Case Studies: Rate these real proposals, currently reviewed in an **IUCN** (International Union for the Conservation of Nature) report

Genetic frontiers for conservation

An assessment of synthetic biology and biodiversity conservation Edited by: Kant H. Redford, Thomas M. Brooks, Nicholas B.W. Mactarlane, Jonathan S. Adams

Dr. Fran Sandmeier Colorado State University - Pueblo franziska.sandmeier@csupueblo.edu

Research Coordination Network in Undergraduate Biology Education: Build a Genome Network

Proposal 1: Eliminating Mosquitoes in Hawaii

- Hawaii's endemic bird species are some of the most endangered in the world
- 31 species have already gone extinct in historic times, including
 24 species of honeycreeper
- Such rapid declines are largely due to an introduced species of mosquito (*Culex quinquefasciatus*)
 - Transmit avian pox and avian malaria
 - Expected to invade higher elevation habitats (the current refuge for most remaining native species) with on-going climate change

Current Methods of Control

- Release of sterile adults: requires release of a lot of adults
- Insecticides: also harmful to native arthropods
- Proposal : Use gene drives to eliminate mosquitos (i.e., by

skewing sex ratios or causing infertility)

Your Current Recommendation (choose one answer)

• YES

Other Social/Ecological Considerations

- There is considerable local support for conservation of native plants & animals
 - In Hawaii, ecotourism is also an important industry
- In other parts of the world, mosquitos are also an important food source for animals (including endangered ones, such as bats and fish) and important as pollinators
- Do you think gene drives would be viewed positively or negatively by local Hawaiian communities? Why?

Precautions and Other Risks

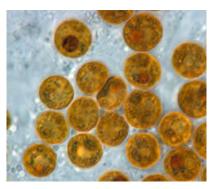
- If this project proposal becomes a reality, what reasonable precautions do you think could be put in place? (Think about export of agricultural products, tourism, etc.)
- What might a negative consequence be to gene drives not working as well as proposed?

Your Final Recommendation (choose one answer)

• YES

Proposal 2: Engineering Coral to Withstand Changing Temperatures

- Heat waves of 2014-2017 caused the drastic decline of corals across many parts of the world
- 2016/2017: 3rd global mass bleaching event (death of corals) and caused 50% loss of Australia's Great Barrier Reef
- Threats are associated with climate change: increased disease/loss of symbiotic algae/symbiotic microbes turning parasitic
- Coral reefs provide habitat for a huge diversity of sea life and have been compared to the biodiversity of tropical forests
- Important to coastal communities: fisheries and tourism

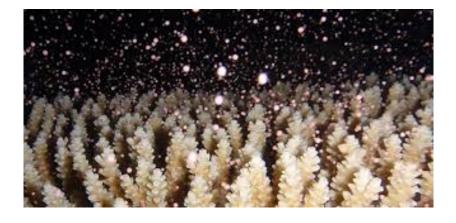


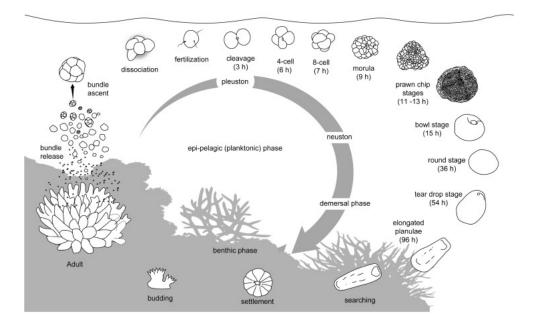
Strategies to Stabilize Coral Reefs

- Increase thermal resistance in coral & their symbiotic algae (species of Symbiodiniaceae)
 - Selective breeding, assisted gene flow within species, species hybridization, application of probiotic microbes
- Proposal: Use genetic engineering to insert antioxidant compounds and enzymes that are known to reduce heat stress
 - Research continues to identify other genes that may be important to improving resilience against heat stress
- Genetic engineering has not yet discussed gene drives in these cases but you will still evaluate the possibility of the the use of this additional technology!

Your Current Recommendation for Genetic Engineering (choose one answer)

• YES


Your Current Recommendation for Genetic Engineering with Gene Drives (choose one answer)


• YES

Spawning, Currents, Hybridization

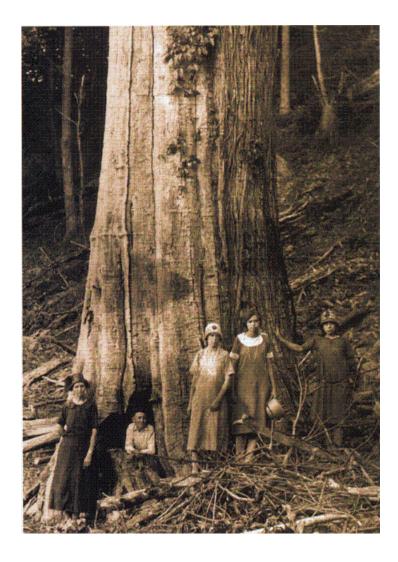
- Species with sexual reproduction release gametes into the water, which are fertilized externally
 - Dispersal distances unknown for many species, based on timing of the spawn and strength of ocean currents
- Hybridization between species can be common, but has not been adequately quantified
- How might the release of an engineered organism be problematic in these conditions?

Lifespan and Asexual Reproduction

- Coral are made out many polyps that grow on the calcium deposit of old polyps (corals are colonial animals)
 - Corals can be very long-lived
 - Corals can also release free-swimming asexual clones
- Will genetic changes persist for a longer time in such animals?
- What about gene-drives: are they truly self-limiting in a long-lived animal with many reproductive episodes (both sexual and asexual)?
- What will happen to genetically-modified animals if ocean temperatures start to cool again?

Your Final Recommendation: Genetic Engineering (choose one answer)

• YES


Your Final Recommendation: Genetic Engineering with Gene Drives (choose one answer)

• YES

Proposal 3: Bringing Back the American Chestnut

- The American chestnut (*Castenea dentata*) was once one a large, long-lived and ecologically important tree in eastern US forests
 - Nut crops were consumed by both humans and wildlife
 - The many ways ecosystems changed with its reduction/loss is unknown
- It has been almost entirely lost by an invasive blight fungus that was accidentally brought to the US in the late 1800s
- Nonreproductive seedlings and stump sprouts still exist, but without ever reaching reproductive maturity (functionally extinct)

Efforts to Bring Back the Chestnut

- Asian species of chestnut can resist blight infections
- Experiments to hybridize the species have been successful, but these also include many traits of the Asian species that may not be desirable in the US
 - Traditional breeding can remove some of these traits, but is slow and unpredictable
 - We know that resistance in the Asian chestnut is controlled by multiple genes
- Would you consider such a hybrid tree to belong to the same species as American chestnut seedlings?

Genetic Engineering

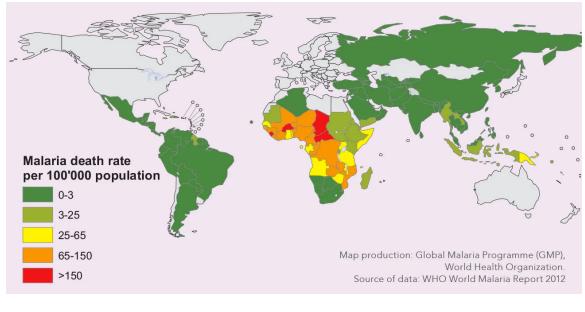
- Proposal: Use genetic engineering to insert a gene (found in other plants, such as wheat) into the American chestnut and release into the wild
- Has been successfully done in controlled environments
- Gene product breaks down oxalic acid (toxin) which is produced by the blight and kills tissues of the chestnut
 - It appears to make American chestnuts tolerant of blight infections: they may have blight infections, but infections do not cause much damage
 - Would you consider a genetically modified American chestnut as being the same species as an unmodified chestnut?

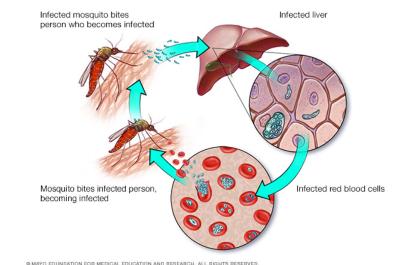
Your Current Recommendation (choose one answer)

• YES

Genetically Modified Organisms (GMOs)

- The US currently regulates GMO crops through the US
 Department of Agriculture and the Environmental Protection
 Agency
- Should we release a GMO tree into natural habitats?
- Do we have an obligation to reverse its human-caused extinction?
- Are we tampering with nature even more by releasing this tree back into natural areas?


Your Final Recommendation (choose one answer)


• YES

Proposal 4: Reduce Populations of Mosquitos that are Vectors for Malaria

- Malaria cases are in excess of 200 million per year
- The World Health organization estimates that \$9 million is needed to cover 90% of the effected population, only \$2.4 million is available
- Primarily caused by *Plasmodium falciparum*, transmitted by female *Anopheles* mosquitoes
 - 90% of cases occur in Africa, where A. *gambiae* is the predominant vector

Vector Control

- Vector control primarily focuses on insecticides and insecticidetreated netting
- Insecticides effect many species of arthropods
- DDT was re-approved as an insecticide in 2006, despite toxicity and environmental impacts (such as loss of raptors)
- Proposal: Use gene drives to reduce local mosquito populations (not total extinction)
 - Produce all males
 - Reduce female fertility

Your Current Recommendation (choose one answer)

• YES

Ecological Consequences

- Should humans exterminate/reduce a native species in its native range?
 - All other examples that we are discussing involve reversing ecological damage caused by humans
- Current research suggests that *A. gambiae* does not hold a unique ecological role, and that other species of mosquitoes will still provide food to other animals/pollination/etc.
 - However, studies on ecological roles of the different species are very limited
- Hybridization among species of mosquitos exists but its extent is largely unknown

Failure of Gene Drives

- Some studies suggest gene drives may not work as well as they are intended to work
 - Success assumes a lot of gene flow within the mosquito population
- What are the health consequences of relying on this technology and it failing to reduce mosquito populations in some places?
- What are the consequences to public opinion if this technology fails in some places?
- Given the limited funding for the many cases of malaria, what might be some other concerns that may emerge in local communities?

Your Final Recommendation (choose one answer)

• YES

