

Undergraduate data science: Biological connections and assessing impacts

Louis J. Gross

National Institute for Mathematical and Biological Synthesis

National Institute for STEM Evaluation and Research

Departments of Ecology and Evolutionary Biology and Mathematics

University of Tennessee, Knoxville

Funded by NSF awards DUE-1544375 and DBI-1300426

Project Personnel

Pamela Bishop (PI) - Director of NISER, NIMBioS Associate Director for STEM Evaluation

Suzanne Lenhart - NIMBioS Associate Director for Education and Outreach, Professor Mathematics

Kelly Sturner - former NIMBioS Education and Outreach Coordinator

Robin Taylor - NIMBioS Evaluation Postdoctoral Fellow

National Academies Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective

http://sites.nationalacademies.org/CSTB/Cur rentProjects/CSTB_175246

Look for a report soon

Biological Data Science

Dynamical systems

Calculus

Linear algebra

Modeling

Optimization Networks Graph theory

Stochastics

Inference	Distributions				
	Dynamical systems	Optimization			
Calculus Hypothesis testing	Likelihood	Networks Graph theory			
Linear algebra	Modeling Re	gression ANOVA			
	Bayes Methods	Stochastics			

Inference		Di	stributions		
Algorithms	Dynamical systems Lik		Optimizat Cloud Computing		n Networks
Calculus			elihood	Graph tl	
Hypothesis testing		Hubs	Coding Regression		
Database Str Linear algebra	Bayes Methods				ANOVA
			Scripting		AIOA
			ods	Stocha	stics

Inference	Curation		Distributions	Back	up	
Algorithms	Dynamical systems		Cloud comp	Optimizat	7	
Workflows Calculus		Ι	Likelihood	Graph the		works
Hypothesis testing	Citation	Hubs	Data mining	Coding	TTOVCIIA	lice
Database St Linear algebra	ructure Modelin Bayes M		g Regress Scrip	Μ	etadata	ANOVA
			· · · · · · · · · · · · · · · · · · ·	U	astics	

Inference	Curati	on	Distributions	Backup	
Algorithms	Dynamical systems			Optimization	Evolution
Workflows Systems	Informatio	n flow	Cloud compu	e	Networks
Calculus		I	Likelihood	Graph theory	venance
Hypothesis testing	Citation	Hubs	Data mining	Coding	Energy transfer
Database St		Modelin	g Regressi		
Linear algebra			s Script	ting Metad	ata ANOVA
Structure/Fund	ction	Bayes Methods		Stochastic	28

Inference	Curation Dynamical systems		Distributions					
Algorithms							Evolution	
Workflows Systems	Information			l compu	U U	Ν	etworks	
Calculus			Likelihoo	bd	Grapi	h theory Provei	nance	
Hypothesis testing	Citation	Hubs	Data m		Codir		Energy Transfer	
Database St	ructure	Modelii	ng I	Regressi	on			
Linear algebra			0	Script	ting	Metadata		
Structure/Func	ction	Bayes Methods		_	_	Stochastic	S	

Curricular Organization as a Data-science Problem

- Prioritization of concepts/skills
- Use of education research to guide pedagogy
- Borrowing/adapting existing materials (downscaling, not dumbing-down)
- Sequencing coverage of concepts/skills
- Enhancing high priority concepts/skills through repetition
- Assessing success

Training Fearless Biologists: Quantitative Concepts for all our Students

- **1. Rate of change**
- 2. Modeling
- **3.** Equilibria and stability
- 4. Structure
- **5. Interactions**
- 6. Data and measurement
- 7. Stochasticity
- 8. Visualizing
- 9. Algorithms

Slide presented at Bio2010 public release - Sept. 10, 2002 Listing arose from Workshops at UTK in 1992 and 1994. See *Bio2010: Transforming Undergraduate Education for Future Research Biologists* (NRC, 2003)

Mathematics for the Life Sciences – Princeton U. Press

Rule of Five- different learning styles to meet needs of diverse students: Symbolically, Graphically, Numerically, Verbally, Data-driven

We use this approach throughout the text which includes descriptive statistics (regression, semi-log, log-log), matrix algebra (eigenvalues, eigenvectors), discrete probability, discrete dynamical systems, basic calculus, differential equations, emphasizing data and hypothesis formulation (math and biological) using Matlab and R.

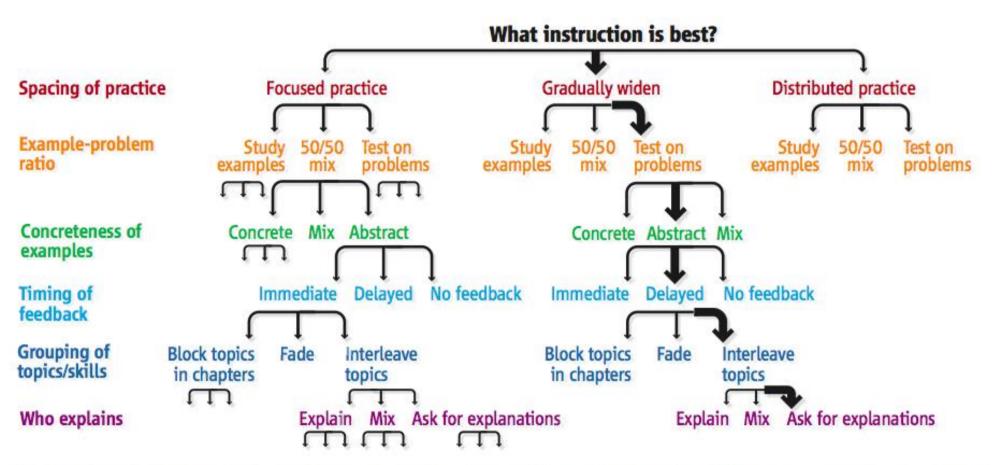
Mathematics for the Life Sciences

Erin N. Bodine, Suzanne Lenhart, & Louis J. Gross

Erin Bodine

Suzanne Lenhart

What evidence is there that indeed introducing and/or motivating quantitative concepts through inclusion of data and models from the life sciences actually enhances learning of these concepts by our students?



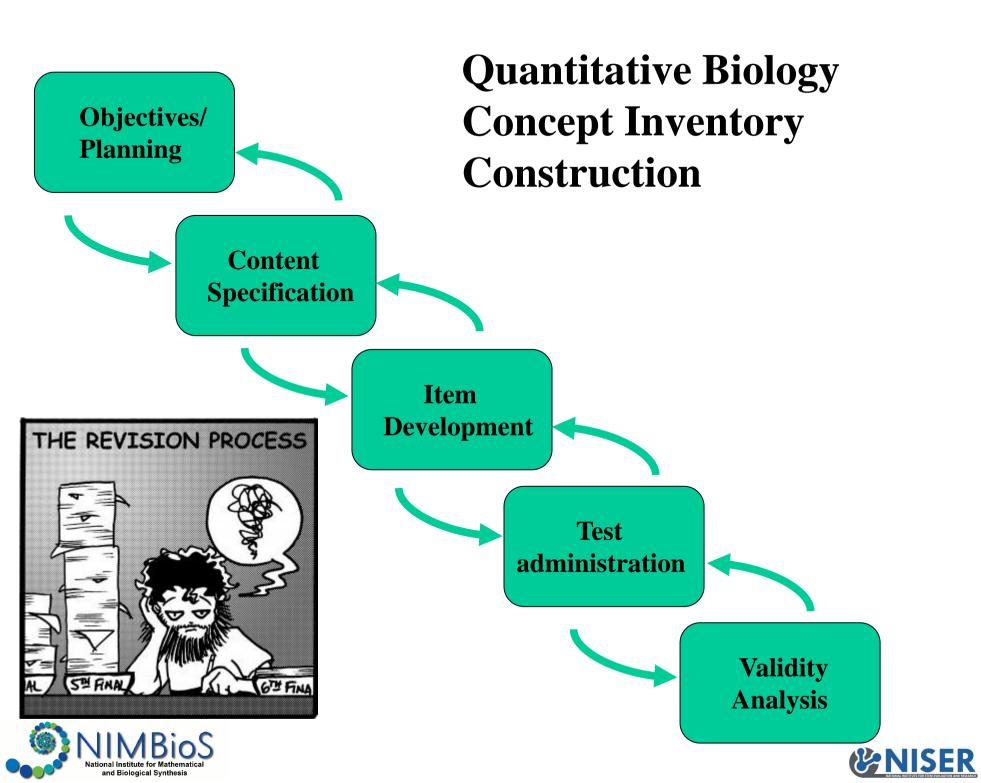
Instructional design choices. Different choices along different instructional dimensions can be combined to produce a vast set of instructional options. The path with thicker arrows illustrates one set of choices within a space of trillions of such options.

Koedinger, K. R., J. L. Booth, and D. Klahr1 Instructional Complexity and the Science to Constrain It. *Science* 342:935-7 (2013)

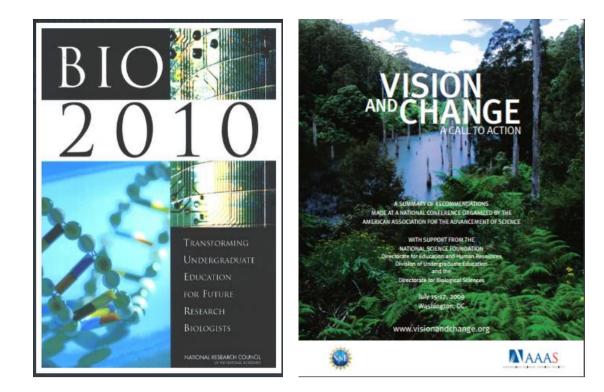
Evidence for the effectiveness of learning quantitative concepts through concrete examples and real data over abstract methods is mostly anecdotal. Very few studies investigate learning gains in mathematics arising from the use of scientific examples.

A first step towards evaluating the potential impact of biological examples on mathematics comprehension is to develop a robust assessment instrument designed for college-level math concepts.

Quantitative Biology Concept Inventory (QBCI)



Objectives/Planning

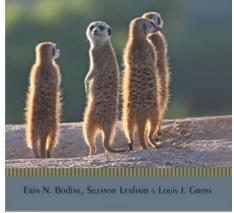


Literature review of concept inventories

Content Specification

- Calculus
 - Rates of change
 - Sums and
 Integration
 - Modeling
 - InterpretingGraphs and Data

Mathematics for the Life Sciences



The Calculus Concept Inventory— Measurement of the Effect of Teaching Methodology in Mathematics

Interdencials The Galaxies Concept Investory (CG) is a test of conceptual and/orienting and only that—these is exactually in comparison of the Tossi have much a test follows the Mechanics Disgnostic Tossi orients a test follows the Mechanics Disgnostic Tossi of 007, Hallow and Hechanics Diagnostic Tossi physics Biolones, Wells, and Suschlammer (14), Hallows et al. [13 Maior [15], filts that a test within have present a distance the mechanics of neither the physics Biolones, Wells, and Suschlammer (14), physics Biolones, Wells, and Suschlammer (14), physics Biological Action of a context in the physics many and a distance of the CG kased immediately that high fact chard and and and physics many and a distance of the Suschlammer the Suschlammer (14) and a suschlammer (14) and and and and and a suschlammer (14) and and and a suschlammer (14) and and and a suschlammer (14) a

Income Englate

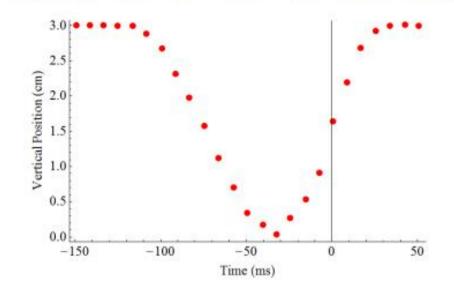
correctly that all locality assumed realization is intermetry of the star of the star of the star of the star intermediate in the star of the star of the star intermediate in the star of the star

Nomes of

VOLUME 60, NE

Item Development (Example 1)

2. Slow motion videos were used to collect time-series data on the vertical position of a cat's tongue as it drank water. The graph below shows the vertical position of the cat's tongue above a bowl of water during one lap of the tongue.



Over what interval is the vertical position increasing?

- (a) [-150, 30]
- (b) [-70,0]
- (c) [-50, 30]
- (d) [-30, 10]
- (e) [-100, -60]

Test Review and Administration

Expert review

- Student focus group completion
- Fall 2016 Administration
 - Calculus I, Calculus II, Math for Life Sciences
 - Pre-post testing
- Spring 2017 administration (n ~ 200)
 - Calculus I, Calculus II, Math for Life Sciences
 - Pre-post testing

REVISE

REVISE

Validity Analysis

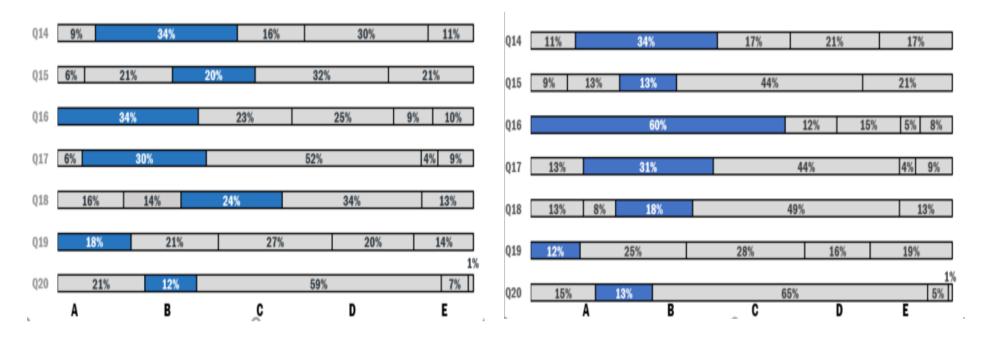
- Item Response Theory (IRT): family of latent trait models used to establish psychometric properties of items and scales
- Rasch Modeling: Demonstrate relationship between item difficulty and person ability
 - Probabilistic unidimensional model
 - Easier test question, higher likelihood of a correct response
 - More capable the student, higher likelihood of getting questions correct versus less capable (or able) student
 - Assumes probability a student correctly answers a question is a logistic function of the difference between the student's ability and the difficulty of a question
- PROVIDES A LOT OF INFORMATION ABOUT TEST QUESTIONS TO HELP EXAMINE THE QUALITY OF TEST CONSTRUCTION

Example distribution of QBCI responses

Correct responses are in blue

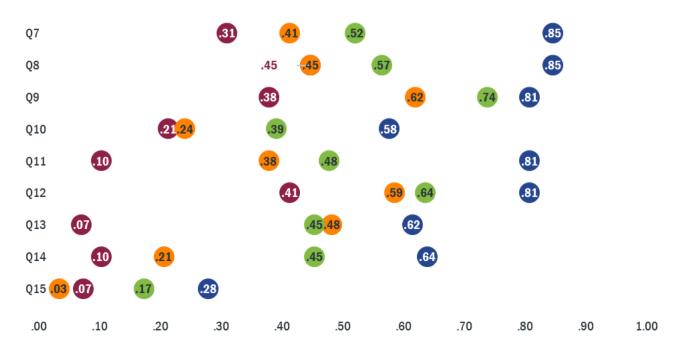
Pre-administration of the QBCI

Post-administration of the QBCI



Item discrimination by item difficulty for QBCI

Item difficulty by groups of overall test performance



Low performers (<=7 correct) Mid-Low Performers (8 or 9 correct) Mid-High performers (10 and 11 correct) High performers (>= 12 correct).

Item difficulty

- There is some, but not much, evidence that quantitative education of life science students can be enhanced by incorporating biological examples and data in quantitative courses. *Many (likely fundable) projects on this remain to be done by education researchers.*
- There is some, but not much, evidence that quantitative education of life science students can be enhanced by incorporating quantitative ideas in biology courses. *Many (likely fundable) projects on this remain to be done by education researchers*.

STEMeval.org

References and Further Reading

- Quantitative Biology
 - National Research Council, *BIO2010: Transforming Undergraduate Education for Future Research Biologists*. 2003, Washington, DC: The National Academies Press.
 - Brewer, C.A. and D. Smith, *Vision and change in undergraduate biology education: a call to action*. American Association for the Advancement of Science, Washington, DC, 2011.
 - Bodine, E.N., S. Lenhart, and L.J. Gross, *Mathematics for the Life Sciences*. 2014: Princeton University Press.
- Concept Inventories
 - Epstein, J. (2006). The calculus concept inventory. *National STEM Assessment, Washington, DC*, 60-67.
 - Jarrett, L., Ferry, B., & Takacs, G. (2012). Development and validation of a concept inventory for introductory-level climate change science.
- Test development
 - Downing, S. M., & Haladyna, T. M. (2006). *Handbook of test development*. Lawrence Erlbaum Associates Publishers.
- Rasch analysis
 - Boone, W. J., Staver, J. R. & Yale, M. S. (2014). Rasch analysis in the human sciences. Springer, Dordrecht, Netherlands.
 - TEAMS Project Webinars: Diagnosing Your Survey Using Rasch Modeling (Level 1/2): Karen Drill and Erin Stack: http://teams.mspnet.org/

www.stemeval.org

