the pen name grass-energy. Plot the total amount

of grass energy over all of the patches. To do this you will need to use the primitive sum. Look up this primitive

in the NetLogo dictionary. Once you have made your changes in the plot window, click OK.

7. Modify the GO procedure so that if the value of ticks is greater than or equal to 1000, the simulation will

stop. Note, this stop condition should be in addition to the stop condition if there are no more rabbits. Thus,

if the value of ticks ≥ 1000 or if there are no more rabbits then the simulation should stop.

8. Set your global parameters such that you will start with 150 rabbits, the birth threshold is 7 units of energy,

and the grass growth rate is 0.6%. Run the simulation for 1000 ticks or until all the rabbits die, whichever

comes first. Take a screenshot of your simulation. Make sure the graph and global variables are visible in the

screenshot. Save the image as P01a YourLastName.jpg.

9. Set your global parameters such that you will start with 150 rabbits, the birth threshold is 7 units of energy,

and the grass growth rate is 0.3%. Run the simulation for 1000 ticks or until all the rabbits die, whichever

comes first. Take a screenshot of your simulation. Make sure the graph and global variables are visible in the

screenshot. Save the image as P01b YourLastName.jpg.

10. Submit via Box:

� Your NetLogo file (P01 YourLastName.nlogo)

� Screenshot of GROW-GRASS test (P01 YourLastName-Test.jpg

� In a Word document (P01 YourLastName.docx) answer the question: What effect did lowering the grass

growth rate have on the simulation? You may want to run the simulation multiple times for each parameter

value to get an idea of what is happening. Include the simulation screenshots in the Word document (do

not submit them individually to Box).

	World Settings
	Creating Variables
	The SETUP Procedure
	The GO Procedure
	The GROW-GRASS Procedure
	The MOVE Procedure
	The EAT-GRASS Procedure
	The REPRODUCE Procedure
	The DEATH Procedure
	Plots in the Interface

