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Learning Objectives 

• Create and interpret a boosted regression tree (BRT) model 

• Create and interpret a multiple regression model 

• Compare BRT and multiple regression model predictive power 

Introduction 

Coral reefs are the most biodiverse marine habitat per unit area (McIntyre, 2010). The physical 

architectural structure of a coral reef is complex and has a direct effect on the biodiversity in that 

habitat (Komyakova, Munday, & Jones, 2013). Over the past 40 years the Caribbean has seen 

a nonlinear decline in the architectural complexity of coral reefs due to bleaching events and 

subsequent breaking up of bleached reefs, converting a complex landscape into a flat 

homogenous one (Alvarez-Filip, Dulvy, Gill, Côté, & Watkinson, 2009). When trying to model 

how decreasing reef complexity is affecting species richness it becomes clear that reef 

complexity is complex and should be represented by multiple independent variables. One way 

of modeling this would be to use multiple regression which allows the researcher to predict the 

value of a variable based on the value of two or more independent variables. While multiple 

regression models are easy to generate and interpret, recent advances in machine learning 

have seen the increase in the adoption of BRTs which convey some advantages over 

generalized linear models. BRTs combine decision tree algorithms with boosting methods which 

improve the model accuracy. Comparing multiple regression models by the percent deviance 

explained and by the prediction error using a test dataset measured as root mean square error 

indicate that BRTs perform better than multiple regression models (Abeare, 2009). 

In “Reef flattening effects on total richness and species responses in the Caribbean” Newman et 

al 2015 used BRTs to determine the relative influence that seven independent complexity 

variables had on the species richness of seven different taxa: anemone, annelid, arthropod, 

coral, fish, octocoral, sponge and total species richness in three countries in the Caribbean. 

Newman’s BRT models worked best for explaining the variability in total richness (82.3%), coral 

richness (80.6%), and fish species richness (77.3%). Newman and all used their BRTs to 

determine the relative influence that each of their seven complexity predictors had on the 

species richness of the taxa in question.  



The ability to determine the relative influences independent predictors have on a model is a 

powerful tool which helps researchers assess which factors are having the biggest impact on 

richness still in the context of other factors. In this exercise we’ll attempt to recreate the 

Newman et al. BRT model on fish richness data. We’ll compare if our BRT model achieves the 

same relative influence percentages for the predictor variables. Next, we’ll create a multiple 

regression model with the same data to compare the relative influence percentage values 

obtained through this method. Both models will be compared for predictive power using the 

guidelines established by Abeare 2009 described above. Finally, there is an assignment to 

recreate the analyses outlined in this lesson on total species richness. 

Exercise Outline 

1. PART 1: Overview of the models being used 

a. Boosted Regression Tree Models 

b. Multiple Regression Models 

c. Boosted Regression Tree Models vs Multiple Regression Models: Relative 

Influence 

2. PART 2: Summary of relevant Newman et al. 2015 analyses 

a. Newman et al. Methods 

i. The Plots 

ii. The Dependent Variable: Fish Richness 

iii. The Independent Variables: Complexity Factors 

iv. The Model 

b. Newman et al. Results 

3. PART 3: Creating and comparing our new models 

a. Creating a Boosted Regression Tree Model 

b. Creating a Multiple Regression Model 

c. Comparing the Predictive Power of our Models 

4. PART 4: Assignment 

 

 

 

 

 

 

 

 

 

 

 

  



PART 1 
 

Boosted Regression Tree Models 

The following description of BRTs was adapted from The Biodiversity and Climate Change 

Virtual Laboratory’s guide to boosted regression trees: 

BRT models are a combination of two 

techniques: decision tree algorithms and 

boosting methods. BRTs repeatedly fit many 

decision trees to improve the accuracy of the 

model. BRTs take a random subset of all data 

for each new tree that is built. All random 

subsets have the same number of data points, 

and are selected from the complete dataset. 

Used data is placed back in the full dataset and 

can be selected in subsequent trees. BRTs use the boosting method in which the input data are 

weighted in subsequent trees. The weights are applied in such a way that data that was poorly 

modelled by previous trees has a higher probability of being selected in the new tree. This 

means that after the first tree is fitted the model will take into account the error in the prediction 

of that tree to fit the next tree, and so on. By taking into account the fit of previous trees that are 

built, the model continuously tries to improve its accuracy.  

Boosted Regression Trees have two important parameters that need to be specified by the 

user: 

1. Tree complexity (tc): this controls the number of splits in each tree. A tc value of 1 

results in trees with only 1 split, and means that the model does not take into account 

interactions between environmental variables. A tc value of 2 results in two splits and so 

on. 

2. Learning rate (lr): this determines the contribution of each tree to the growing model. As 

small value of lr results in many trees to be built. 

These two parameters together determine the number of trees that is required for optimal 

prediction. The aim is to find the combination of parameters that results in the minimum error for 

predictions. As a rule of thumb, it is advised to use a combination of tree complexity and 

learning rate values that result in a model with at least 1000 trees. The optimal ‘tc’ and ‘lr’ values 

depend on the size of your dataset. For datasets with <500 occurrence points, it is best to 

model simple trees (‘tc’ = 2 or 3) with small enough learning rates to allow the model to grow at 

least 1000 trees. 

 

 

Additional Useful Resources on BRTs: 

“A working guide to boosted regression trees” 

(Elith, Leathwick, & Hastie, 2008) 

StatQuest: Decision Trees 

StatQuest: Regression Trees, Clearly Explained!!! 

 

 

https://support.bccvl.org.au/support/solutions/articles/6000083202-boosted-regression-tree
https://support.bccvl.org.au/support/solutions/articles/6000083202-boosted-regression-tree
https://www.youtube.com/watch?v=7VeUPuFGJHk
https://www.youtube.com/watch?v=g9c66TUylZ4&t=702s


Multiple Regression Models 

The following description of multiple regression models was adapted from The Biodiversity and 

Climate Change Virtual Laboratory’s guide to generalized linear models: 

Multiple regression models are a form of generalized 

linear models (GLM) and are an extension of 

‘simple’ linear regression models, which predict the 

response variable as a function of multiple predictor 

variables. Linear regression models work on a few 

assumptions, such as the assumption that we can 

use a straight line to describe the relationship 

between the response and the predictor variables. 

This implies that a constant change in a predictor 

leads to a constant change in the response variable. This assumption is often violated in 

ecological data, and therefore these models are extended into GLMs to be able to deal with 

non-normal distributed data. GLMs find the equation that best predicts the occurrence of a 

species for the values of the environmental variables. The model has three important 

components: 

1. The probability distribution of the response variable. 

2. The linear predictor (LP): a combination of all predictor variables, which represents an 

overall score for the environmental suitability. 

3. The link function: this describes how the mean of the response depends on the linear 

predictor. 

The estimation of the values of the variable coefficients is obtained by maximum likelihood 

estimation (MLE), which maximizes the "agreement" of the predicted species occurrences with 

the observed data. In other words, MLE finds the values of the coefficients that result in a model 

under which you would be most likely to get the observed results. 

Boosted Regression Tree Models vs Multiple Regression 

Models: Relative Influence 

Ostensibly BRT models and multiple regression models are attempting similar things: explain 

how multiple predictor variables influence a response variable. Recall how Newman et al used 

their BRT models to establish the relative influence of different complexity variables on the 

species richness of different taxa. These relative influence numbers represent the contribution 

of each variable and are scaled so that the sum adds to 100, with higher numbers indicating a 

stronger influence on the response. It is also possible to determine relative influence from 

multiple regression models, as long as all regressors are uncorrelated: Each regressor’s 

contribution is just the R2 from univariate regression, and all univariate R2-values add up to the 

full model R2.  

 

 

 

Additional Useful Resources on Multiple 

Regression Models: 

StatQuest: Linear Models Pt.1 - Linear Regression 

StatQuest: Linear Models Pt.1.5 - Multiple 

Regression 

StatQuest: Multiple Regression in R 

 

https://support.bccvl.org.au/support/solutions/articles/6000083213-generalized-linear-model
https://support.bccvl.org.au/support/solutions/articles/6000083213-generalized-linear-model
https://www.youtube.com/watch?v=nk2CQITm_eo
https://www.youtube.com/watch?v=nk2CQITm_eo
https://www.youtube.com/watch?v=zITIFTsivN8
https://www.youtube.com/watch?v=zITIFTsivN8
https://www.youtube.com/watch?v=hokALdIst8k


PART 2 

Newman et al. Methods 

 The plots 

 

 

 

 

 

 

 

 

 

 

 

Adapted from Newman et al. 2015:  

The presence of reef macrofauna was recorded on reefs with different levels of topographic 

complexity in three marine reserves in the Caribbean: Bonaire National Marine Park (BON), La 

Parguera Natural Reserve in south-west Puerto Rico (PR) and the Tobago Cays Marine Park in 

St. Vincent and the Grenadines (SVG; Fig. 1). Species presence was quantified in twenty 25-m2 

plots at each of five levels of reefscape complexity in each country (100 plots total per country). 

The maximum distance between surveys was 5.5km in Bonaire, 6.9 km in PR and 3.6 km in 

SVG. Plots were haphazardly situated in areas of uniform complexity at least 10 m from a 

boundary between different complexity levels or from other plots, on coral fore-reefs at depths of 

5–15 m (mean 10.15 ± 0.14 SE n = 300).  

 

 

 

Fig. 1 Survey locations: (a) in eastern Caribbean, (b) west coast of Bonaire, (c) La Parguera, south-

west Puerto Rico, and (d) Tobago Cays in St. Vincent and the Grenadines (Newman, et al., 2015).  



 The Dependent Variable: Fish Richness 

Adapted from Newman et al. 2015:  

Plots were delineated with tape measures in a ‘T’ shape, after first recording larger, more mobile 

fish species each plot half was then carefully searched for fish (by S Newman and C Dryden). 

Unknown species were photographed for later identification. Survey time was greater in more 

complex plots due to greater surface area and the necessity to thoroughly search for cryptic 

species, with total plot survey times varying between 10 and 20 min.  

 The Independent Variables: Complexity Factors 

Adapted from Newman et al. 2015:  

Factor Name in Data Description 

Reef 
Complexity 

Reef.complexity Reefscape complexity was visually 
estimated on a scale of 1 (flat, little 
relief) to 5 (highly complex with high 
vertical relief and overhangs) (Appendix 
A) 

Number of 
Large Corals 

No.tall.corals Number of live corals > 50 cm in height 

Number of 
Corals 

No.corals Number of live corals > 4 cm in 
diameter 

Maximum 
Octocoral 
Height 

Octocoral.max.height Measure of soft coral height 

Maximum 
Sponge Height 

Sponge.max.height Measure of sponge height 

Slope Slope.angle Slope angle was visually estimated in 
degrees from the horizontal plane at 
each plot edge perpendicular to the reef 
slope and averaged 

Country Country Country where the plot was located 

  

The Model 

Adapted from Newman et al. 2015:  

Relationships between species richness of different taxonomic groups and reef complexity and 

structural components, and the relative importance of each complexity variable, were examined 

using boosted regression trees. All models were fitted to allow interactions using a tree 

complexity (tc) of 5, a bag fraction of 0.6 and a learning rate (lr) of 0.003 or 0.001 to minimize 

predictive deviance and maximize performance. Predictor variables that increased variance and 

reduced model performance were dropped using the ‘gbm.step’ function from Elith, Leathwick & 

Hastie (2008). Ten-fold cross-validation (CV) was used to identify the optimum number of trees 

(1000–2650 for taxonomic group models). 

 



Newman et al. Results 

For our purposes we’re just looking at the results for fish richness. Newman et al. found that 

their boosted regression tree model for fish richness explained 77.3% of the variation. Newman 

et al. lists four most important predictor variables ranked by percentage relative influence on fish 

richness as: country (31.6%), reef complexity (24.9%), number of large corals (14.0%), and 

sponge max height (8.9%) and generated fitted function plots (Fig 2). Each graph represents the 

fitted function of fish richness response due to the x -axis (predictor) variable, while keeping all 

other predictor variables average. From these plots Newman et al. concluded:  Reef complexity 

and country had the greatest relative influence on fish species richness, with fish species 

richness lowest in PR. Fish species richness was highest in Bonaire and SVG, at high reef 

complexity levels, where there were more than 15 large corals per plot and with sponges over 

75 cm tall. Fish species richness declined below reef complexity level three, and confidence 

intervals indicate a greater variability in the number of fish species at lower levels of complexity. 

Now let’s create our own boosted regression tree model and see how our results compare. 

 

 

 

 

 

 

 

 

 

Fig. 2 Functions fitted for the four most important predictor variables (ranked by percentage relative 

influence left to right) (Newman, et al., 2015).  



PART 3 
Important Note: PART 3 of this exercise utilizes the accompanying Rmd file: “PART3.Rmd”  

Lines highlighted in blue correspond to chunks to be run in the Rmd file. 

Creating a Boosted Regression Tree Model 

1. Load the required packages and import the data 

library(dismo) 

data <- read.csv("data.csv") 

 

2. Create the model 

fish.step<- gbm.step(data=data, gbm.x = 10:16, gbm.y = 1, family = "poisson", 

tree.complexity = 5, learning.rate = 0.003, bag.fraction = 0.6) 

a. Let’s break this down, we’re attempting to recreate the model generated by 

Newman et al. these individual parameters are taken from the Model section of 

PART 1. Here’s what they mean: 

i. “gbm.x=” Defines the range of the independent variables you want to use. 

In our data set: data.csv the complexity variables occupied the last seven 

columns. We want to use all of our complexity variables to make this 

model so we select 10:16. 

ii. “gbm.y=” Defines the dependent variable. In our data.csv fish richness 

occupies the first column so we select “1”. 

iii. “tree.complexity=” (tc) Defines the number of nodes in a tree 

iv. “learning.rate=” (lr) Learning rate is used to shrink the contribution of each 

tree as it is added to the model. Decreasing the learning rate will increase 

the number of trees required. 

v. “bag.fraction=” Bag fraction selects the proportion of data to be selected 

at each step 

 

3. Look at the output 

a. Fig 3 shows a graphical representation of how the algorithm decided how many 

trees to use to generate the model. The solid black curve is the mean, and the 

dotted curves about 1 standard error, for the measure of predictive deviance. The 

goal of the model is to maximize the predictive deviance by minimizing the 

holdout deviance using the least number of trees possible. The red line shows 

the minimum of the mean and the green line shows the number of trees at which 

that occurs in this case 1350 trees. So far this is consistent with Newman et al. 

who found the optimum number of trees to be between 1000 and 2650.  

i. IMPORTANT NOTE: Your numbers will not be identical, BRTs are 

stochastic and are therefore slightly different each time they’re run. 



 

b. Also outputted was a brief summary of our model which contains the information 

necessary to calculate the deviance explained. 

i. 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 = (1 − (
𝑚𝑒𝑎𝑛 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝑚𝑒𝑎𝑛 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒
)) ∗ 100 

ii. 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 = (1 − (
0.528

2.469
)) ∗ 100 

iii. 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 = 78.6% 

iv. Recall that Newman et al. had a deviance explained of 77.3% for fish 

richness, so far our models seem comparable. 

 

4. Assessing the performance of our model 

a. The gmb.step function’s ultimate goal is to develop a model in order to get 

predictions on new data it does this through cross 

validation. 

b. Cross validation works by: 

i. Splitting the dataset into separate training 

and test subsets 

ii.  hold out a set at a time and train the 

model on the remaining set 

iii. Test model on hold out set 

iv. Repeat this process for each subset of the dataset 

c. The output from number 3 above also provided us with some cross validation 

statistics that are useful in assessing the performance of our model: 

i. training data correlation = 0.885 

ii. cv correlation =  0.787 

d. These numbers tell us how well the model is fitting our data 

Fig. 3 Graphical representation of boosted regression tree model fitting  

Additional Useful Resource on 

Cross Validation: 

Towards data science: Cross 

Validation Explained: Evaluating 

estimator performance. 

 

https://towardsdatascience.com/cross-validation-explained-evaluating-estimator-performance-e51e5430ff85
https://towardsdatascience.com/cross-validation-explained-evaluating-estimator-performance-e51e5430ff85
https://towardsdatascience.com/cross-validation-explained-evaluating-estimator-performance-e51e5430ff85


i. 0.885 is a good score while 0.787 is acceptable (Dedman, Officer, 

Brophy, Clarke, & Reid, 2017) 

e. The relatively minor decrease from training to CV indicates that overfitting was 

not a serious issue and predictions were more likely to be correct. These scores 

indicate that we can have confidence in the model predictions. 

 

5. Examine Residuals Plot 

plot(fish.step$fitted, fish.step$residuals) 

abline(0, 0) 

a. Recall that this plot shows if residuals have nonlinear patterns. Ideally residuals 

should be spread around a horizontal line without obvious patterns. 

b. The residuals are relatively pattern free this plot gets a pass. 

 

 

6. Display relative influence 

summary(fish.step) 

a. Let’s compare the relative influence of the predictors in our model to the Newman 

et al. model. While the relative influence percentages are slightly different the 

order of the most influential predictors is the same for the top four predictors. Still 

comparable so far so let’s keep going. 

 

Fig. 4 Residuals vs Fitted for our boosted regression tree model  



 

 

7. Plotting the fitted functions 

gbm.plot(fish.step,n.plots=4,common.scale = TRUE, write.title = FALSE, plot.layout = 

c(2,4)) 

a. Here we plot the first four predictors by relative influence to generate a plot 

similar to the Newman et al. partial dependency plot seen in Fig 2. For 

comparison the Newman et al. plots will be added on the top row while our new 

plots will be on the bottom row. 

Predictor Newman et al. BRT 

Relative Influence (%) on 

Fish Richness 

Our BRT Relative 

Influence (%) on 

Fish Richness 

Country 31.6 33.9 

7Reef Complexity 24.9 27.5 

Number Large 
Corals 

14.0 10.9 

Sponge Max Height 8.9 8.0 

Number of Corals Unknown 7.5 

Octocoral Max 
Height 

Unknown 6.8 

Slope Angle Unknown 5.4 

Fig. 5 Functions fitted for the four most important predictor variables (ranked by percentage relative 

influence left to right). TOP ROW: Newman et al. plots BOTTOM ROW: Our plots 



b. Recall that each graph represents the fitted function of fish richness response 

due to the x -axis (predictor) variable, while keeping all other predictor variables 

average. 

c. Let’s compare our results with Newman et al. going line by line to see if we draw 

the same conclusions from our model 

i. “Reef complexity and country had the greatest relative influence on fish 

species richness” 

1. Yes, our results are similar though not identical 

a. Newman found that combined reef complexity and country 

We found that combined reef complexity and country had a 

relative influence of 61.4% 

2. “With fish species richness lowest in PR” 

a. Yes, our results are similar 

ii. “Fish species richness was highest in Bonaire and SVG” 

1. Yes, our results are similar but not identical 

a. While Bonaire and SVG both have higher richness than PR 

Newman has SVG slightly higher than Bonaire and we 

have Bonaire slightly higher than SVG 

iii. “At high reef complexity levels, where there were more than 15 large 

corals per plot” 

1. Yes, our results are similar 

iv. “And with sponges over 75 cm tall” 

1. Yes, our results are similar 

v. “Fish species richness declined below reef complexity level three” 

1. Yes, our results are similar 

 

Creating a Multiple Regression Model 

1. Load the required packages 

library(relaimpo) 

library(car) 

 

2. Create the multiple regression model 

fish.glm<- glm(fish_rich ~ Reef.complexity + No.tall.corals + No.corals + 

Sponge.max.height + Octocoral.max.height + Slope.angle + Country, data = data) 

a. This creates the GLM “fish” using the dependent variable “fish_rich” as a function of 

our multiple independent variables which are the structural components described 

above. 

 

3. Examine diagnostic plots 

par(mfrow=c(2,2)) 

plot(fish.glm) 

a. Let’s check if the model works well for these data 



 

b. Fig 6: Residuals vs Fitted 

i. Recall that this plot shows if residuals have nonlinear patterns. Ideally 

residuals should be spread around a horizontal line without obvious 

patterns. 

ii. There is a slight curve to our line but nothing dramatic and the residuals 

are relatively pattern free, this plot gets a pass. 

c. Fig 6: Normal Q-Q 

i. This plot shows if residuals are normally distributed. Residuals should 

follow a straight line.  

ii. There is some deviation at each end of the line but nothing too dramatic. 

This plot gets a pass. 

d. Fig 6: Scale Location 

i. This plot shows if residuals are spread equally along the ranges of 

predictors. Similar to the residuals vs fitted plot the residuals should be 

dispersed around a horizontal line without obvious patterns. 

ii. A slight curve but nothing too dramatic and no clear pattern to the 

residuals. This plot gets a pass. 

e. Fig 6: Residuals vs Leverage 

i. This plot looks for outliers which might be skewing our data. These will be 

represented by points falling outside of Cook’s distance which is 

represented by the dashed line. 

ii. No points are falling outside of Cook’s distance in this plot so it gets a 

pass. 

Fig. 6 Diagnostic plots for our multiple regression model 



 

4. Check for multicollinearity 

vif(fish.glm) 

a. Multicollinearity refers to a situation in which two or more explanatory variables in 

a multiple regression model are highly linearly related. This can be a problem 

because it undermines the statistical significance of an independent variable. 

b. Recall also that for the relative influence % we hope to generate from our 

multiple regression model depends on the explanatory variables being 

independent of each other. 

c. One way to check for multicollinearity in our model is by calculating the variance 

inflation factor (VIF) of our predictors which is done by regressing it against every 

other predictor in our model.  

d. Predictors with a VIF > 5 indicate high correlation and may need to be removed 

from the model. All of our VIFs are < 5 so we’ll continue with the predictors we 

have. 

 

5. Calculate the deviance explained 

summary(fish.glm) 

a. This summary provides us with the information we need to calculate the deviance 

explained by this model 

i. 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 = (1 − (
 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒
)) ∗ 100 

ii. 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 = (1 − (
4107

12853
)) ∗ 100 

iii. 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 = 68.0% 

iv. Recall that Newman et al. had a deviance explained of 77.3% and our 

BRT model had a deviance explained of 78.6% 

 

6. Calculate relative influence of the predictors 

calc.relimp(fish.glm, type = "lmg", rela = TRUE) 

 

Predictor 

Newman et al. BRT 

Relative Influence (%) on 

Fish Richness 

Our BRT Relative 

Influence (%) on 

Fish Richness 

Our GLM Relative 

Influence (%) on Fish 

Richness 

Country 31.6 33.9 33.6 

Reef Complexity 24.9 27.5 26.7 

Number Large 
Corals 

14.0 10.9 15.9 

Sponge Max Height 8.9 8.0 4.5 

Number of Corals Unknown 7.5 6.8 

Octocoral Max 
Height 

Unknown 6.8 3.5 

Slope Angle Unknown 5.4 9.0 

 

a. Comparing the percent relative influence of the predictors in our models above shows 

that our multiple regression model agrees with our BRT model about the top three 

predictors but deviate for the remaining four. 

b. Which model should we use? 



Comparing the Predictive Power of our Models 

In “Comparisons of boosted regression tree, GLM and GAM performance in the standardization 

of yellowfin tuna catch-rate data from the Gulf of Mexico lonline [sic] fishery” Abeare 2009 

compared the predictive power of generalized linear models and BRT models using the 

deviance explained by the model and the root mean squared error 

1. Deviance explained by the model: Recall that we’ve already calculated the deviance 

explained:  

Fish Richness 

Model 

Deviance Explained (%) 

Newman et al. BRT 77.3 

Our BRT 78.6 

Our GLM 68.0 

 

a. This shows that both of the BRT models were able to explain ~10% more of the variation 

in our data than our multiple regression model. 

 

2. Root mean square error 

RMSE <- function(error) { sqrt(mean(error^2)) } 

RMSE(fish.glm$residuals) 

RMSE(fish.step$residuals) 

a. Root mean square error is the measure of the differences between values predicted by a 

model and the values observed. 

Fish Richness 

Model 

RMSE 

Our BRT 0.75 

Our GLM 3.70 

 

b. RMSE is an absolute measure of fit and is reported in the same unit as the response 

variable (fish richness) therefore these numbers should be directly comparable. Smaller 

RMSE values imply a better fit. 

 

3. Conclusion 

a. According to these metrics our BRT model fit the data better while simultaneously 

explaining more of the deviation making it the superior model. 

 

 

 

 



PART 4 

Assignment 

To answer the questions below use the PART3.Rmd file and PART 3 walkthrough in this 

document as a template to generate your own multiple regression and BRT models using total 

species richness (the measure of all species richness described by the field “total_rich” in 

data.csv) as the dependent variable. 

1. How did the relative influence of your predictors compare to those reported by Newman et 

al.? 

 

Predictor 

Newman et al. BRT 

Relative Influence (%) on 

Total Richness 

Your BRT Relative 

Influence (%) on 

Total Richness 

Your GLM 

Relative Influence 

(%) on Total 

Richness 

Number Large 
Corals 

21.5   

Sponge Max Height 18.6   

Reef Complexity 17.3   

Octocoral Max 
Height 

14.9   

Number of Corals Unknown   

Country Unknown   

Slope Angle Unknown   

 

2. How much of the deviance was explained by your models compared to Newman et al.? 

Total Richness 

Model 

Deviance Explained (%) 

Newman et al. BRT 82.3 

Your BRT  

Your GLM  

 

3. What were the RMSE values for your models? 

Total Richness 

Model 

RMSE 

Your BRT  

Your GLM  

 

4. Based on these results which model would you choose to describe these data? 
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APPENDIX A 
Examples of visually assessed levels of complexity (Newman, et al., 2015) 

 

 

  

Grade 1:  

No or very low vertical 

relief 

Grade 2:  

Low relief 



 

  

Grade 3:  

Moderate complexity 

Grade 4:  

Very complex with 

numerous fissures 



 

Grade 5:  

Exceptionally complex with 

numerous ledges or 

overhangs 


